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Abstract 

 
Optimal Latin hypercube designs (LHD) based on optimizing a single criterion are 
commonly used space-filling designs for computer experiments. For instance, the 
maximin-LHD (MmLHD) and minimax-LHD (mMLHD) are popular to ensure a good 
spread and coverage, respectively, across the full input space while achieving uniform 
projections in each univariate dimension. The maximum projection-LHD (MaxProLHD) 
ensures space-filling across all possible subspaces. This paper proposes optimal LHDs to 
achieve robust and balanced performance across multiple objectives. Using the Pareto 
optimization approach, we employed the column-wise exchange simulated annealing 
algorithm and the nondominated sorting genetic algorithm to generate optimal LHDs that 
simultaneously optimize multiple space-filling characteristics, and the efficiency of these 
algorithms are compared. The methods are illustrated with examples of varied dimensions 
of input factors, and the generated optimal LHDs are evaluated based on their performance 
across simulations with different response surface models and compared with optimal 
designs from single criterion optimization. The nondominated sorting genetic algorithm 
proved to be more efficient for generating optimal LHDs with balanced performance across 
multiple distance metrics.  

 
Keywords: Space-filling designs, maximin distance, minimax distance, maximum 
projection, Pareto Front approach, Gaussian process models 

 

1. Introduction 

Computer experiments have been broadly used in scientific and engineering research to 
substantially reduce cost of physical experimentation and for situations where physical 
experiments are prohibitive. However, some applications involve complex computer 
models and exploration of large input spaces such that computer experiments can still be 
computationally expensive and time consuming. Fortunately, due to advancement in 
research brought about by the growth in computer power, techniques have been devised 
for the design and analysis of computer simulations to be successfully applied to a variety 
of problems in engineering (Viana, 2015). When simulations are time consuming, 
computer experiment techniques involve generating a surrogate model to replace the 
expensive simulation code (Bandler et al, 2004). Gaussian process is a popular family of 
surrogate models (Sacks et al, 1989) used in the field of computer experiments to replace 
the role of computer models and makes tasks like sensitivity analysis, uncertainty 
quantification, validation, and calibration feasible (see Santner et al. (2003) and Fang et al. 
(2006)).  

The first major step for statistical modeling of computer simulations is careful planning 
and configuration of the inputs. Moreover, in practice, time and computational resources 
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are limited, so an experimental design plays a crucial role in identifying a set of inputs at 
which the underlying computer simulation will be evaluated. Such a set of points is called 
the design of the computer experiment. In the vast literature about design for computer 
experiments, two categories of design criteria have been proposed for evaluating design 
performance: the geometric or distance-based criteria and the model-based criteria. The 
distance-based criteria focus on achieving maximum spread or coverage of the geometric 
locations of the observations in the design space in order to avoid missing any interesting 
features. On the contrary, the model-based criteria focus on obtaining good understanding 
of the underlying process based on certain assumptions of the underlying model to evaluate 
design performance. This paper considers the distance-based criteria, which do not rely on 
model assumptions and provide more robust performance across a variety of response 
surfaces.  
 
Space-filling designs refer to the family of distance-based optimal designs. They generally 
offer a good spread or coverage across the experimental region and great flexibility in 
capturing different behaviors of responses in different areas of the design region. 
Depending on the choice of the distance criteria, the term “space-filling” could be used to 
describe different features for “filling” the design space. “Spacing-filling” could mean to 
maximally spread out the design points by avoiding any pair of design points being too 
close to each other, based on the assumption that the information about the response surface 
provided by two close points will be similar. The notion here is to place points in the 
experimental region such that they are as far apart as possible. Johnson et al. (1990) 
proposed the maximin distance criterion, which seeks to maximize the minimum distance 
between any pair of design points. The minimum distance among the points in the design 
is given by 𝑚𝑖𝑛𝑖𝑗𝑑(𝑥𝑖, 𝑥𝑗). Therefore, the maximin distance design can be found by 
maximizing this minimum distance: 

𝑚𝑎𝑥
𝐷

𝑚𝑖𝑛
𝑖,𝑗

𝑑(𝑥𝑖, 𝑥𝑗)                                             (1) 

