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Abstract 
The Inequality Process (IP), a particle system, accounts for five frequently seen stock 
market statistical patterns, evidence motivating an IP model of corporate market 
capitalizations. Solutions of the IP are determined by its particle parameters. The IP’s 
application to workers’ labor income conditioned on their educations takes their educations 
as a self-evident indicator of IP particle parameters. The verbal theory from which the IP 
was abstracted posits that more productive workers are more sheltered from competition 
for wealth. There is no single self-evident indicator of corporate wealth productivity as 
education is for workers. Instead, there are many. Deciding which or which combination 
requires relating indicators of corporate wealth productivity to an initial estimate of IP 
particle parameters. The present paper describes how to do that initial estimate. This paper 
estimates an IP particle parameter for each of 921 large U.S. corporations by fitting that 
particle’s wealth to that corporation’s market capitalization. The data are from the 2013 
Fortune Magazine 1000 list of large U.S. corporations. 
 
Key Words: Inequality Process, market capitalization, quantitative finance, stochastic 
particle system 
  

1.0 Modelling Corporate Market Capitalizations With the 
Inequality Process (IP) 

This paper describes a method for estimating Inequality Process (IP) particle 
equivalence classes when the Inequality Process (IP) (Angle, 1983-2019) is fitted to market 
capitalizations of corporations in the 2013 Fortune Magazine 1000 (a list of 1,000 large 
U.S. corporations, chosen by size of revenue by Fortune magazine, a Time, Inc company). 
921 of the these 1000 in 2013 have information on their market capitalization in the 2013 
Fortune 1000 file. The data on the 2013 Fortune 1000 are produced by Fortune Magazine, 
a Time inc. company, a subset of which is published by the Someka Corporation, a software 
firm based in Izmir, Turkey. These data can be downloaded in Excel format from Someka 
at (https://www.someka.net/excel-template/fortune-1000-excel-list ) . 

 
See Appendix A for an introductory review of the basic Inequality Process (IP), 

i.e., unelaborated to explain particular social phenomena such as racial discrimination. The 
IP has been adopted in the econophysics literature as an early example, perhaps the earliest, 
of a particle system model of income and wealth distribution with demonstrated empirical 
relevance (Byrro Ribeiro, 2020). 
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1.1 Required information for an IP model of corporate market capitalization  
To model the market capitalization of a corporation as an IP particle in a population 

of particles competing for wealth under IP rules (See Appendix A), the following 
information is required:  

a) the parameters of all IP particles in the population of particles;   
b) the simplification of knowing the number of particles in each distinct IP 

particle parameter equivalence class, or, nearly equivalent class, particularly 
useful if the equivalence classes correspond to a recognizable grouping of 
corporations;  

c) the wealth of all particles, and, 
d) a statistic of the fit of particle wealth to empirical wealth observations. 

 
1.2 The basic IP (of Appendix A) has dilation symmetry (gauge invariance) 

In the basic IP discussed in the present paper and stated in Appendix A, the grand 
mean of particle wealth appears only as a multiplicative scale factor in IP statistics, so it 
can, without loss of generality, be set to 1.0 to make it disappear from the statement of 
those IP statistics  (and to facilitate computation in floating point arithmetic). In the basic 
IP, particle wealth relative to the grand mean of particle wealth is determined by each 
particle’s parameter and the harmonic mean of particle parameters in the whole population. 
So, given the basic IP’s dilation symmetry (gauge invariance in physics jargon), the natural 
way to model IP wealth is with a grand mean of 1.0 of particle wealth, i.e., with all particle 
wealth normalized.  Fitting the IP to market capitalizations is facilitated by the normalizing 
of market capitalizations. In the present paper the grand mean of market capitalizations is 
taken as the mean market capitalization of the 921 corporations with information on market 
capitalizations in the data. 
 
1.3 The usefulness of IP particle parameter equivalence classes 

An example of an empirical grouping that can be assumed to be an IP parameter 
equivalence class is the education level of workers in the IP modelling of worker labor 
income. See Appendix B. The verbal theory from which the IP is abstracted asserts that 
workers more productive of wealth are more sheltered in the competition for wealth. 
‘Sheltered’ in the IP is operationalized as having to give up a smaller fraction of wealth. 
That fraction is an IP particle’s parameter. In the basic IP since winning or losing an 
encounter with another particle is independent and 50/50, particles that lose less have a 
higher expectation of wealth. Fits of IP particle statistics to those of labor incomes of the 
more educated yields smaller IP parameter estimates than fits of IP statistics to those of the 
labor incomes of the less educated, confirming the IP’s hypothesis to the extent that it is 
reasonable to infer that the more educated, are, in general, more productive of wealth. What 
was a strategy to confirm the IP in its application of workers’ labor income conditioned on 
education (Angle, 1983-2012) becomes an estimation strategy in the present paper. IP 
particle parameters will be estimated here from the clustering of similar particle wealth 
amounts around the mean particle wealth of particles in a particle parameter equivalence 
class. See how the wealth of similarly colored particles cluster in Figures 1 and 2. Figures 
1 and 2 also show overlap of the wealth of particles in different equivalence classes even 
though those equivalence classes are chosen to have distinctly different parameters.. 

 
There is no obvious analogue of the role education plays in fitting the IP to 

workers’ labor income statistics in fitting the IP to corporate market capitalization statistics. 
Instead of one self-evident indicator, there are many self-evident indicators of corporate 
wealth productivity. The situation prompts the question of how to weight one indicator 
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against others in that combination. The answer consistent with the verbal theory from 
which the IP was abstracted is the combination with the largest correlation with corporate 
market capitalization and, (in absolute value) the largest negative correlation to IP particle 
parameters fitted to those corporate market capitalizations. This selection of indicators of 
corporate wealth productivity is similar to the practice of  “factor analysis” (Ruppert and 
Matteson, 2015: 527ff) in contemporary quantitative finance. Some possible indicators of 
corporate wealth productivity:  

 
a) return on investment,  
b) market capitalization per employee,  
c) revenue per employee,  
d) net profit per employee,  
e) basic economic viability, earnings before tax and financial penalties, 
   per employee,  
f the distribution of employee educations, 
g) industry, or, 
h) something else, or  
i) some combination of the above  

. 
 

