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Abstract  

 

COVID-19 is a novel coronavirus that poses a major health risk to the world. This disease 
has had dramatic economic and health effects around the world and demands a fast-moving 
and effective response. One such component of that response includes the modeling and 
forecasting of the disease spread. This must be done in order to effectively track the spread 
of the disease and allocate resources accordingly. This type of modeling work is especially 
important in a place like India where resources are strained, and large populations present 
easy transmission routes. 

This study explores various modeling and forecasting approaches that could be used to 
track the disease as well as its mechanics in various regions in India. Five modeling 
methods were used in this study and include the Exponential Smoothing Model, ARIMA 
Model, LSTM Model, SIR Compartmental Model, and a Prophet Library Model. All five 
models were used to generate 7-day forecasts with all known data as well as validation 
forecasts using 70% of the available data for training and 30% for testing. The SIR Model 
and Prophet Model were specifically used to perform a more in-depth analysis of disease 
spread, tackling topics such as trend changepoints, and population adjusted spread rates. 
With regards to inputs, the Exponential Smoothing Model, ARIMA Model, and LSTM 
model all relied on a univariate approach, with case count data as the only input variable. 
The SIR and Prophet Models utilized a multivariate approach with the SIR Model using 
last known population, recovery counts and death counts as extra regressors, and the 
Prophet Model using Google Human Mobility data as an extra factor.  

The study found that the Exponential Smoothing and ARIMA Models present themselves 
as weak options for modeling this pandemic due to their tendency to underpredict the trend, 
especially in the earlier stages of a pandemic where exponential growth is observed. The 
LSTM model was also found to be weak due to the relatively low number of data points 
(disease data only numbers in the 100s of data points). This led to under or over fitting, 
causing the model to routinely underpredict. The SIR and Prophet Models were found to 
be extremely accurate and precise; they did not suffer from under/overprediction and had 
a combined 1-2% error. 
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With regards to the analysis of disease spread and prevalence, the study found two results 
of note. First, the spread of the disease did not appear to correspond with any specific 
holidays or events in India. The changepoint analysis tool was used to perform this analysis 
and changepoint dates were not found to correspond with major holidays or religious 
observances in India. The second major detail found through this analysis involves regions 
that are most vulnerable to COVID-19. It was found that rural regions felt the effects of 
the pandemic later but sustained higher population adjusted rates of transmission. 

With the results of this study, it would be recommended that local agencies in India adopt 
the use of an SIR or Prophet library model to generate simple and accurate predictions to 
guide COVID response resource allocation. It would also be recommended that resources 
be diverted to rural regions in India to prevent sustained transmission in those areas. These 
recommendations are extremely relevant considering the COVID vaccine rollout and 
should be used as a tool with the vaccine to control COVID-19. 

Key Words: COVID-19, modeling, forecasting, ARIMA, exponential smoothing, SIR, 
Prophet, LSTM 

1. Introduction and Motivations 
 

In the current COVID-19 pandemic, modeling and understanding the behavior of the virus 
within a region is crucial to mounting an effective response. Even a basic understanding of 
the factors that contribute to the pandemic can be used by local authorities to inform their 
decisions and act to combat the pandemic. Important factors include trends in the virus’s 
spread with regards to age, health, geography, and numerous other factors. In addition to 
understanding the transmission tendencies of the disease, accurate forecasts are also crucial 
to a region’s ability to respond to pandemic conditions. Such forecasts allow health 
authorities to plan testing regimens, equip medical centers, and make informed public 
policy decisions. The pandemic itself is also personal to me as my family and close friends 
in India have been adversely affected, with notable decreases in quality of life, access to 
healthcare and stark differences in the severity of those conditions. It is this incredible 
variation of conditions within India that drove the exploration into this topic. It is 
imperative to understand why the disease transmits the way it does and to accurately 
forecast based on this insight. Being able to accomplish this task will allow for an effective 
response to the pandemic regardless of regional transmission variability. 
 