Alternatively, “Space-filling” could also mean to provide the best coverage of the design 
space. That is, for any point in the experimental region, there should be a design point close 
by based on the belief that any interesting features of the true underlying relationship are 
likely to exist in any design region and hence, it is important to avoid missing out any large 
region of the design space.  Let 𝑝 represent the number of design factors and 𝜒 be the 
experimental region, which in most cases, can be scaled to a unit hypercube, 𝜒 = [0,1]𝑝. 
Let 𝐷′ = {𝑥1, … , 𝑥𝑛} denote a design of 𝑛 runs, where each point 𝑥𝑖𝜖[0,1]𝑝. Then, for any 
point 𝑥𝜖[0,1]𝑝, the distance to the nearest design point is given by 𝑚𝑖𝑛𝑖𝑑(𝑥, 𝑥𝑖). 
Intuitively, the closer a point is to the nearest design point, the more likely it is to be 
predicted with better precision. Hence, the worst prediction is likely to occur at the point 
that is farthest from the nearest design point. This worst nearest distance is found by  
𝑚𝑎𝑥𝑥𝜖[0,1]𝑝𝑚𝑖𝑛𝑖𝑑(𝑥, 𝑥𝑖). Again, Johnson et al (1990) proposed the minimax distance 
criterion, which seeks the best coverage of the design space by minimizing the maximum 
distance of any arbitrary point in the design space to the nearest design point as in:  
 

𝑚𝑖𝑛
𝐷

𝑚𝑎𝑥
𝑥𝜖𝜒

𝑚𝑖𝑛
𝑖

𝑑(𝑥, 𝑥𝑖)                                    (2) 

 
In terms of computing, a maximin distance design is much easier to construct than a 
minimax distance design because it only requires evaluating the distances among the 
design points and not the distances from the design points to a grid of points spanning the 
whole experimental region as in the case of minimax distance design.  
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Although, both maximin and minimax distance criteria ensure good space-filling property 
in the full dimensions of all 𝑝 input variables, their performance when projected onto 
spaces formed by a subset of variables are not guaranteed (Joseph, 2016). This may not be 
desirable when there exists effects sparsity (Montgomery, 2017) which is common in 
computer experiments. In this case, among the many factors that are being explored, only 
a few may be active factors. It is possible that a space-filling design in the full space of all 
factors may not be space filling in the projected lower dimension of the active factors. 
Therefore, it is desirable to have good space-filling property when it is projected into the 
subspaces of variables. McKay et al (1979) proposed the Latin hypercube design (LHD), 
which avoids replications in single-dimensional projections of each design factor. To 
construct a LHD of 𝑛 runs, the range of each of the factors is divided into 𝑛 equally spaced 
intervals. Then, only one coordinate of a design point is sampled from each of the non-
overlapping interval. Although the LHD is uniformly spread when projected into the 
univariate space of each input variable, a randomly selected LHD is not guaranteed a good 
space-filling property across the full dimension or any subspace of design region. For 
example, a LHD with n points evenly distributed along the 45° diagonal line in the unit 
square [0,1]2 design space with two input variables defects a good coverage of the design 
space because all the design points are located on a line leaving the rest of the unit square 
unexplored.  
 
To ensure a good space filling property for the full space and for projection into the 
univariate subspace, optimization of the maximin and minimax criterions respectively have 
been proposed for LHDs. Edwin and Dam (2008) investigated the minimax criterion for 
LHDs (mMLHD) in two dimensions. They suggested that design points for LHDs should 
be chosen such that the maximal distance of any point in the input space to the design is 
minimal. Alternatively, Morris and Mitchell (1995) proposed choosing an LHD that 
maximizes the minimum distance among the points, which is called a maximin Latin 
hypercube design (MmLHD). Their proposed criterion for searching for MmLHDs is given 
by: 

𝑚𝑖𝑛
𝐷

{∑ ∑
1

𝑑𝑘(𝑥𝑖,𝑥𝑗)

𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 }

1/𝑘

.                                                (3) 

As 𝑘 → ∞, this criterion becomes the maximin distance criterion in (1). They suggested 
using the smallest value of 𝑘 that gives a maximin distance design because such a design 
will tend to have fewer pairs of points with minimum distance, which is referred to as the 
index of the maximin distance design.  
 