2.0  “Stylized Fact” Evidence that the Inequality Process (IP) 
Operates on Market Capitalizations 

Compelling evidence that the Inequality Process (IP) operates on corporations in 
competition for wealth (‘capital’ is applicable financial term), as indicated by their market 
capitalization, is the ease with which the IP implies five “stylized facts” of stock prices 
(Angle, 2018). See Table 1. There is also some encouragement of the hypothesis that the 
IP operates in all markets in the list of seven verbal maxims of mainstream economics 
implied by the IP (Appendix C) as well as the usefulness of the IP in modelling workers’ 
labor incomes.  
 
Table 1: Five “Stylized Facts” (often seen empirical patterns) of Stock Market Statistics 
(quoted from Angle, 2018)  

1. Association between greater corporate market capitalization and a lower mean 
absolute value of the logarithm of its daily stock returns. Volatility is defined here 
as the mean absolute logarithm of daily returns. Source: Malkiel (2015:124). 

2. Big stock price movements down are associated with greater volatility, while big 
stock price movements up are associated with lower volatility. In finance this 
phenomenon is terms “leverage effect”. Source: Tsay (2013:177). 

3. (t+k) autocorrelations of daily log returns to stocks of a particular corporation 
converge to near zero for k small beyond  k = 1. Sources: Georgakopoulos 
(2015:115), Resnick (2007:6), Tsay (2013:178). 

4. t+k autocorrelations of squared daily log returns to stocks of a particular corporation 
show long term memory (i.e., do not converge to zero) as k increases. Sources: 
Georgakopoulos (2015:115), Resnick (2007:6). 

5. Bollinger Band-like bounded volatility of particle wealth. Source: Kaufman (2005: 
294). 

 
Given the statistical interchangeability of corporate market capitalization and  

corporate stock price (explained in Section 3.1 below), the basic Inequality Process (IP) of 
Appendix A implies the five “stylized facts”, (frequently seen statistical patterns) of Table 
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1 in Figure 1, the phase diagram of the logarithm of particle wealth in five distinct particle 
parameter equivalence classes. Figure 1 is the phase diagram of log particle wealth, the 
change in the logarithm of particle wealth (y-axis) vs. the logarithm of particle wealth 
before the change (x-axis). Table 2 explains each of the five “stylized facts” of Table 1 by 
reference to Figure 1. 
 

 
Figure 1 
 
Table 2. How Figure 1 Explains the five “stylized facts” of Table 1  

1. In Figure 1 the particles with the smallest parameters are blue, the biggest red. 
Particles with smaller parameters have greater wealth and smaller changes in the log 
of particle wealth (in unlogged terms: smaller proportional changes, less volatility).  

2. A big, long-lasting, change downward in an IP particle’s wealth is caused by a big 
change upward in its parameter. Such a change in parameter creates greater 
volatility, and vice versa. For example, see what happens in Figure 1 if a blue 
particle (smallest IP parameter) turns red (largest IP parameter), and vice versa. 

3. The wealth of particles in all particle parameter equivalence classes change at every 
tick of the IP’s clock. Whether the change is an increase or a decrease is determined 
by the toss of a fair coin. Figure 2, the unlogged phase diagram of the basic IP of 
Appendix A, shows that if the change is a loss of wealth, a particle whose wealth 
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equals that of the mean wealth of its parameter equivalence class equals its mean 
gain. Since most particles in a parameter equivalence class are in the vicinity of that 
class’ mean wealth, their autoregressive correlation is the sum of products of 
roughly equal size with signs alternating according to the toss of a fair coin: the 
autoregressive correlation quickly converges to zero. Approximately ditto for log 
changes The log change is the log of the ratio of more recent wealth to previous 
wealth. It is positive for an increase, negative for decrease. 

4. When changes in IP particle wealth are squared, the signs of the changes are 
positive. Figure 1 shows that the log changes of particle wealth with smaller IP 
particles are smaller than those with larger IP particle parameters.  In Figure 1, the 
magnitude of changes of log particle wealth depends on their particle parameter.  
They are smaller for particles with smaller parameters, and vice versa. Squaring 
makes this pattern positive and permanent in autoregressive summations. When all 
changes are positive, the dependence of magnitudes on particle parameters does not 
disappear, resulting in autoregressive correlations that do not converge to zero. 

5. In the absence of changes to particle parameters the wealth of  IP particles fluctuate 
with a characteristic limit on volatility, less for particles with smaller parameters, 
more for particles with larger parameters. 

 
One might add other stock price “stylized facts” replicated by the IP to Angle 

(2018)’s list in Table 1. For example, the ARCH phenomenon. ‘ARCH’ is the acronym for 
‘autoregressive conditional heteroskedasticity’. This phenomenon occurs when there is a 
market panic, usually caused by bad news, resulting in broadly lower prices. Not only does 
the price of some or all stocks plunge to a lower level, prices do not stay motionless at that 
lower level. Instead, they experience greater volatility around that lower level, including 
greater proportional increases off that lower level than they demonstrated before the fall 
around their higher level. The IP reproduces the ARCH phenomenon as a broadly shared 
increase in IP particle parameters. See in Figure 1 what a shift toward the red end of the 
color spectrum. ‘Redder’ means larger particle parameter and greater volatility around a 
smaller mean of particle wealth. See Ruppert and Matteson (2015, Chapter 14)  for an over-
view of how complex econometric ARCH models have gotten. The IP’s explanation is 
much simpler.   