In this study, the early onset of the pandemic within various states in India was studied and 
compared to general trends from the USA and Europe, as reported in published literature. 
I sought to understand the relationship between the geographic makeup of a populace and 
viral spread with regards to states in India. The states that were selected for analysis have 
different geographic locations and different rural/urban population proportions to help with 
this goal. A Susceptible-Infected-Recovered (SIR) model was used alongside a Prophet 
linear model to analyze the transmission mechanics of the disease. These models rely on 
multiple input variables to generate a trend and accurately model the COVID-19 outbreak. 
These models give information pertaining to how fast the disease is transmitting and when 
the transmission rate changes. The SIR model and Prophet model’s predictive capabilities 
were also tested and compared against the simpler Exponential Smoothing (ES) model and 
AutoRegressive-Integrated-Moving-Average (ARIMA) model, as well as an LSTM deep 
learning model. The forecasting abilities of the models were tested over various time 
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frames to see how effective each model was at predicting future case counts. Additionally, 
the study was conducted during the initial stages of the pandemic, granting key insights 
into data quality and practices. 

2. Data Analysis and Manipulation 
 

A. Exploratory Data Analysis 
In this study five principal models were utilized to generate forecasts while two of those 
five models were used to additionally study the mechanics of the outbreak. The main factor 
analyzed was the transmission of the disease with respect to the rural/urban population 
breakdown of the state being studied. The ExploreData package in R was used to perform 
an automated EDA (in conjunction with manual analysis) and to produce visual 
representations of the condition of the data. 
 
The Indian COVID-19 outbreak data that were used to train the models was obtained 
through the covidregionaldata R dataset found on CRAN. The dataset sorts global COVID-
19 data by administrative levels, sorting by country first and then by level 1 and level 2 
regions [1]. The set contained numerous observation types for each administrative level 
with the ones relevant to this study being the total cumulative case count (listed as “cases 
total), the cumulative death count (listed as “deaths total”) and cumulative recovered count 
(listed as “recovered total”). These observation types were chosen as they were the ones 
required to construct the models. It should be noted that the dataset is incomplete with 
regards to numerous data points and levels of administrative organization. Discrepancies 
found through a preliminary EDA, include the lack of level 2 administrative region data 
for countries like India, lack of hospitalization and testing counts across various countries, 
and the lack of total cumulative recovery count for cases within the United States. These 
findings are visually summarized in Figures 1-3. Additionally, the dataset had a large 
number of values that were either 0 or 1 at timepoints before the beginning of the 
widespread outbreak in India. 
 
The other dataset utilized in this study is the Google Human Mobility report data, released 
on the 8th of August 2020. This dataset was specifically needed by the Prophet model setup 
used by this study to function as an additional regressor [2,3]. This dataset contains location 
data trends for numerous geographic location categories including retail space visits, 
workspace visits, park spaces visits and others [2]. The main categories used for this project 
include workspace visits (listed as “percent_work_change”) and retail space visits (listed 
as “percent_retail_change”). These two observation types were chosen due to the impact 
of the COVID-19 outbreak on them; this is illustrated in Figure 4. These two factors 
demonstrated the largest changes from normal in terms of visit activity when compared to 
other location types within a state.  
 
Additionally, population forecasts and demographic breakdowns calculated with Indian 
census data were obtained for the various states that were studied. These were obtained 
from an Indian Government census outlet and used to fit the SIR model [4].  
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Figure 2: Missing Data Overview. The plot_missing function from the ExploreData package was used to 
scan for missing data. The function was run on a characteristic two administrative level nation (USA); data 
with two administrative levels can be organized by county or state and is characteristic of most developed 
countries’ datasets. As shown above, all testing data and hospitalization data (tested_total, tested_new, 
hosp_total, hosp_new) is missing, rendering the columns unusable. In the case of the USA, recovery data is 
also missing. Additionally, death and case data are partially missing. 