For both MmLHD and mMLHD, the Latin hypercube structure ensures good one-
dimensional projections, whereas the maximin and the minimax distance criterions ensure 
good space-filling in the full dimensional space. Particularly the MmLHD focuses on 
spreading any pair of design points as far as possible and hence tend to push more points 
towards the edge of the design space, while the mMLHD focuses on not missing any region 
of the design space, hence often have more runs located around the center of the design 
region. Even though MmLHDs and mMLHDs are optimized versions of the standard 
LHDs, the projections of the points of these designs onto subspaces of more than a single 
design factor are not guaranteed to have good space-filling properties.  
 
The maximum projection criterion (MaxPro) was proposed by Joseph et al. (2015) to 
ensure good projections in all subspaces of the design factors. That is, having projections 
as maximin distance designs, across all the subspaces of 2 to 𝑝 − 1 input variables. When 
a design is projected onto a subspace, the distances between the points are calculated with 
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respect to the factors that define the subspace. Therefore, a weighted Euclidean distance 
between the points 𝑥𝑖 and 𝑥𝑗 is define as: 

 𝑑(𝒙𝒊, 𝒙𝒋; 𝒘) = {∑ 𝑤𝑙|𝑥𝑖𝑙 − 𝑥𝑗𝑙|
2𝑝

𝑖=1 }
1/2

 
 

where 𝑤𝑙 = 1 for the factors defining the subspace and 𝑤𝑙 = 0 for the remaining factors. 
It makes sense to use weights between 0 and 1, which can be viewed as measures of 
importance for the factors. Let 0 ≤ 𝑤𝑙 ≤ 1 be the weight assigned to factor 𝑙 and let 
∑ 𝑤𝑙 = 1

𝑝
𝑙=1 , to ensure good projections in all possible subspaces, an appropriate 

distribution is assigned to 𝒘 and the reciprocal distance criterion in equation (3) is 
integrated over that distribution. Thus, the criterion is: 
 

𝑚𝑖𝑛
𝐷

∫ ∑ ∑
1

𝑑𝑘(𝒙𝑖,𝒙𝑗;𝒘)
𝑝(𝒘)𝑑𝒘𝑛

𝑗=𝑖+1
𝑛−1
𝑖=1                                                (4) 

 
where 𝑝(𝒘) is a prior distribution for 𝒘. In general, this criterion is not easy to evaluate 
and optimize. Fortunately, if a uniform prior distribution is chosen for 𝒘 and  𝑘 = 2𝑝, then 
the criterion simplifies to: 
 

𝑚𝑖𝑛
𝐷

∑ ∑
1

∏ |𝑥𝑖𝑙−𝑥𝑗𝑙|
2𝑝

𝑙=1

𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1                                                    (5) 

 
The product in equation (5) ensures that no two coordinates can be the same; otherwise, 
the objective function can become ∞. Combining the MaxPro criterion with the LHD 
structure result in a design with improved uniformity when projected in each univariate 
dimension, regarded as MaxProLHD (Joseph, 2016).  
 
The variations of the LHDs discussed above; MmLHD, mMLHD, and MaxProLHD are 
substantial improvements to the traditional LHDs and have been used extensively for 
generating designs for computer experiments. However, the limitation of these designs is 
that they are optimal based on a single criterion. In this article, we propose an improvement 
by using the Pareto front optimization approach to flexibly combine multiple space-filling 
characteristics to generate optimal LHDs with improve and balanced performance. In 
section 2, we review the Pareto front optimization approach for multiple objective studies. 
In section 3, we propose two search algorithms; the column-wise exchange simulated 
annealing algorithm and the nondominated sorting genetic algorithm for finding the Pareto 
optimal LHDs based on multiple objectives. In section 4, we illustrate the proposed method 
and compare the performance of the search algorithms with examples of varied dimensions 
of input factors. The Pareto front optimal designs are compared with optimal LHDs 
generated from single criterion optimization for a variety of underlying response surface 
models. Graphical tools (Lu et al 2011 and Lu and Anderson-Cook, 2012) were explored 
to evaluate and compare designs and to further guide the selection of the most performing 
designs from the identified Pareto front. Finally, we conclude and summarize our findings 
in section 5.  
 