 
2.1 The stock trading strategy implied by the Inequality Process (IP) is already 
well known 

The IP’s symmetries (basic IP of Appendix A) have the consequence in Figure 2 
of implying the following equation, asymptotically exact as the number of particles in the 
IP’s population of particles increases:  

                         𝜇𝜓 =   (
𝜔̃

𝜔𝜓
)  𝜇                 (1) 

where: 

    µ is the constant grand mean of particle wealth in the whole population of particles, 
possibly set to 1.0 because of the IP’s dilation symmetry (gauge invariance); 

    µψ is the mean of particle wealth in the ωψ the parameter equivalence class; 

    ωψ is a particle parameter value; the ω with the tilde over it is the harmonic mean of all 
parameters of all particles in the population. 
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So, if picking a stock is like picking a particle whose expected wealth is going to 
increase in an IP with a constant grand mean of particle wealth, the optimal particle picking 
strategy is to pick a particle whose particle parameter is decreasing.  
 
 This strategy is incorporated in a statistic known as the Sharpe Ratio, a statistic of 
the Capital Asset Pricing Model (CAPM), a model of decisions made by a rational investor 
in which risk of loss is perceived as an intrinsic aspect of profitable investment, i.e., an 
entirely different mathematical model from the Inequality Process. The Sharpe Ratio is the 
ratio of the volatility of the stock price of a corporation to the average volatility of stock  
prices in the market. As with IP particle parameters a smaller Sharpe Ratio is more 
desirable (Ruppert and Matteson (2015: 470). The IP explains stock prices because they 
are statistically interchangeable with corporate market capitalizations. The IP has no 
concept similar to stock price. Particle wealth is an IP concept with an empirical referent 
in corporate market capitalization: a particle’ wealth. Less volatility is indicative in the IP 
of a smaller particle parameter and a higher expectation of particle wealth. A variant of the 
Sharpe Ratio is the Sortino Ratio, which uses downward price volatility alone in its 
numerator. The rationale for this variant of the Sharpe Ration is that upward volatility is 
good, downward bad, so less of the latter is good. In the IP both kinds of volatility is 
indicative of IP particle parameters: less is indicative of smaller IP parameters and greater 
particle wealth. As Figures 1 and 2 show there is much more information about IP 
parameters in downward volatility. The CAPM treats volatility as intrinsic to rapidly 
growing investments; the IP treats volatility as a bane. 
 

 
Figure 2 
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2.2 A criterion for how innovative a working Inequality Process (IP) model of 
corporate market capitalizations, if feasible, would be 

If a working IP model of corporate market capitalizations is found, it would 
contradict a dictum of authors of major quantitative finance (qfin) textbooks. Their authors 
have written that there is no stochastic process, like a law of physics” operating in the stock 
market. See Table 3. Appendix D shows that the basic IP of Appendix A is similar to the 
particle system model of the Kinetic Theory of Gases, the oldest and best known statistical 
law of physics. Two substitutions into the transition equations of one model converts it into 
the other. Essentially, a working IP model of corporate market capitalization might, if 
found and be applicable to stock and securities trading, obsolesce sections of qfin textbooks 
with a simple particle system, whose implications appear in computer simulation. 
 
Table 3:  Four authors of textbooks on quantitative finance (quoted from Angle, 2018) 
on the impossibility of a statistical law, like a law of physics, in the stock market 

1. Emanuel Derman and Paul Wilmott. 2009. The Financial Modelers’ Manifesto 
(2009:1) “The truth is that there are no fundamental laws in finance.”1 

2. Harry Georgakopoulos. Quantitative Trading With R: Understanding 
Mathematical and Computational Tools from a Quant’s Perspective  (2015:147) 
“Market dynamics are also not bound by the laws of physics. Most patterns exist 
for a limited time, and are most likely not due to immutable underlying physical 
laws”.  

3. Paul Wilmott and David Orrell. The Money Formula (2017:152) “Quantitative 
finance has no fundamental laws.” 

These experts should have asked themselves what produces those well known   
stock market “stylized facts”, frequently seen statistical patterns in stock prices. 
 
 3.0 Modelling Corporate Market Capitalization with the Inequality Process 

(IP) 
  The evidence in Figures 1 and 2 is sufficient to suggest that the Inequality Process 
(IP) may be a useful model of  market capitalizations of corporations and thus stock prices, 
given their statistical interchangeability. Interpretations of stock market “stylized facts” is 
only suggestive of the possibility the IP operates on corporate market capitalizations; it is 
not hard evidence. Hard evidence is a working IP model of corporate market capitalizations 
able to imply a variety of observed statistics and make testable predictions. The present 
paper describes the initial step toward creating the requisite IP model. It is mainly a task of 
finding the right IP particle parameter for each corporation. Given the absence of a priori 
information on natural IP particle parameter equivalence classes, the parameters have to be 
estimated. Then in a later step it can be determined if indicators of corporate wealth 
productivity cluster under a small number of understood rubrics. Firstly, IP concepts must 
be matched to empirical referents. Then a first attempt to find those parameter estimates 
must be made for each of the 921 corporations with data on market capitalization in the 
2013 Fortune Magazine 1000 U.S corporations. See Table 4. 
 