Figure 1: Value Distributions in the Data. The plot_histogram() function was used to visualize the frequency 
of values reported in the data. Many 0 values are reported in the data for all observation types. 
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Figure 3: Missing Data Overview for India. The plot_missing function was run on Indian subsection of the 
dataset; this country lacked level 2 administrative regions and only organized data by states within the 
country. As shown above, all testing data and hospitalization data (tested_total, tested_new, hosp_total, 
hosp_new) is missing, rendering the columns unusable. Additionally, the patchwork nature of data at the 
onset of the outbreak for most countries provided calls into question the validity of the first few data points in 
the recovery, deaths, and cases columns. 
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B. Data Cleaning 
With both data sets obtained, the first activity done on the data was cleaning and trimming 
the data. The covidregionaldata and Google Human Mobility Report datasets were 
uploaded into their respective R scripts either from a .csv file or as a package. Both sets 
had the starting and ending observations trimmed off to match in size and to remove 
unusable data. The first 40 days of data for the outbreak were clipped due to the 
questionable quality of the data and its lack of use for calculating model parameters during 
an outbreak (values were all 0). Deficiencies in reporting by the Indian government of 
historical case data, especially before the month of May 2020 are pointed out by Vasudevan 
et. al. in their data quality and reporting study [5]. Due to these factors, the earlier data 
points were removed. This resulted in the clipping of the disease outbreak data and mobility 
data up until April 22nd, 2020. Additionally, the Google Human Mobility Report is released 
monthly, with the report used for this study containing data up until August 7th, 2020. As a 
result, the end of the disease outbreak data must be trimmed back to August 7th, 2020. With 
this trimming completed, the data used for every model had a start date of April 22nd, 2020 
and end date of August 7th, 2020, yielding 108 usable days of data. 

 

Figure 4: Frequency of Values in Mobility Report: The above output of plot_histogram shows the 
frequencies of various values in the Google Human Mobility Report for the state of Assam, India. The 
visualization shows that retail/recreation, workplace, and transit station data columns all have a high 
frequency of negative values pointing to sustained, negative mobility in those spaces throughout the 
progression of the COVID-19 outbreak. 
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3. Models and Methodology 
 

A. Overview 
The models utilized in the study the Susceptible-Infected-Recovered (SIR) model, a 
customized Prophet model, an Exponential Smoothing (ES) forecast model, an 
AutoRegressive-Integrated-Moving-Average (ARIMA) model, and an LSTM deep 
learning model.  Of these models, all five were used to generate and test forecasts to predict 
COVID-19 case counts on a 7-day basis. Only two of the models were used to 
quantitatively analyze the transmission trends of the COVID-19 pandemic; these models 
were the SIR model and the Prophet model. These two models were useful for extracting 
insights into the transmission mechanics of the virus as well as timepoints where the 
underlying transmission mechanics changed. An abbreviated glossary defining key terms 
for each model can be found at the end of the section. Additionally, each set of models 
came with slightly different visualization schemes, all based on the ggplot library. To 
discuss all models equally, they were compared on the basis of their actual prediction 
(trend) and the 95% confidence interval for the prediction; most of which are shared across 
all models. 

B. Input and Output Variables 
Over the course of the modeling process, three specific input variables were used across 
the different models and specific outputs were collected. These relationships are listed 
below. 

Inputs 

covidregionaldata 
Dataset 

Case count data used in all models. Recovery and Death data used 
additionally in the SIR Model 

Mobility Data Google Human Mobility data used in the Prophet Model 

Population Data Indian Census Population data used in the SIR Model 

 

Outputs 

7-day Forecast 7-day case count forecast collected for all models. Error is also 
collected. 

β Implied transmission coefficient collected from SIR Model. Covered 
in sections E and G. 

Changepoint 
Chart 

Changepoint vs. time charts collected from the Prophet model. 
Covered in sections F and G. 
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C. Exponential Smoothing and ARIMA Models 
 

The most rudimentary models that were used in this study include the ES and ARIMA 
models. Both models, in the context of this study, are general curve fitting models, fitted 
with univariate time series data, that can be used to generate predictions.  
 
The ES model utilized 
in the study was 
obtained from the stats 
package and was 
implemented through 
the HoltWinters() 
function. This function 
allows the fitting of a 
triple exponential 
smoothing model [6]. 
Exponential smoothing 
models are based on the 
principle of weighting 
the effect of past data 
less than the effect of 
recent data using the exponential window function[7]. The most rudimentary of these 
models can make a prediction without a trend or a seasonal component, relying only on the 
smoothing effect of past observations. Triple exponential smoothing models allow for a 
model that can smooth the effect of past observations, track a trend, and track seasonality 
(Figure 5) [7]. The specific implementation of the model that was used relied mainly on 
the smoothing parameter and trend parameter, foregoing the seasonality option. When 
training the model, the HoltWinters() function automatically assigns values for the 
smoothing and trend parameters based on the data [6,8]. The HoltWinters() function allows 
for user input start values for the trend and smoothing parameters, these values were left 
blank and the function was allowed to find values on its own. The data that were used for 
training the model were the case count data spanning 140 days. These data were converted 
from a tibble to a time series (.ts) object to be accepted by the HoltWinters() function [6]. 
The generated model was then fed into the forecast() function from the forecast package 
to generate a 7-day prediction. The prediction was automatically computed with 80% and 
95% confidence intervals.  
 