2. Pareto Front Optimization for Multiple Objective Studies 

For multiple objective design problem, the desirability function (DF) approach (Derringer 
and Suich, 1980) has conventionally been used for design selection; it transforms the 
different criteria considered to a common 0-1 desirability scale, where 0 represent the worst 
criteria value and 1 represent the best criteria value, to create a single summary for 
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quantifying the goodness of a design. The two basic forms of the DF are; additive (where 
the scaled criteria are combined as a weighted sum) and multiplicative (where the scaled 
criteria are combined into a product with the weights entering as exponents). However, 
optimization using DF fails to consider the trade-offs between criteria directly, it instead 
identifies a best design via a “black box” algorithm that combined the different metrics into 
a single metric. The implication of this is that, when different decision makers have 
different priorities, the DF approach pose a difficulty on how these different priorities 
should be handled. For instance, deciding on new data to collect can depend heavily on the 
user-specified relative importance of individual criteria, scaling schemes, and type of DF. 
Thus, making decisions without understanding the potential impact of different subjective 
choices can pose a risk.  
 
Pareto optimization has been extensively used in many disciplines as a tool for optimizing 
multiple responses (Kasprzak and Lewis 2001; Gronwald, Hohm, and Hoffmann 2008; 
Trautmann and Mehnen 2009). As an alternative to the desirability approach, the Pareto 
front approach, enhanced with graphical tools, has been adapted to design of experiments 
to aid decision making (Lu et al., 2011). The Pareto optimization approach not only enables 
the user to gain deeper understanding of the trade-offs among the multiple competing 
design criteria, but it also offers an approach for objectively and effectively eliminating 
inferior solutions and identifying a suite of more promising solutions. The method finds 
the Pareto frontier of non-dominant designs such that no design can improve one criterion 
without diminishing at least another criterion. A suite of more promising designs is then 
selected from the Pareto frontier based on all possible combinations of user specified 
weights, scaling schemes for individual criteria, and the desirability function for combining 
the multiple criteria. Finally, numerical and graphical tools (Lu et al., 2011) are utilized to 
select the best solution based on comprehensive understanding of the robustness of 
solutions to different user priories.  A major advantage of this approach is its adoption of a 
streamlined process that efficiently and objectively reduce the candidate solutions in the 
first stage and thereafter, a comprehensive evaluation of the impacts of subjective choices 
is done in the second stage to facilitate an informed and realistic decision. 
 
The general goal of a design optimization problem with multiple objectives is to maximize 
𝐶 (≥ 2) criteria simultaneously given constraints on the input factors. Let 𝝃 =
(𝒅1

′ , 𝒅2
′ , … , 𝒅𝑛

′ )′𝜖𝛀 denote a design matrix of dimension 𝑛 × 𝑝, where 𝑛 is the number of 
design points and 𝑝 is the number of design factors; the set of all possible 𝑛 × 𝑝 design 
matrices is denoted by 𝛀. Let 𝒚 = 𝑭(𝝃) = (𝑓1(𝝃), 𝑓2(𝝃), … , 𝑓𝐶(𝝃)) 𝑇 denote the vector of 
criteria values corresponding to the design matrix, 𝝃. Then, the space containing all 
obtainable criteria vectors is called the criterion space. A solution 𝝃1 is said to Pareto 
dominate another solution 𝝃2 if 𝑓𝑗(𝝃1) ≥ 𝑓𝑗(𝝃2) for all 𝑗 ∈ {1,2, … , 𝐶} and there exists at 
least one 𝑗 ∈ {1,2, … , 𝐶} such that 𝑓𝑗(𝝃1) > 𝑓𝑗(𝝃2). In this case, the criteria vector 𝑭(𝝃2) 

is said to be dominated by 𝑭(𝝃1). The criteria vector corresponding to a particular solution 
is usually referred to as a point in the criterion space. A solution is Pareto optimal if and 
only if no other solution dominates it and its corresponding criteria vector is a non-
dominated vector. The Pareto optimal set is referred to as the set of Pareto optimal solutions 
and the corresponding set of criteria vectors as the Pareto front. 