 
 

 
1 Derman and Wilmott’s qfin prominence is indicated by their admiring mention in The Physics of 
Wall Street (Weatherall, 2014), a history of contributions from applied mathematics to the 
quantitative finance of stock trading, something of an awe-struck a “fan” book. 
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Table 4: Empirical Referents of IP Concepts When the IP is Used to Model Labor Income 
Statistics and Stock Market Statistics 

IP Concept Labor Market Referent  Stock Market Referent  
Particle individual worker Corporation 
IP particle parameter 
referent 

worker’s education as 
measure of wealth 
productivity 

indicators of corporate 
wealth productivity 

IP particle parameter  semi-permanent varies with whole market?  
IP particle wealth worker’s human capital as 

indicated by worker’s 
earnings  

corporation’s market 
capitalization 

 
3.1 Why a corporation’s market capitalization and its stock price are 
statistically interchangeable 

A corporation’s market capitalization is the multiplicative product of two factors. 
One factor is the number of shares of ownership in a corporation, its stock, that are, 
potentially, tradeable on a market, the “float”. The other factor is the price of each share of 
stock. Their multiplicative product, the market capitalization, is the monetary valuation of 
the corporation as a whole by the stock market. A corporation’s stock price fluctuates 
constantly, sometimes wildly, while the number of its tradeable shares may stay constant 
for months and often when it does change, for example, in a corporation’s use of profit to 
buy back its own shares, reduces only a small proportion of its tradeable shares. Stock splits 
(e.g. two for one splits) or reverse splits (e.g. one for five shares) usually do not change a 
corporation’s market capitalization immediately, but the former are indicative of a rising 
share price, and vice versa for the latter. So, in statistical terms, modelling a corporation’s 
market capitalization is so closely related to the price of the corporation’s stock that the 
two are statistically interchangeable, i.e., very closely correlated.  

 
4.0 The Search Algorithm for the Estimating Inequality Process (IP) 
Parameter for each of  Market Capitalizations 

 IP particle parameters are estimated from market capitalizations, based on the 
hypothesis that competition for capital in the stock market is governed by the IP.  
Consequently, the resulting estimates are hypothesis dependent and require a later test of 
validity. This search algorithm is the first step in a two step process. The algorithm 
produces estimates of IP particle parameters to be compared to various indicators of 
corporate wealth productivity. The second step is to find the combination of those 
indicators that best fits the IP parameter estimates of the first step. The second step is not 
described in this paper.  
 
4.1 The Algorithm 

The algorithm to estimate IP particle parameters from corporate market 
capitalizations is a stochastic search, a modification of the simulated annealing algorithm 
(Kirkpatric, Gelatt, and Vecchi, 1983). The algorithm is programmed in GAUSS21 
(Aptech, 2021). The algorithm proceeds in cycles with a varying stochastic perturbation of 
a current optimum. The algorithm’s objective function is the minimization of the sum of 
absolute differences between 921 ranked, normalized corporate market capitalizations and 
921 ranked, normalized IP particle wealth amounts. The stochastic driver of the search is 
perturbations to the 921 IP particle parameters that generate the 921 ranked, normalized IP 
particle wealth amounts fitted to the 921 ranked, normalized corporate market caps. The 
algorithm proceeds in cycles. There are 6,000 major cycles. 
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4.1.1 The First Major Search Cycle: 

1) The 921 market capitalizations of the corporations of the 2013 Fortune 
Magazine 1000 U.S. corporations with information on market capitalization 
are normalized, i.e., their mean is now 1.0; 

2) These normalized market capitalizations are ranked from small to large; the 
identities of the 921 corporations remain known; the normalized market caps 
are never again altered in any way; 

3) An IP simulation with 921 particles whose particle wealth is normalized (mean 
1.0) is run with particle parameter values generated by a 0,1 continuous 
uniform random number generator; 

4) The IP simulation is run through 300 iterations with the same particle 
parameters; 300 iterations is sufficient for particle wealth to converge and then 
fluctuate around its stationary distribution; 

5) IP particle wealth after the 301st iteration of the IP is then ranked by wealth 
size from small to large; that ordering keeps the IP particle’s parameter 
matched to the IP particle’s particle wealth; 

6) The absolute value of the difference between the vector of normalized and 
ranked market capitalizations and the vector of normalized and ranked particle 
wealth amounts, each matched rank to rank, is taken and the 921 absolute 
differences summed; 

7) The absolute value of the difference between a vector of 20 statistics of the 
normalized and ranked market capitalizations and a vector of the same 20 
statistics of the normalized and ranked particle wealth vector, each matched 
statistic to statistic, is taken and summed. 

8)  The sum of absolute value of the differences between the two vectors of 
statistics is multiplied by a factor of 57.39 so its maximum possible error 
equals 921, the maximum possible error of the differences between normalized 
market caps and IP particle wealth, i.e., so errors between the statistics equal 
in importance errors between the matched 921 market capitalization and IP 
particle wealth amounts. 

9) Both sums of differences, errors in fitting the 921 market caps and their 
statistics, are added. Minimizing this grand sum of differences, whose possible 
maximum is 1,842, is the objective function of the search over the vector of 
921 IP particle parameters. 

 
4.1.2 The 5,999 Major Search Cycles Following 

Each search continues in a sequence of 5,999 cycles after the first.  The initial value 
of the objective function is 2,000, i.e., greater than the maximum error of 1,842. 
Consequently, whatever the sum of errors of the first search cycle is, its approximation to 
the corporate market caps, and its sum of errors, its fits, and its particle parameters  become 
the current optimum. The next search cycle to produce a smaller sum of errors than the first 
cycle produces a new current optimum. The new optima are a) the average of the smaller 
sum of errors with the previous minimum, b) the average of the new, better fitting particle 
wealth amounts and the previous optimal wealth amounts, and c) the average of the new 
vector of 921 IP particle parameters that generate better fitting IP particle wealth with the 
921 IP particle parameters that generated the previous optimal fits. 

 
And so on for 5,999 major cycles of the search algorithm of this first search. The 

statistics of the average of 26 such searches of 6,000 major cycles each are given in Tables 
5 and 6. 
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4.1.3 Why 20 Statistics of Market Cap Size are also Fitted 
 The reason that 20 statistics of the normalized market caps are fitted in addition to 
the 921 market caps is that the search to fit the 921 market caps by using 0,1 continuous 
uniform random numbers as IP particle parameters is slow to converge. Worse, it contains 
no information about how the composition of IP particles with different parameters change 
with market cap size, given the hypothesis that the IP determines market caps. Hence the 
need to fit 4 statistics from 5 quintile partitions of the sequence of market caps ordered 
from small to large.  
 