The ARIMA model is commonly used as an alternative to the ES model for univariate time 
series forecasting. The specific ARIMA model that was used in the study was implemented 
through the auto.arima() function from the forecast package. ARIMA models are a family 
of univariate models that use the data as their own regressor (AR), replace the observations 
with differences of observations (I), and whose regression error is a linear combination of 
previous error terms (MA), all to varying degrees [10]. Within the model, the parameters 
that dictate the degree of influence of the AR, I, and MA portions of the model are denoted 
by p, d, and q respectively. These parameters are automatically configured by the 
auto.arima() function as it trains itself on the supplied data [11]. The d value was checked 
manually to make sure it was appropriate as exponentially shaped data requires double 
differencing (d = 2) which was applicable to the data used. The data that were fed into the 
auto.arima() function for training were converted from a tibble to a .ts object so the function 

Figure 5: HoltWinters Additive Triple Exponential Smoothing. The 
HoltWinters() function used in the ES model relies on the above equations 
where lt accounts for smoothed constant trend data, bt accounts for a 
smoothed non-constant trend, st accounts for seasonal factors, and ŷ is the 
total of all three factors. Since the specific model used in this study omitted 
seasonality, st remained unused [9]. 
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would accept it. The model allows for p, q, and d values to be specified by the user, these 
were left unfilled, and the q values were instead checked when the models were generated 
[10]. The model generated by the auto.arima() function was fed into the forecast() function 
to generate a 7-day prediction with 80% and 95% confidence intervals. 

 

D. LSTM Model 
The last strictly univariate model that was utilized in this study was an LSTM deep learning 
model. This neural network model is characterized by functional subunits called cells 
which can maintain a memory state. This information is controlled input gates which 
control the flow of information in, output gates which control the flow of information out, 
and forget gates which control the information that gets deleted (Figure 6). These cells are 
arranged in layers which can be customized to hold different numbers of cells [12]. The 
model used in this study arranged the cells into two layers composed of 32 cells each 
followed a dense layer. The dense layer is a fully connected layer that follows the LSTM 
recurrent layers and aids in outputting a prediction. Before training, the data were formatted 
such that the model would be able to use the it. The data were lagged by three days (to 
favor recency and newer observations), differenced, and rescaled to fit the range [-1,1] (this 
is the range of the sigmoid function) [12]. After modification, the input set was reshaped 
into a 3-dimensional input and fed into the model for training. The model was set up using 
the LSTM tools found in the keras library. The data were trained for 12 epochs for the best 
chance at a usable model; the training duration was determined with preliminary testing as 
training for less than 12 epochs was found to underfit and training more than 12 led to 
overfitting. The model was then fed into a customized prediction function, built around the 
predict() function, that utilized the last known value in the training data as a basis for the 
next prediction. This predicted value then had its differencing and scaling reversed to make 
it comparable to actual case count values. 

 

Figure 6: Characteristic LSTM Memory Cell: The characteristic LSTM memory 
cell is similar to a conventional recurrent cell but also contains a forget gate, 
allowing the block to forget information, changing the cell state and what the 
output can be [13]. 
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E. SIR Model 
The first of the multi-input models that were utilized 
was the SIR model. This model is used to model three 
populations during an epidemic situation; a susceptible 
(S) population, infected (I) population, and 
recovered/dead (R) population. This model setup 
assumes that the infected population gains immunity 
either permanently or longer than the epidemic lasts. 
The three populations are tracked via three differential 
equations that track the changes (dS, dI, dR) in the 
respective populations. The equations rely on the 
values of the S, I, R populations as well as the implied 
transmission coefficient β and implied recovery 
coefficient γ (Figure 7) [14]. These values, within the 
context of the model, are dependent on the 
characteristics of the disease itself as well as the 
conditions in which it is allowed to spread. β dictates 
how quickly the disease spreads and how the S and I 
populations change. γ dictates how quickly individuals 
recover or die, directing how the I and R populations 
change [14, 15]. It should be noted that these constants 
are population adjusted and the β constant describes a 
person-to-person transmission rate. As a result, if an outbreak is simulated and β is held 
constant, logistic growth in total case counts will still occur since the actual case counts 
depend on β and population. Changing β changes the nature of the growth. The custom 
model implemented in this study is a discrete time model, solving the differential equations 
using the training data, over 1-day intervals to create a table of S, I, and R values as well 
as dS, dI, dR values and β/γ values. The model then averages the last 7 β values and last 7 
γ values to create averages that are used as a basis for prediction. These are then applied to 
the last known S/I/R and dS/dI/dR values to generate the first predicted values. These 
values are then re-applied to generate the next day, repeating until a 7-day prediction is 
generated. The predictions then have a 95% confidence interval generated for them using 
a two-sided t-test method with a sample size of 7 (number of β/γ used in prediction). 
Additionally, the β values could be extracted for analysis [15,16]. 