When the Pareto optimal solutions and the Pareto front have been obtained, the decision-
making process involves careful consideration of the trade-offs between the competing 
criteria. Moreover, it is necessary to transition from a potentially large set of candidate 
solutions to a manageable set of solutions. The Utopia point method is common for 
strategically making selection from a large set of solutions (Lu et al., 2011). The standard 
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Utopia point method uses a norm and user-specified set of weights to characterize each 
solution’s proximity to the Utopia point and then chooses the best solution (based on 
different weightings for combining the criteria) closest to the Utopia point. A Utopia point, 
𝐹0, in the criterion space satisfies: 
 

𝑭0 = 𝑀𝑎𝑥
𝜉

{𝑓𝑖(𝝃)|𝝃 ∈ 𝜴}    for all    𝑖𝜖{1,2, ⋯ , 𝐶}    (6) 

 
if there is a solution 𝝃∗ ∈ 𝜴 that satisfies 𝑭(𝝃∗) = 𝑭0, then 𝝃∗ is called a Utopia solution. 
For multiple objectives optimization problem, the Utopia solution 𝝃∗ usually does not exist, 
but it can be used as an “ideal” standard for the criteria values to find the best solution(s) 
from the Pareto optimal set. The general idea of the Utopia point method is to selects 
preferred points on the Pareto front which minimize the distance to the Utopia point based 
on a chosen metric. A common choice for measuring distances to the Utopia point is the 
𝐿1-norm, formulated as: 

min
𝝃∈𝜴∗

∑ 𝑤𝑗|𝑠𝑗(𝝃) − 𝑠𝑗
0|𝐶

𝑗=1 ,                                                  (7) 

where 𝜴∗denotes the Pareto set of solutions, 𝑤𝑗 for 𝑗 ∈ {1,2, … , 𝐶} are the weights assigned 
to the 𝐶 individual criteria, 𝑠𝑗(𝝃) is the 𝑗𝑡ℎ objective function converted to a desirability 
scale between 0 and 1 for the 𝑗𝑡ℎ criterion corresponding to solution 𝜉 , and 𝑠𝑗

0denotes the 
Utopia point value for the 𝑗𝑡ℎ criterion on the same scale. Typically, we set 𝑠𝑗

0 = 1. Each 
single-weight combination identifies one optimal solution from the Pareto front. However, 
not all solutions from the Pareto front will be optimal for at least one set of weights based 
on the chosen distance metric and scaling scheme. Hence, the Utopia point approach selects 
only a subset of the solutions from the Pareto front and further reduces the potential options 
to choose from for making a final decision.  
 
Experimenting with different weight choices takes minimal computational effort in the 
Utopia point approach since every set of weights utilize the same Pareto front found by the 
search algorithm. In this study, we consider simultaneously optimizing space filling 
characteristics for LHDs by exploring a fine grid of weight combinations spread over the 
entire weighting space. Decisions can then be recommended based on choices of several 
priorities after considering the tradeoffs and robustness of candidate solutions to different 
subjective choices. Compared to the standard DF method, the Pareto approach provides 
summaries of available range of solutions, more intuition about the relative performance 
of different solutions, and quantitative information for making a justifiable coherent 
decision. 

3.  Search Algorithms 

The random permutation process allows possibility of many LHDs, each satisfying the 
Latin Hypercube condition of only one point in each level. As discussed earlier, this 
random procedure poses the possibility of generating a design with poor design qualities. 
To overcome this problem, the notion of optimizing random LHDs based on design 
criterion was introduced to generate optimal LHDs. However, due to the huge 
combinatorial nature of the design problem, finding the optimal LHD can be 
computationally expensive. Several search algorithms such as; simulated annealing 
(Morris and Mitchell1995), columnwise-pairwise algorithms (Ye et al, 2000), enhanced 
stochastic evolutionary algorithms (Jin et al, 2005; Rungrattanaubol and Na-udom, 2016), 
etc have been proposed in the literature for finding optimal LHDs. Most of the algorithms 
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use an exchange method for searching in the design space. In this work, we employed the 
column-wise exchange simulated annealing Pareto Front search algorithm and the 
nondominated sorting genetic algorithm to generate optimal LHDs. 