The 921 ranked and normalized market caps are partitioned by the quintiles of 
market caps into five bins. The quintile boundaries are; 
 

1)  the smallest market capitalization to the 184th by size, 
2) the 185th by size to the 368th, 
3) the 369th by size to the 552nd, 
4) the 553rd by size to the 736th,  
5) the 737th to the largest 921st. 

 
Four statistics in each of these five partitions of the 921 ranked and normalized market 
capitalizations are estimated: the first quartile market cap within the partition, the median 
market cap of the partition, and the fourth quartile of the partition.  
 
 The search algorithm is stochastic search with stochastic backups – stochastic 
convergence interrupted by large random perturbations to the current test vector of IP 
parameters, ‘curdist’ – perturbations large enough to slip the objective function off a 
current minimum it might be stuck on. The current optimum vector, ‘bestdist’ changes only 
if ‘curdist’ produces a better fitting vector of IP particle wealth to the vector of market caps.  
The GAUSS 21 code (Aptech, 2021) for the perturbation of the current optimum IP 
parameter vector, ‘bestdist’, is: 
 
         curdist = bestdist   +   toler[grid,.] * (rndu(rows(bestdist),1) .*  bestdist) 

                             -   toler[grid,.] * (rndu(rows(bestdist),1) .*  bestdist);            

        curdist = (curdist  .* (curdist  .ge .01)) + ((curdist  .lt .01) * rndu(1,1)); 

        curdist = (curdist  .* (curdist  .le .99)) + ((curdist  .gt .99) * rndu(1,1)); 

 
where: 

a) ‘rndu(rows(bestdist),1)’ is GAUSS code generating here a vector of 921 0,1 
continuous uniform random variables  

b) ‘bestdist’ is the current optimum vector of IP particle parameters; 
c) ‘bestdist’ is  perturbed to yield the current attempt, ‘curdist’, to generate a vector 

of IP particle parameters; ‘curdist’ is then tested to see if it yields a vector of IP 
particle wealth that fits the vector of market caps better than the vector of IP 
particle wealth generated by ‘bestdist’; 

d) ‘toler[grid,.]’ varies the magnitude of the perturbation. 
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e) if occasionally a perturbed  IP particle parameter is outside of the open interval 
(0,1) on which IP parameters are defined, it is replaced by a 0,1 continuous uniform 
random variable. 

  
 

5.0 Findings 
 
 26 cycles of the stochastic search algorithm are averaged together in Tables 5 and 
6.  Table 5 averages the 26 inter-correlation matrices of three variables of the search: a) the 
vector of 921 normalized and ranked market caps of 921 large U.S. corporations, b) the 
vector of 921 normalized and ranked IP particle wealth amounts, the ones that best fit the 
vector of 921 normalized and ranked market caps, and c) the vector of 921 IP particle 
parameters that generated the vector of the 921 IP particle wealth amounts that best fit the 
vector of 921 corporate  market caps. The search is over the vector of IP particle 
parameters.  
 

Table 5 shows that the average correlation of the vector of 921 IP particle wealth 
amounts with the vector of 921 corporate market caps is 0.9952, a correlation so large that  
the two vectors are statistically interchangeable. The correlation between the estimated 
vector of 921 IP particle parameters and the vector of the 921 IP particle wealth amounts 
implied by that vector of IP parameters is only -.6466 in absolute value. The negative sign 
is expected since IP particle wealth varies inversely with IP particle parameters. The 
relatively small absolute value of this correlation, -.6466, indicates that estimating particle 
parameters from IP particle wealth produces only crude estimates of the parameters. -.6466 
is the correlation between the IP particle parameters and the IP particle wealth generated 
by those same parameters, i.e., at the limit of perfectability of inference of particle 
parameters from particle wealth, given the distribution of market caps, without the use of 
equation (1) which would yield only expected particle wealth rather than actual particle 
wealth.  
 
Table 5.    The average of 26 inter-correlation matrices. The standard errors of estimate are 
miniscule 

921 normalized, ranked 
market capitalizations of 
large U.S. corporations  

921 normalized, ranked IP 
particle wealth amounts 
best fitted to the 
normalized, ranked market 
capitalizations 

921 particle parameters of 
the particles that best fit 
the 921 normalized, ranked 
market capitalizations 

1.0 0.9952 -0.6337 

0.9952 1.0 -0.6466 

-0.6337 -0.6466 1.0 

Because the vector of IP particle wealth is statistically interchangeable with the 
vector of market caps, the latter’s correlation with the vector of IP particle parameters is 
almost as large in absolute value,  -0.6337, and is at the limit of perfectability of inference 
of resolving what is, by hypothesis, a mixture distribution of market cap distributions 
conditioned on particular IP parameter values into those conditional distributions. The 
distribution of market caps is a heavy-tailed distribution, but as Table 6 shows, some of its 
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inferred conditional distributions have IP particle parameters that point to approximation 
by a gamma pdf (Angle, 2019). 
 
         Table 6. The estimated size distribution of IP particle parameters of the best 
fitting IP particle parameters averaged over 26 searches 

IP parameter bin (note: 
the smaller the IP 
parameter, the greater the 
expectation of wealth 

Mean count of 
corporations with 
a parameter in bin  

Minimum 
estimated 
count 

Maximum 
estimated 
count 

0.01 to 0.099 68.65 56 85 
0.10 to 0.199 38.04 11 64 
0.20 to 0.299 60.54 23 100 
0.30 to 0.399 123.2 73 162 
0.40 to 0.499 208.8 145 262 
0.50 to 0.599 215.5 157 310 
0.60 to 0.699 131.9 82 194 
0.70 to 0.799 55.73 27 95 
0.80 to 0.899 16.23 1   30 
0.90 to 0.999 2.346 0 7 

 
          The distribution of most of the estimated IP particle parameters is a unimodal  
distribution, roughly similar to a binomial distribution, with its mode at the IP 
particle parameter frequency bin 0.50 to 0.599.  The fact that so many of the inferred 
IP particle parameters are clustered close to the mode explains why the vector of 
implied particle wealth amounts can be statistically interchangeable with the 
distribution of market caps, while only correlated -.6466 with the vector of IP 
particle parameters that generated it: the overlap of particle wealth of particles in 
particle parameter equivalence classes that have small differences in their 
parameters is extensive.  
 