 

F. Prophet Library Model 
The last model utilized in this study was a custom setup Prophet model, implemented 
through the Prophet library. To set up this multivariate model, additional regressor 
functionality was enabled through the add_regressor() function and set to an additive type 
regressor (Figures 8,9) [3,18]. Changepoint functionality was also taken advantage of; 
referring to the model’s ability to detect significant changes in a trend, mark them in 
relation to time and use them guide modeling of the trend. The model’s changepoint 
detection time frame and changepoint response were modified to make the model more 
responsive to recent trend shifts; this was accomplished with the changepoint.range and 
changepoint.prior.scale parameters [19]. Then the additional regressor dataset was 
constructed. In the case of this model, the cleaned Google Mobility Report data were used. 

Figure 7: SIR Model Equations. The 
SIR model tracks three populations 
(Susceptible, Infected, and Recovered) 
through three ordinary differential 
equations. The additional parameters β 
(transmission coefficient) and γ 
(recovery coefficient) account for the 
physical characteristics of the disease. 
β modulates the rate of infection and γ 
modulates the rate of recovery and 
death [17]. 
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The last seven days of the mobility report were taken and extrapolated in a repeated manner 
to match the number of days being predicted; these values were taken and appended to the 
original table of values. This was done due to the Prophet library requiring the values of 
extra regressors to be known in the future, within the prediction time frame [20,21,22]. The 
model was then trained using the cleaned case count data and original, cleaned mobility 
data. The prediction was then obtained using the predict() function with the appended 
mobility dataset (contains past and future values) as an extra parameter. Additionally, the 
changepoint detection mechanics were run on the model to find when in time significant 
trend shifts occurred (significant enough to influence the model) [23]. 

 

 

 

 

 
 

 

 

 

 

 

G. Section Notation 

ES HoltWinters Triple Exponential Smoothing Model 

ARIMA AutoRegressive Integrated Moving-Average Model 

LSTM Long Short-Term Memory Model 

SIR Susceptible-Infected-Recovered Model 

Prophet Prophet Linear Model with Additive Seasonality, Holidays, and Regressors 
from the Prophet Library 

β Transmission Coefficient: Unitless constant used to modulate daily infection 
rate in SIR model 

γ Recovery Coefficient: Unitless constant used to modulate daily recovery and 
death rate in SIR model 

p Lag Parameter: Defines the number of lags in days used by the AutoRegressive 
portion of the ARIMA model 

Figure 9: Core Linear Model in Prophet. The model 
shown above is the core model used by Prophet to 
calculate a trend and forecasts; this version of the 
model was utilized by the study. g(t) represents the 
overall composite trend while k represents the base 
trend and a(t)Tδ accounts for accumulated trend shifts 
over time. Additionally, m represents the offset 
parameter calculated for the model while a(t)Tγ 
modulates offset changes throughout the model [18]. 
 

Figure 8: Holiday and Additional 
Regressors Functionality in Prophet. 
Prophet uses the above function to model 
and store the effects of holidays and 
additional regressors. Z(t) represents a 
matrix of holidays/regressors and their 
dates of occurrence in the past and future 
The κ parameter stores the effects of each 
occurrence of each holiday or regressor 
value. Given a time value, the holiday 
occurrences are used to track the effect 
of each occurrence through κ and 
summed up to generate h(t). h(t) is added 
to g(t) (Figure 8) to generate the overall 
trend [3,18]. 
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d Differencing Parameter: Defines the number of times the model data was 
differenced. 

q Moving Average Order: Defines the order of the Moving Average portion of 
the model. 

