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Abstract
Gabaix and Koijen (2020) introduces the Granular Instrumental Variables (GIV) methodology, which
takes advantage of panel data to construct instruments to estimate structural time series regression
models that involve endogenous regressors. The GIVs are constructed based on panel data models
with factor structures, where the idiosyncratic error terms may have extraordinarily useful informa-
tion. In this paper, we extend their GIV methodology by developing the GIV identification procedure
to a largeN and large T framework (current identification is for fixedN and large T ) by establishing
and restricting the asymptotic behavior of the Herfindahl index for large N markets as a function of
the tail index of the size distribution of the cross-sectional units.
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1. Introduction

In the absence of randomized control trials, finding valid and strong instruments to cir-
cumvent unobserved confounders is a very challenging task. The promising Granular In-
strumental Variables (GIV hereater) methodology, Gabaix and Koijen (2020), proposes a
systematic way to construct instruments from suitably weighted idiosyncratic shocks, from
observational datasets and use them as instruments for aggregate endogenous variables.

How can idiosyncratic shocks be relevant for endogenous aggregate variables? Gabaix
(2011) provided an initial theoretical solution to the debate by showing that when the firm
size distribution is heavy tailed, the central limit theorem does not apply and idiosyncratic
volatility decays much slower than 1?

N
. Gabaix (2011) coined this mechanism as the so-

called "granular" hypothesis, in which the economy is composed of incompressible grains
as opposed to infinitesimally small micro units. Acemoglu et al. (2012) formulated a net-
work approach to demonstrate that sectoral idiosyncratic shocks generate non-negligible
aggregate volatility when there exists sufficient asymmetry in the input-output relation-
ships. Pesaran and Yang (2020) build off of the theoretical approach of Acemoglu et al.
(2012) and develop econometric theory to measure the degree of network dominance and
in their application they find some evidence of sector-specific shock propagation albeit not
overwhelmingly strong for the US input-output accounts data over the period 1972-2002.
More empirical evidence for such propagation mechanism is presented in Gatti et al. (2005),
Canals et al. (2007), Koren and Tenreyro (2007), Blank et al. (2009), Malevergne et al.
(2009), Yan (2011), Gabaix (2011), Carvalho and Gabaix (2013), Schiaffi (2013), Ace-
moglu et al. (2017), Jannati (2017) and Lera and Sornette (2017).

Gabaix and Koijen (2020), hereafter GK, illustrate that when the market under consider-
ation is sufficiently concentrated, then one can use the the collection of idiosyncratic shocks
to individual micro units, at each time period t, as an instrument for endogenous aggregate
variables. The instrumental relevance follows heuristically from above. The exogeneity
condition, as in any instrumental variables procedure, requires assumptions on unobserved
random variables. However it should be noted that the exogeneity condition exploited in
this framework is a relatively mild assumption that is often made in factor models (e.g. Bai
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and Ng (2002)) for identification purposes. The insight and contribution of GK opens the
doors to a wide possibility of ways in which one can continue building on the promising new
GIV methodology. Our contribution to the GIV methodology is that we naturally extend
their identification procedure to a large N and large T framework (GK formally introduced
GIV for a fixedN and large T ) by establishing and restricting the aymptotic behavior of the
Herfindahl index for large N markets as a function of the tail index of the size distribution.

Notation. Throughout, we distinguish vectors and matrices from scalars by making an
object bold. Let {Xit, i = 1, . . . , N ; t = 1, . . . , T} be a double index process of random
variables where N denotes the number of cross-sectional units and T denotes the number
of time periods. When we stack across i, we obtain X·t

N×1
≡ (X1t, . . . , XNt)

′. Similarly, if

we stack across t we obtain Xi·
T×1
≡ (Xi1, . . . , XiT )′. Define Xwt as the cross-sectionally

weighted average of Xit, that is Xwt =
∑N

i=1wiXit. Let ι
N×1

denote a vector of ones. Let

rXit = Xit − X̄t, where X̄t = 1
N

∑N
i=1Xit, denote a cross-sectionally demeaned variable.

Joint convergence of N and T will be denoted as (N,T )
j→ ∞ without any restriction on

the relative rates.