.          While Table 6 shows a substantial central tendency of particle parameters, 
there is a small secondary mode in Table 6: that of particle parameters with quite 
small particle parameters, those in the parameter bin 0.01 to 0.099, and the bin next 
to it. In the IP these are the parameters of IP particles whose wealth circulates 
randomly over the largest wealth amounts. While their frequency is smaller than 
the frequencies at or near the main distribution mode, the particles with the smallest 
parameters have a disproportionately large influence on decreasing the harmonic 
mean of particle parameters in the whole population of particles. See equation 1 for 
what results from a smaller harmonic mean of parameters in the whole population  
for particles with parameters larger than that harmonic mean: a smaller expectation 
of particle wealth. It is the particles with very small particle parameters that are the 
way the IP accounts for the especially large market caps that dominate the 
capitalization-weighted indexes of stocks. 
 
  
 
 
 

 
179



Appendices 
 

This paper’s Appendices contain material from many previous papers on the 
Inequality Process by the author, with occasional revisions and extensions 

 
Appendix A.1 Inequality Process Basics 
 
A1.1 The Inequality Process in words 
 The Inequality Process (IP) (Angle, 1983-2019) is a particle system, in 
which wealth, a positive quantity, is transferred between two particles according 
to the following rules: 
 
             1) All particles in a population are randomly paired. 

2) Each pair flips and calls a fair coin. 
3)The general pair is particle ψ and particle θ.  
4) If particle ψ wins the toss, it takes an ωθ share of particle θ's wealth. 
5) If particle θ wins the toss, it takes an ωψ share of particle ψ's wealth. 
6) Repeat.  

 
Particle wealth changes at each encounter. Particles make no decisions. In 

the basic Inequality Process described here, the share of wealth a particle gives up 
when it loses does not change. That share is its parameter, omega, ω. Particles that 
lose less when they lose (i.e., with smaller omega) have a higher expectation of 
wealth than particles that lose more, since the probability of loss is 50/50 for all. 

 
A.12 The Transition equations of the Inequality Process (IP) 
              The IP’s transition equations determine which of two paired particles wins 
a competitive encounter and how much of the loser’s wealth is transferred to the 
winner:

xit  =  xi(t−1)  +   dtωθxj(t−1)  − (1 − dt)ωψxi(t−1) 

                         xjt  =  xj(t−1)  −  dtωθxj(t−1)  +  (1 − dt)ωψ i(t−1)                                                                                                                                                                                                                                                                                  
                                                                                                                 

A1.3 
xit   ≡  particle i′s wealth at time − step t in multiples of  
     μ ,  the unconditional mean of wealth 
xj(t−1)  ≡  particle j′s wealth at time − step (t − 1) 

0 <  ωθj  <  1.0 , fraction lost in loss by particle j  

0 <  ωψi  <  1.0, fraction lost in loss by particle i   

dt   =  an i. i. d.  0,1  uniform discrete r. v. equal to 1 with 
    probability .5 at time − step t (a Bernoulli variable) 

 
             Note that the only way to gain wealth is via winning an encounter but since 
winning/losing is 50/50 in the long run the only way to gain more wealth is by 
losing less in a loss. In the long run particles that lose less when they lose, i.e., those 
with smaller particle parameters, smaller omegas, ω’s,  have a higher expectation 
of wealth. The verbal theory from which the IP was abstracted asserts that the more 
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productive of wealth are more sheltered in the competition for wealth. Smaller 
omegas is the way the IP operationalizes that assertion. Note, however, that the IP’s 
transition equations neither create nor destroy wealth. The basic IP is dilation 
symmetric (gauge invariant) with respect to the grand total of particle wealth (as 
long as it is positive) or the size of the population of particles (as long as there are 
at least several dozen particles). Consequently, the basic IP applies to societies up 
and down the arc of techno-cultural evolution, societies with great differences in 
population size, technology, culture, and wealth.  
 
A1,4  An odd provenance for a theory of corporate market capitalization 

Angle (1983, 1986) describe the abstraction of the Inequality Process (IP) 
from an old anthropological theory, speculatively extended by a sociologist, 
Gerhard Lenski (1966). Old anthropology is an unusual source of new economics. 
The anthropological theory is the Surplus Theory of Social Stratification. It is 
viewed as an uninteresting truism in anthropology (Harris, 1959). The Surplus 
Theory explains why hunter/gatherer society, viewed as the most egalitarian 
societal form, turned into the chiefdom, the society of the “god king”, the societal 
form anthropologists view as the most inegalitarian., when the hunter/gatherers 
acquired the ability to store more food than they consumed at one time for a later 
use, storeable surplus, an expanded wealth, and in a more fugitive form than, for 
example, human capital, when it appeared. Anthropologists were struck by how 
quickly and universally the transition from apparently egalitarian hunter/gather 
society to the inegalitarian chiefdom was: all cultures, all races, all times, all places.  

 
The first evidence of storeable food surplus and the first evidence of 

substantial inequality of wealth often occurred in the same archeological strata. The 
Surplus Theory explains the simultaneity. The theory runs that humans, like most  
species, certainly of all mammals, compete with others of the species for resources, 
‘niche’ in population biology, anything with positive utility for life and 
reproduction. The importance of intra-species competition for niche is the 
assumption on which the Lotka-Volterra equations rest, the basis of quantitative 
population biology. Unlike other species, humans have a unidimensional measure 
of the concept of niche, money.  