 

4. Results 
 

The study sought to test the modeling and predictive capabilities of various models. The 5 
Indian states tracked through this study included Maharashtra, Uttar Pradesh, Tamil Nadu, 
Rajasthan, and Assam. The SIR and Prophet models were also used to analyze the 
transmission behavior of the virus with relation to geography and time. 
 
The SIR models were run on each state and had their β values extracted for analysis. Each 
state had a large variance in their distribution of β values from the SIR model, pointing to 
discrepancies in data collection at the state level. As shown in the table below, the average 
β values calculated for all the states generally seemed to correspond to a larger rural 
population fraction (for all states except Uttar Pradesh) and a lower absolute hospital bed 
count. Additionally, states with internationally connected urban centers (Chennai, Tamil 
Nadu and Mumbai, Maharashtra) tended to have higher average initial β values (during the 
first 7 days studied) but lower average final β values (over the final 7 days studied). These 
locations are also known to be the initial outbreak centers in India. Plotting β values against 
time for each state reflects this observation and individual values are noted in the table 
below and Figures 10-14. 

 
*- Indicates value was calculated including missing/zero data points 

State Urban/Rural 
Population % 
[4] 

Total Hospital Bed 
Count [24] 

Average 
β 

Average 
Initial β 

Average 
Final β 

Maharashtra 45.22%/54.78% 231,739 0.082 0.095 0.066 

Uttar 
Pradesh 

77.73%/22.27% 281,402 0.114 0.066 0.102 

Tamil Nadu 48.4%/51.60% 155,375 0.117 0.086 0.100 

Rajasthan 24.87%/75.13% 93,176 0.117 0.052 0.092 

Assam 14.10%/85.90% 24,178 0.160 0.038* 0.169 
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Figure 10: β Values for Maharashtra. Shown 
above are the implied β values for Maharashtra. 
One notable characteristic of the data for this state 
includes the quick downward trend in values, 
implying measures being taken to control the 
outbreak Additionally, there is a large spread in 
data that gradually decreases as time passes, 
implying improvements in data collection. 

Figure 11: β Values for Tamil Nadu. Tamil Nadu 
deviates from the other states in the β values that were 
calculated for it. It displays a relatively low amount 
for variation in the observations for most of the time 
poinsts and shows an oscillating by mostly 
unchanging trend. 

Figure 12: β Values for Uttar Pradesh. Uttar 
Pradesh is one of the hardest hit states in the 
pandemic and holds a large hotspot, Delhi. The 
data for U.P. shows a large amount of 
variation and an initially increasing trend that 
later plateaus. This implies difficulties in data 
collection and some degree of success in 
reducing the speed at which COVID-19 is 
spreading within the state. 
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The Prophet model found that holidays had a minor effect on accelerating the spread of 
COVID-19, likely due to widespread lockdowns in India. The Prophet changepoint tool 
found trend accelerations that were noted throughout the course of the model were largely 
uniformly spaced throughout the time frame observed during the study (Figures 15-19). 
Areas with large quantities of changepoints are areas where case counts are increase or 
decreasing in a non-linear manner. Areas devoid of changepoints signal constant trends: 
either constant growth, decline, or no change in case counts. Furthermore, it is unlikely that 
large events had an impact on the trend due to the lockdown status of the country as noted 
through official government records and disclosures; the changepoints were found to not 
correspond to any specific dates or holidays. 

Figure 13: β Values for Assam. Shown above 
are the implied β values for the state of Assam. 
Notice a large amount of variation during the 
initial stages of the pandemic and a smaller 
variation as more data is collected. It is thought 
that the large variation in β values, especially in 
the earlier data points is due to poor data 
collection. Additionally, a gradual upward trend 
can be noticed. 

Figure 14: β Values for Rajasthan. The β values 
calculated for Rajasthan display a gradual upward 
trend followed by a sharp decrease. Additionally, the 
variation in the data stays relatively constant 
throughout the observations and sharply decreases in 
the most recent data points. Overall, the β values 
appear to be approaching a plateau. 
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Figure 15: 
Changepoints and 
General Trend for 
Assam. Changepoints 
(red) are shown 
superimposed on top of 
the trendline (black). 
The changepoints 
correspond to timepoints 
where the model detects 
a trendshift. The 
changepoints  here are 
slightly more frequent in 
the recent data points. 
Observing the trend, the 
increased changepoints 
signal a slight 
acceleration in COVID-
19 spread. 