3.2 Column-wise Exchange Simulated Annealing Algorithm 

The column-wise exchange simulated annealing (CESA) algorithm has been commonly 
used in the design of computer experiments due to its natural ability to preserve the Latin 
hypercube structure (Morris and Mitchell, 1995). In the mechanism of this algorithm, the 
search begins with a randomly chosen LHD, and proceeds through the examination of a 
sequence of designs, each generated as a perturbation of the preceding one. By 
perturbation, it means a new design is created from the current design by interchanging 
two randomly chosen observations within a randomly chosen column in the current design. 
The perturbation replaces the current design if it leads to an improvement. Otherwise, it 
will replace the current design via simulated annealing (Kirkpatrick et al., 1983) approach-
a commonly used method to approximate the global optimum of any given function. In the 
simulated annealing approach, the new design is allowed to replace the existing design 
(even if it does not lead to an improvement) with gradually decreasing probability to ensure 
extensive search over the solution space.  

For the multiple objective optimization case in this work, given that the number of criteria 
to simultaneously optimize is 𝑘, we define the set 𝑾, with each element as a weight vector 
(𝒘𝟏, … , 𝒘𝒌), where ∑ 𝒘𝒊 = 𝟏𝒌

𝒊=𝟏  and 𝒘𝒊 ∈ [𝟎, 𝟏]. Now, let 𝐶 = ∑ 𝒘𝒊𝒄𝒊
𝒌
𝒊=𝟏  be the weighted 

combination of the multiple criteria, referred to as the weighted criterion, where 𝒄𝒊 is the 
scaled value for each criterion. An overview of the proposed column-wise exchange 
simulated annealing algorithm with Pareto front optimization approach is described by the 
following steps:  

i. Randomly generate a LHD as the starting design. For this current design, 𝝃, 
evaluate the weighted average of the criterions, denoted as 𝐶𝑐. 

ii. Initialize two null sets: the set of Pareto designs denoted as 𝑃 and the set containing 
the corresponding Pareto fronts, denoted as 𝑃𝐹 ; then add 𝝃 to 𝑃 and add  𝐶𝑐 to PF. 

iii. A new design, 𝝃∗ is generated by column-wise exchanging the current design and 
the weighted criterion, 𝐶𝑛 is evaluated. 

iv. Next, the difference between the weigthed criterion for the current design and 
that of the newly generated design, that is, 𝛥𝐶 = (𝐶𝑛 − 𝐶𝑐)  is evaluated.  Since 
the goal is to minizmize 𝐶, if the value of 𝛥𝐶 is negative, the new design replaces 
the current design and search continues. Otherwise, the new design will be 
accpeted with a probability of  𝑃 = 𝑒𝑥𝑝(−𝛥𝐶/𝑡), where 𝑡 is a time-varying 
parameter tuned to gradually approach  zero as the number of iterations increases.  

v. The next step is to update the Pareto front and the Pareto optimal set by searching 
for improvements. The comparison made here is between the new design, 𝝃∗ and 
the ones in the “current” set of non-dominated designs 𝑃. If 𝝃∗dominates at least 
one of the designs in the “current” set, then add  𝝃∗ to 𝑃 and remove the designs 
dominated by 𝝃∗. If 𝝃∗neither dominates nor is dominated by any design in the 
current set, then just add  𝝃∗to 𝑃. If 𝝃∗ is dominated by at least one of the designs 
in the “current” set, then discard 𝝃∗ and no update is needed for the current Pareto 
set. 

vi. Repeat Steps i-v for a set of weight vectors of interest. Suppose the search has 
found 𝑚 non-dominated designs in the set 𝑃(𝑖. 𝑒 𝑃 = {𝝃1, 𝝃2, … , 𝝃𝑚}) and 𝑚 
associated criterion vectors in the set 𝑃𝐹 (𝑖. 𝑒 𝑃𝐹 = {𝐹(𝝃1), 𝐹(𝝃2), … , 𝐹(𝝃𝑚)}).  
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vii. Repeat steps i to vi with 𝑆 different random starts. The set of non-dominated 
designs are combined across all the random starts to create the final combined 
Pareto Front.  