 
The Surplus Theory has one obvious flaw: no explanation for why as 

societies evolved in techno-cultural terms beyond the chiefdom the concentration 
of wealth gradually decreased. Lenski (1966) provides a number of speculative 
reasons why such might be the case. The Inequality Process (IP) models one of 
them: workers who are more productive of wealth are more sheltered in the 
competition for wealth. So a worker’s productivity of wealth (value of wealth 
produced in a unit of time) is the empirical referent of the IP’s particle parameter, 
omega, the fraction of wealth a particle loses when it loses an encounter with 
another particle. Since winning and losing is 50/50 and the winner gains an omega 
share of the loser’s wealth, particles with smaller omegas have a higher expectation 
of wealth. Evidence of the IP’s appearance in stock market statistics led Angle 
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(2018) to conjecture that the IP might be an evolutionarily optimal form of 
competition, naturally selected to maximize wealth creation. 
   
 

Appendix B: Confirmed Inequality Process (IP) Hypotheses   
1. The universal pairing (all times, all places, all cultures, all races) of the appearance of extreme social 
inequality in the chiefdom, the society of the god-king, after egalitarian hunter/gatherers acquire a storeable 
food surplus (Angle, 1983, 1986). 
2. The pattern of the Gini concentration ratio of personal wealth and income over the course of techno-cultural 
evolution beyond the chiefdom (Angle, 1983, 1986).  
3. The right skew and gently tapering right tail of all distributions of income and wealth, a broad statement of 
the Pareto Law of income and wealth distribution. (Angle, 1983, 1986).  
 4. a) The sequence of shapes of the distribution of labor income by level of worker education, b) why this 
sequence of shapes changes little over decades, and c) why a gamma pdf model works well for fitting the 
distribution of labor income at each level of worker education  (Angle, 1990, 2002, 2003, 2006, 2007b); 
5. How the unconditional distribution of personal income appears to be gamma regardless of level of 
geographic aggregation although the gamma distribution is not closed under mixture  (Angle, 996); 

6. Why sequences of Gini concentration ratios of labor income by level of education from low to high 
recapitulates the sequence of Gini concentration ratios of labor income over the course of techno-cultural 
evolution (a social science analogue of “ontogeny repeats phylogeny” (Angle, 1983, 1986, 2002, 2003, 2006, 
2007b); 
7. Why the sequence of shapes of the distribution of labor income by level of education from low to high 
recapitulates the sequence of shapes of the distribution of labor income over the course techno-cultural 
evolution, a social science analogue of “ontogeny repeats phylogeny” (Angle, 1983, 1986, 2002, 2003, 2006, 
2007b); 

8. The dynamics of the distribution of labor income conditioned on education as a function of the unconditional 
mean of labor income and the distribution of education in the labor force (Angle,  2003a, 2006, 2007b); 
9. The pattern of correlations of the relative frequency of an income smaller than the mean with relative 
frequencies of other income amounts (Angle, 2005; 2007a). 
10. The surge in the relative frequency of large incomes in a business expansion (Angle, 2007b); 
11. The “heaviness” of the right tail of income being heavy enough to account for total annual wage and salary 
income in the U.S. National Income and Product Accounts (Angle, 2002c; 2003a). 
12. Why and how the distribution of labor income is different from the distribution of income from tangible 
assets; (Angle, 1997) 
13. Why the IP’s parameters estimated from a time-series of the labor incomes of individual workers are 
ordered as predicted by the IP’s meta-theory and approximate estimates of the same parameters from cross-
sectional data on the distribution of wage income conditioned on education; (Angle, 2002) 
14. The Kuznets Curve in the Gini concentration ratio of labor income during the industrialization of an 
agrarian economy; (Angle, Nielsen, and Scalas, 2009) 
15. An elaboration of the basic Inequality Process in which all particles have an equal probability of winning a 
competitive encounter for wealth. This elaboration allows a majority group of particles to rig the probability of 
one of its members winning a competitive encounter with a member particle at .5 + ε, which equals probability 
of the minority group particle losing that encounter. This elaboration of the IP yields the following features of 
the joint distribution of personal income to African-Americans and ‘other Americans’ (i.e., non-African-
Americans):  
              a) the smaller median personal income of African-Americans than ‘other Americans’; 
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              b) the difference in shapes between the African-American distribution of personal income and that of 
‘other Americans’; this difference corresponds to a larger Gini concentration of the African American 
distribution; 
              c) the % minority effect on discrimination (the larger the minority, the more severe discrimination on a 
per capita basis, as reflected in a bigger difference between the median personal incomes of African-Americans 
and ‘other Americans’ in areas with a larger % African-American); 
              d) the relatively high ratio of median African-American personal income to the median of ‘other 
Americans’ in areas where the Gini concentration ratio of the personal income of ‘other Americans’ is low; 
              e) the relatively high ratio of median African-American to that of ‘other Americans’ in areas where the 
median income of ‘other Americans’ is high; 
              f) the fact that relationships in d) and e) can be reduced in magnitude by controlling for a measure of 
economic development of an area or % African-American; 
             g) the greater hostility of poorer ‘other Americans’ to African-Americans than wealthier ‘other 
Americans’ (Angle, 1992).  

 
 
Appendix C: Seven Verbal Maxims of Mainstream Economics Jointly Implied 
by the Inequality Process2 

Maxim of Economics: Inequality Process’ Implication: 

1) All distributions of labor income are right skewed 
with tapering right tails; hence the impossibility of 
radical egalitarianism, the ideologically motivated 
findings of Vilfredo Pareto's study of income and 
wealth distribution. 

The IP generates right skewed distributions shaped 
like empirical distributions of labor income or 
personal assets (depending on the particle parameter). 
The IP implies that the unconditional distribution of 
personal money income from labor is an exponential 
family pdf (probability density function) shape 
mixture. Such a mixture has a right tail approximately 
as heavy as empirical right tails of money income and 
the Pareto pdf, the model of those right tails preferred 
in economics.  