Figure 16: Changepoints 
and General Trend for 
Tamil Nadu. In the case 
of Tamil Nadu, the 
changepoints are largely 
evenly spread (with some 
gaps). Due to the nature 
of exponential growth in 
cases seen during the 
early stages of a 
pandemic, the constant 
distribution of 
changepoints shows a 
more or less unchanging 
situation in the 
population adjusted rate 
of spread of COVID-19.  
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Figure 17: Changepoints 
and General Trend for 
Maharashtra. The 
changepoints noted for 
data from Maharashtra 
are similar in nature to 
those from Tamil Nadu. 
The changepoints are 
largely evenly distributed 
throughout the timepoints 
with occasional gaps. 

Figure 18: Changepoints 
and General Trend for 
Uttar Pradesh. The 
changepoint chart is similar 
to those of Tamil Nadu and 
Maharashtra. Additionally, 
the data from Uttar Pradesh 
reflects a similarly timed 
‘changepoint void’ in the 
month of June. 

 
1994



 

  
 
All 5 of the models were then run on the 5 states’ data to test their predictive capabilities 
over 7 days. These forecasts were stored for one week until the next data set update and 
compared to newly included values as well as values reported through public media outlets 
[1,25]. The best performing models were the SIR and Prophet model. These models 
averaged 1%-2% error (MAPE) with the Prophet model edging out the SIR model by 0.1%-
0.2% error each time. These models also did not display routine over or under prediction, 
calculating predicted values above and below actual values. Additionally, the SIR and 
Prophet models possessed the tightest prediction intervals when compared to other models 
(Figures 20,21). The worst performing models were the Arima, ES, and LSTM models. 
The ES and ARIMA models both averaged 5%-10% error when attempting a 7-day 
prediction. Additionally, both models had routine trend underprediction and had trouble 
adjusting to trend-shifts. The LSTM model was the worst performer and highly 
inconsistent. Training the model multiple times results in the model having wildly varying 
performance, sometimes underpredicting by 25%-30%. The LSTM model usually 
underpredicts but on the rare occasion, produces a model with ~5% error. All three of the 
lowest performing models suffered from large prediction intervals, pointing to a low 
confidence in prediction (Figures 22-24). The prediction intervals displayed in the figures 
below are of the state of Assam although the stated conclusions and results apply to data 
from all states. 

Figure 19:Changepoints and 
General Trend for Rajasthan. 
Changepoints here, like in 
previous states, are distributed 
evenly throughout most of the 
timepoints. The cumulative case 
count trend for this state lacks the 
large changepoint graph in June 
and is similar to the data from 
Tamil Nadu. 

Figure 20: Assam, Case Count 
Projection, SIR Model. The figure 
depicts the 107 days of trend data the 
model was trained on with a 7-day 
prediction appended on it. The 
trendline is displayed in blue with the 
prediction starting where the black 
lines start. The black lines depict the 
95% confidence interval of the 
prediction. Unlike the Arima and ES 
models, this model depicts continued 
exponential growth and does not 
plateau.  
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Figure 21: Assam, Case Count 
Projection, Prophet Model. The figure 
depicts the 107 days of trend data and an 
appended 7-day prediction. The trend is 
depicted in blue with data points in black. 
The 95% confidence interval is shown as 
a dark gray space around the trend line. 
The model predicts similar values into the 
future as the SIR model but does so with a 
tighter confidence interval. 

Figure 22: Assam, Case Count 
Projection, ARIMA Model. The 
figure shows the output of the 
forecast package ARIMA model. 
The original trend is depicted as a 
black line with the prediction 
showing as a blue line. The 
80%/95% confidence interval are 
shown in various shades of gray. 
The model, although more 
confident than the SIR model, 
suffers from routine 
underprediction with the model 
predicting a trend closer to a 
plateau. 