 
3.3 Nondominated Sorting Genetic Algorithm 

Genetic algorithms (GA) are popular for generating solutions in optimization problems 
(Mitchell, 1998). They rely on some operators: selection, crossover, and mutation, inspired 
by evolution theory. The method of the algorithm is an iterative process, and the population 
in each iteration (otherwise known as generation) are potential solutions evolving toward 
better solutions for the optimization problem. Traditionally, solutions are coded by a binary 
string of 0s and 1s, although many other encodings have emerged in literature. To adapt 
for our application, the original population should be generated as a LHDs.  Moreover, the 
genetic operators of crossover and mutation should be defined such that they operate 
directly on LHD matrices, thus preserving the LHD properties. Bates and Sienz (2004) 
proposed using permutation GA, where the encoding ensures that the rule of one point in 
each level is not contravened. In our analysis, solutions for the GA are coded as a LHD and 
the initial population is generated randomly, thereby allowing sampling from the range of 
all possible LHDs in the design space.  

In each iteration, several “children” solutions are generated from crossover between 
randomly selected “parent” solutions and mutation of randomly selected parent solutions, 
and the fitness of each individual impacts its likelihood of being selected to create new 
solutions for the next generation. Fitness is defined as the value of an objective function of 
the optimization problem which quantifies the suitability of each solution. The more 
suitable solutions have higher chance of surviving to the next generation. Several selection 
methods have been proposed to rate the fitness of each solution and preferentially select 
the best solutions (see, De Jong, 1975; Liefrendahl and Stocki (2005) and De Jong (2006)). 
Liefrendahl and Stocki (2005) and De Jong (2006) proposed ranking the solutions in each 
iteration from best to worst fitness and then selecting half of the best solutions as survivors 
at each iteration. To ensure that each generation is at least as fit as the previous generation, 
an elitist strategy (Eiben and Smith, 2003) is employed in this work, that is, offspring 
solutions compete against their parent solutions for survival into the next generation.  

Crossover is often considered a multiparent operation while mutation is usually a single 
parent operation. In this work, crossover is used to preserve the desirable features of two 
existing solutions by merging those solutions into a new solution, while mutation is used 
to introduce “fresh solution” into the population by randomly generating a slight 
modification of an existing solution to maintain population diversity (Eiben and Smith, 
2003). In our analysis, we employed rank-proportional selection (Hamada et al. 2008; Lu 
et al, 2013) to choose parent allocations for the crossover operation. Specifically, the 
probability of selecting the 𝑟𝑡ℎ ranked candidate of the 𝑁𝑝𝑜𝑝 solutions is 
(𝑁𝑝𝑜𝑝 − 𝑟 + 1) (𝑁𝑝𝑜𝑝(𝑁𝑝𝑜𝑝 + 1)/2)⁄ . Once probabilities have been assigned to each 
solution in the parent set, a crossover operation using permutation encoding (Bates and 
Sienz, 2004) is used to generate offspring solutions as follows; two parent designs are 
randomly selected from the “parents set”. A random integer 𝑘𝑖 (1 ≤ 𝑘𝑖 ≤ 𝑛 − 1, 𝑖 =
1,2, ⋯ , 𝑝 ) is selected as the cut-off point for each variable. To generate a “child” for the 
𝑖̇𝑡ℎ variable, values in runs 1 to 𝑘𝑖 from the “first parent” are selected and values in runs 
𝑘𝑖 + 1 to 𝑛 from the “second parent” are selected. Finally, a “repair” function is used to 
replace repeated values in each variable with the missing values in a random order. For 
instance, for a 10-run size design problem, if the cut-off point for generating a particular 
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variable of the child solution is chosen as 6, the runs of that variable is determine as shown 
in Table 1. The red line in table 1 signify the cutoff point selected for the variable. Thus, 
the child variable takes its first six runs from parent 1 and the remaining four runs from 
parent 2. As observed in Table 1, the value 0.45 is repeated in the child solution, this can 
then be corrected by using a repair function to replace one of the repeated values by an 
unselected value from one of the parent solutions.  

Table 1: An example of crossover operation 

 

For the mutation operation, one parent design is randomly sampled from the “parents set” 
and switching is done on two randomly sampled observations for each variable. Since the 
children’s solutions are generated by either crossover or mutation, the crossover proportion 
𝑃𝑐 and the mutation proportion 𝑃𝑚 satisfy 𝑃𝑐 + 𝑃𝑚 = 1, where the crossover rate and 
mutation rate are chosen to be 0.5. That is, at each generation, half of the children’s 
solutions are created via crossover and half via mutation. 