2. Model

In our exposition, we focus on the canonical setting of estimating the demand elasticity in
the global crude oil market. Our stylized simultaneous equations model takes the simple
form

dt = φdpt + εt (1)

yit = φspt + λ′iηt + uit, (2)

where dt denotes the log change of aggregate crude oil consumption and yit denotes the
log change of country i′s crude oil production, pt is the log change of real crude oil price
(where we deflate the nominal oil price with the U.S. general price index), the coefficients
φs and φd denote the crude oil supply and demand elasticities, respectively, and λi,ηt
are r × 1 vectors of latent factor loadings and latent factors.1,2 We assume no additional
covariates for ease of exposition but they can be easily accomodated. The global market
clearing condition is given by 3

ySt ≡ S′y·t =

N∑
i=1

Siyit = dt,

where S is the N × 1 vector of shares that are normalized such that
∑N

i=1 Si = 1 and i and
t take the values i = 1, . . . , N and t = 1, . . . , T , respectively. Making use of the market
clearing assumption we see that

pt =
1

φd − φs
`

uSt + λ′Sηt − εt
˘

, (3)

1The main results extend relatively naturally to the case where both variables have a panel model.
2We estimate r using the ER and GR methods of Ahn and Horenstein (2013).
3As oil is a storable good, one could easily allow oil prices to adjust to the gap between supply and demand,

e.g. as in Mohaddes and Pesaran (2016), who also allow prices to follow a general ARDL speciication. This
introduces more complex notations without adding any substance to the main points for identification.
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which makes the simultaneity clear, e.g., that prices are composed of size weighted id-
iosyncratic shocks and aggregate supply and demand shocks. The objective of the GIV
methodology is to extract the idiosyncratic shocks and use them as instruments for price.
For a large N extension, we require the tail of the size distribution to follow a power law,
with tail index µ ∈ (0, 1) or µ → 0. For example, if µ ∈ (1, 2) it can be shown that the
large N representation of prices satisfy pt = 1

φd−φs
`

λ′Sηt − εt
˘

+Op(1/(N1− 1
µ )); which

renders a weak instrument based on size weighted idiosyncratic shocks for large N .
The case of uniform loadings. To momentarily fix ideas, it is helpful to consider a

major simplification when constructing the instrument. Suppose that λi = λ ∀i and define
the N × 1 vector E ≡ ι/N . Then, the instrument can be formed as

zt = ySt − yEt = (φdpt + λ′ηt + uSt)− (φdpt + λ′ηt + uEt),

= uSt − uEt ≡ uΓt, (4)

where Γ ≡ S−E = S−ι/N is aN×1 vector such that ι′Γ =
∑

i Γi = 0, by construction.
Identification by GIV requires that

E(uitεt) = 0∀i, t, (5)

E(uitηt) = 0∀i, t. (6)

Which gives E(ptzt) 6= 0 (relevance) and E(ztεt) = 0 (exogeneity). Given relevance,
exogeneity implies the following demand elasticity estimator pφd =

∑
t dtzt∑
t ptzt

. Intuitively,
zt places larger weights on the idiosyncratic shocks to larger oil producers, these granular
shocks will shift the supply curve while keeping the aggregate demand curve fixed since
demand responds to these shocks only through their affects on prices. This allows for
consistent estimation of the demand elasticity. The homogenous loadings assumption in
this case tremendously facilitated the analysis. Uniform loadings allows one to construct
the instrument, as in (4), from observables.

Although homogeneous loadings was only an abstraction to illustrate the instrument,
GK advocate the use of yΓt = ySt− yEt in practice even when the loadings aren’t uniform.
In the general heterogenous loadings case, the instrument becomes

Zt ≡ yΓt = uΓt + λΓηt (7)

GK label this instrument with a capital case convention, to distinguish it because it is no
longer solely composed of weighted idiosyncratic shocks, as the λΓηt term is contaminat-
ing the instrument. However, this clever formulation is possible because they advocate esti-
mation of the factors in practice, which they augment to their structural equations, thereby
controlling for the second term which can potentially make their moment conditions differ-
ent from zero (e.g., when E(Siλi) 6= 0).