Figure 23: Assam, Case Count 
Projection, ES Model. The figure 
shows the output of the stats 
package ES model. This model 
performs similarly to the ARIMA 
model and shows results in the 
same manner. Additionally, the 
model suffers from the same 
routine underprediction and 
plateau like prediction. 
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5. Discussion and Conclusions 
 

COVID-19 pandemic trends around the developed world have all followed similar patterns 
with regards to geography. In the United States, S.J. Goetz et. al. found that rural regions 
lagged behind urban regions in COVID-19 cases per capita, noting that once a rural region 
was compromised however, the virus spread through those communities much quicker 
[26]. Findings in Europe echo these patterns with I. Kashnitsky and J.M. Aburto finding 
that COVID-19, although transmitted more rapidly in urban regions, is felt more strongly 
in aging rural areas [27]. They contend that the next high-risk locations in Europe, with 
regards to COVID-19 transmission, are peripheral regions with aging populations and 
lower healthcare availability.  
 
The findings of this study echo a similar conclusion, that although urban centers are usually 
hit first, rural regions risk bearing an unequal portion of COVID-19 mortality and infection 
in proportion to their population. Rural states like Assam had a delayed onset of pandemic 
conditions but ended up with higher transmission rates when compared to more urban states 
like Maharashtra. Urban center access in India is linked to healthcare access and positive 
health outcomes; these regions usually possess more government health centers due to their 
dense population but also possess numerous private healthcare institutions, a luxury rural 
regions do not have [24,28,29]. All states evaluated in this study followed the trend where 
rurality was associated with worse COVID-19 transmission scenarios, except Uttar 
Pradesh. However, Uttar Pradesh exists as somewhat of an outlier, as despite its relatively 
large rural population fraction (when compared to Maharashtra), Uttar Pradesh possesses 
an excess of healthcare centers which serve to equalize health access disparities and lessen 
the effect of rural living conditions [4,28]. Additionally, health access (measured through 
hospital bed count) was also correlated with better outcomes, as states with more extensive 
healthcare networks had better lower transmission rates per capita. Uttar Pradesh especially 
seems to reflect this conclusion as its rural population fraction suggests its transmission 
rates should be much higher and its hospital bed count suggests its transmission rates 
should be lower, yet the net effect on transmission rates lies somewhere in between. 
 
These findings suggest that rural regions in India are more likely to have heightened 
COVID-19 transmission rates and bear worse per capita outcomes than their urban 

Figure 24:Assam, Case Count 
Projection, LSTM. The LSTM model 
output is displayed. This model was 
the weakest of the five for this use 
case, both in its features and 
predictive ability. The model suffered 
from overfitting and underfitting, a 
consequence of the number of data 
points available to it. Due to the non-
deterministic nature of the model, 
each time the model is trained/ran, a 
different result is obtained. The model 
suffers from routine underprediction 
and fails to deliver a confidence 
interval. 
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counterparts. As data becomes more widely available, it is suggested that more granular 
district level data within the states in India are used to confirm this finding. This would 
allow state government policy and decision making to be ruled out as a confounding 
variable. Additionally, forecasts like the ones presented through the Prophet and SIR 
models should be used by state and local authorities to manage their resources and 
effectively control the outbreak. Having knowledge of where disease conditions in a region 
may be headed are crucial to mounting an effective response. In conjunction with 
vaccination efforts, the modeling strategies presented above could be used to locate high 
risk areas so that they may be targeted by public health agencies for vaccination and 
heightened vigilance. These modeling strategies can also be expanded out of India to assess 
COVID threats in other countries. Although specific conditions may differ between 
countries, the models’ generality (ex. Condensation of transmission mechanics into a single 
β value, Prophet changepoint detector) allows them to be used in a wide range of 
geographic environments and still generate useful transmission insights. 
 
The work done herein forms a basis for future expansion and exploration. The models 
covered within the study are only a select subset of those available and represent the most 
accessible and understandable. Further work should be done to bring more complex 
models-including newer machine learning models-in a user friendly and accessible manner 
to facilitate accurate forecasting of COVID-19 case counts. Advancements in modeling 
would also allow for a better comprehension of the underlying transmission mechanics of 
COVID-19 and would facilitate the understanding of why the disease spreads the way it 
does given a specific locale. 
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7. Supplemental Material 
 

1. Code (GitHub Repository):  

https://github.com/AbhiBuab/COVID19-Modeling-Forecasting/ 

2. Raw Output Figure Library (Google Drive Folder): 

https://drive.google.com/drive/folders/1SqdSVhtX97dK6WnGC8K6x6205fq9oL
DD? 
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