2) Differences of wealth and income arise easily, 
naturally, and inevitably via a ubiquitous stochastic 
process; a general statement of Gibrat’s Law; hence 
the impossibility of radical egalitarianism.  Like 
Pareto, Robert Gibrat’s interest in income distribution 
was motivated by the desire to deny the possibility of 
a radically egalitarian income distribution.  

In the IP, differences of wealth arise easily, naturally, 
and inevitably, via an ubiquitous stochastic process.  

3) A worker’s earnings are tied to that worker’s 
productivity [i.e., a central tenet of economics since 
Aesop’s fable of the ant and the grasshopper was all 
there was to economics] but there is a wide variety of 
dissimilar returns to similarly productive workers.  

An IP particle’s expected wealth is determined by the 
ratio of mean productivity in the population to that 
particular particle’s productivity (the ratio of the 
harmonic mean of particle parameters in the 
population to an individual particle’s parameter). The 
IP implies a distribution around this expectation 
whose shape is determined by each particle’s 
productivity.  

4) Labor incomes small and large benefit from a 
business expansion strong enough to increase mean 
labor income, i.e., there is a community of interest 
between all workers regardless of their earnings in a 
business expansion. A conclusion encapsulated in a 

In the IP’s Macro Model, an increase in the 
unconditional mean of wealth increases all percentiles 
of the stationary distribution of wealth by an equal 
factor. In pithy statement form: “A rising tide lifts the 
logarithm of all boats equally.”. 

 
2 Angle, 2006e, 2013a. 
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favorite saying of mainstream economists: “A rising 
tide lifts all boats.”  

5) Competition transfers wealth to the more 
productive of wealth via transactions without central 
direction, i.e., via parallel processing.  
 
 

In the IP, competition between particles causes wealth 
to flow via transactions from particles that are by 
hypothesis and empirical analogue less productive of 
wealth to those that are more productive of wealth, 
enabling the more productive to create more wealth, 
explaining economic growth without a) requiring 
knowledge of how wealth is produced or b) central 
direction, i.e., with a minimum of information, two 
reasons for hypothesizing that the IP would arise to 
allocate wealth in every economy. These features 
enable the IP to operate homogeneously over the 
entire course of techno-cultural evolution 
independently of wealth level. 

 
 
 
Appendix D The similarity of the Inequality Process (IP) to the Particle System of 
the Kinetic Theory of Gases 
 
D.1 Two Substitutions Transform The Inequality Process Into The Kinetic Theory of 
Gases 
While the IP did not originate in tinkering with the best known particle system of 
statistical physics, that of the kinetic theory of gases (KTG), the two are closely 
related. 

Two substitutions into the Inequality Process’ transition equations for the 
exchange of a positive quantity, x, between two particles transform them into the 
transition equations of the interacting particle system model of the kinetic theory of gases 
(Angle, 1990), the best known statistical law of physics). The transition equations of the 
Inequality Process are:

xit  =  xi(t−1)  +   dtωθxj(t−1)  − (1 − dt)ωψxi(t−1) 

xjt  =  xj(t−1)  −  dtωθxj(t−1)  +  (1 − dt)ωψxi(t−1) 
                                                                                                                                                                                                                                                                    
(B.1a,b) 

                                                                                                                                                                      
xit   ≡  particle i′s wealth at time − step t in multiples of  
     μ ,  the unconditional mean of wealth 
xj(t−1)  ≡  particle j′s wealth at time − step (t − 1) 

0 <  ωθj  <  1.0 , fraction lost in loss by particle j  

0 <  ωψ i  <  1.0, fraction lost in loss by particle i   

dt   =  an i. i. d.  0,1  uniform discrete r. v. equal to 1 with 
    probability .5 at time − step t (a Bernoulli variable) 
μ    =   unconditional mean of wealth  

       
  
If 

1)  dt, a discrete 0,1 uniform random variable is replaced by a continuous [0,1] 
uniform random variable, ϵt , and,  
 2) the ω’s are replaced by 1.0, 
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then (B.1a,b) has been transformed into the transition equations of the particle system of 
the kinetic theory of gases:  

xit  =  εt xi(t−1)  +  xj(t−1)  

xjt  =  (1 − εt) xi(t−1)  +  xj(t−1)  
 
                                                                                                                              (B.1c,d) 
where:     
           Xi(t-1)   =   particle i’s kinetic energy at time-step (t-1)    
           Xjt      =   particle j’s kinetic energy at time-step t                                                                             
            ϵt       =   a [0,1] continuous uniform random variable at time-step t 
          
(B.1c,d) is Whitney’s (1990:103) statement of the transition equations for the transfer of   

 

kinetic energy between two molecules in the kinetic theory of gases. So, in this narrow 
sense, it is certain that the Inequality Process is like an established model of statistical 
physics, part of Auguste Comte’s 19th century vision of what sociology should become.  
 

The transformation from (B.1.a,b) into (B.1.c,d) is perhaps more easily 
recognized if (B.1.a,b) is re-written as  
 
 

𝑥𝑖𝑡 =    1 −𝜔𝜓  𝑥𝑖(𝑡−1)  +   𝑑𝑡   𝜔𝜓  𝑥𝑖(𝑡−1)  +  𝜔𝜃  𝑥𝑗 (𝑡−1)   
  𝑥𝑗𝑡 =   (1 −𝜔𝜃) 𝑥𝑗 (𝑡−1)   +   (1 − 𝑑𝑡) 𝜔𝜓  𝑥𝑖(𝑡−1)  +   𝜔𝜃  𝑥𝑗 (𝑡−

                              
                                                                                                                                  (B.1e,f)  
with  dt -> ϵt  and the ω’s -> 1.0.  Both particle systems are otherwise identical apart from 
the labels on the variables. In both particle systems, particles are collectively isolated. Since 
in both particle systems, random pairings of particles result in transfers of a positive 
quantity that is neither created nor destroyed, the sum of that quantity over all particles is 
constant. Figure 1 shows that in the IP there is more information in losing than winning, 
and that particles that lose less when they lose.      
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