Homogeneous loadings are overly restrictive but can be easily accomodated in practice
via PCA or iterative OLS-PCA methods e.g., Bai (2003), Bai (2009), Moon and Weidner
(2017), Bai et al. (2015). Although in GK’s asymptotic theory they assume homogenous
loadings, which circumvents the need to estimate the factor structure, they indeed advocate
augmenting their structural equations with estimated factors either via period-by-period
cross sectional regressions when the loadings are known or via PCA in the case of non-
parametric loadings. GK abstract away from the sampling error in suggesting the use of
augmented factors, which only vanishes for both large N and T . Bai and Ng (2006) and
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Greenaway-McGrevy et al. (2012) have developed the asymptotic distribution for structural
parameters in factor augmented regressions in time series and panel models, respectively.
In this paper, a variant of their corresponding results is established in showing the sampling
error in the instrument is negligible when considering the asymptotic distribution of the
structural parameter.

The general case when λi 6=λ. Here we formulate the estimation approach in the gen-
eral case, which makes much heavier use of the cross-section. When we cross-sectionally
demean the supply equation and stack across i we obtain

ry·t = rΛηt + ru·t, (8)

which is estimable with vanilla PCA when the factor structure is strong.4 Letting Q =

(IN − rΛ(rΛ′ rΛ)−1
rΛ
′
), then Qry·t = Qru·t, completely purges the process of the common

factors through the loading space. Premultiplying the share weights gives the instrument

zt = S′Qry·t, (9)

= S′Qru·t ≡ Γ′ru·t, (10)

where Γ ≡ QS is unknown because Q is unknown, but Q is easily estimated from data.
Once we have pQ, we form pzt = S′ pQry·t from observables. Importantly, when λi = λ∀i,
then Γ = (IN−rΛ(rΛ′ rΛ)−1

rΛ
′
)S = S−ι/N from the previous example with homogenous

loadings. This gives rise to a more general demand elasticity estimator

pφd = pφd(pz) =

∑
t dtpzt∑
t ptpzt

. (11)

It follows that

pφd − φd =

˜∑
t

pztpt

¸−1 ˜∑
t

pztεt

¸

,

=

˜∑
t

ztpt +
∑
t

(pzt − zt)pt

¸−1 ˜∑
t

ztεt +
∑
t

(pzt − zt)εt

¸

.

From above, it is apparent we need to show 1
T

∑T
t=1(pzt−zt)εt = 1

T

∑T
t=1 S

′( pQ−Q)ỹ·tεt =

op(1) and 1
T

∑T
t=1(pzt − zt)pt = 1

T

∑T
t=1 S

′( pQ−Q)ỹ·tpt = op(1). The order of the sam-
pling error generally relies, in part, on µ, the tail index of the size distribution. Results on
the order of the Herfindahl as a function of the tail index parameter µ entails a total of six
possible cases. However, for inference, we require µ ∈ (0, 1) (regularly varying tails) or
µ → 0 (slowly varying tails). Then, under regularity assumptions it can be shown that as

4Strong factors in the sense that rΛrΛ
′
/N

p→ E(rΛrΛ
′
) > 0; which is equivalently stated as γmax(rΛrΛ

′
) =

Θp(N) where γmax denotes the maximum eigenvalue and a = Θ(b) states that a and b rise jointly proportion-
ally.
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(N,T )
j→∞, consistency and asymptotic normality are achieved

pφd − φd =

˜∑
t

pztpt

¸−1 ˜∑
t

pztεt

¸

=

˜∑
t

ztpt

¸−1 ∑
t

ztεt + op(1), (12)

?
T (pφd − φd) d→ N (0,vd). (13)

3. Concluding Remarks

In this paper, we have further developed the GIV methodology introduced by Gabaix and
Koijen (2020), which takes advantage of panel data to construct instruments for estimation
of structural time series regression models that involve endogenous regressors. We focus
on the underlying econometric issues involved in extending GIV to a large N and large T
framework where the loadings are treated as unknown parameters to be estimated before
constructing the instrument. We further establish that the sampling error arising from esti-
mating the instrument does not affect the limiting distribution for the structural parameter
of interest.
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