For the multiple criteria optimizations, we employed the NSGA-II algorithm (Deb et al., 
2002)-a fast-elitist non-dominated sorting GA that uses a rank-based fitness function for 
generating the Pareto front for multiple objective optimization problems. The basic idea of 
the algorithm is as follows; for each solution 𝑆 in the current population, two quantities are 
calculated; the number of solutions that dominate 𝑆 (regarded as domination count) and a 
list of all solutions dominated by 𝑆. All solutions that have a domination count of 0 are 
nondominated and hence are on the first tier Pareto front (PF1). After each solution has 
been assigned a domination count and the solutions it dominates have been determined, the 
algorithm loops through the solutions on PF1. For each solution 𝑆 on PF1, the solutions it 
dominates are considered; each solution dominated by 𝑆 has its domination count reduced 
by one; if it’s new domination count is 0, then that solution is on the second tier PF (PF2). 
This process is repeated for all solutions on the lower tier PFs. 

Once the population of solutions is sorted into tiers of PFs, NSGA-II ranks solutions on a 
given tier according to their crowding distance (Deb et al., 2002). The crowding distance 
measures how far a solution’s criteria values are from those of other solutions, with 
solutions that are farther from others assigned a larger crowding distance and a higher rank. 
To compute the crowding distance for a single criterion, the observed criterion values are 
sorted from smallest to largest. The minimum and maximum observed values are assigned 
an infinite crowding distance. For all other values of the criterion, the crowding distance 
assigned to a specific value is computed by taking the range of values immediately flanking 
that value and scaling that according to the range of the criterion. Once the crowding 
distances have been computed for each criterion separately, the overall crowding distance 
for a solution is determined as the sum of that solution’s crowding distances for all criteria. 

When randomly generated solutions are used to initialize NSGA-II, there is possibility that 
only a relatively small number of those solutions would be on the PF1. The implication of 
this for fixed population size is that solutions on lower tier PFs would potentially be used 
to generate offspring solutions for the next generation, thereby resulting in offspring that 
likely continue to be inferior. Thus, computation time would be wasted in evaluating these 
inferior solutions. On the other hand, for later generations as the PF continue to grow, its 
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size could potentially exceed the initial population size, hence using the fixed population 
size could result in elimination of superior solution on the Pareto front. To avoid this 
challenge, Chapman et al (2018) modify the NSGA-II by implementing adaptive 
population sizing (Eskandari et al, 2007). The adaptive population sizing procedure ensures 
faster convergence of the algorithm with reduced computational effort and allows the 
number of offspring solutions produced at each generation to be determined dynamically.  
 
To employ adaptive population sizing for NSGA-II, we specify the maximum population 
size (𝑚𝑎𝑥𝑝𝑜𝑝) and maximum number of offspring (𝑚𝑎𝑥𝑜𝑓𝑓) to be created in each 
generation. To initialize the algorithm, 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 = 𝑚𝑎𝑥𝑝𝑜𝑝 solutions would be randomly 
generated. The nondominated sorting algorithm would be used to determine which 
solutions are on the PF1. The number of offspring (𝑛𝑜𝑓𝑓𝑔) solutions to be created in 
generation 𝑔 is then dynamically determined as:  
 

𝑛𝑜𝑓𝑓𝑔 = 𝑚𝑖𝑛{𝑐𝑔 + [𝑑𝑔 × |(𝑃𝐹1)𝑔|, 𝑚𝑎𝑥𝑜𝑓𝑓]} 
 
where 𝑐𝑔 represents the minimum number of offspring solutions to be created in generation 
𝑔, while 𝑑𝑔 represents the rate at which the number of offspring created in generation 𝑔 
grows as the number of solutions on PF1 grows. For implementation in this work, we set 
𝑐𝑔 = 20 and 𝑑𝑔 = 4. Thus, at each generation, a minimum of 20 offspring solutions are 
created, and for every solution on the PF1, four additional offspring solutions are created. 
At the end of generation 𝑔 , there are 𝑃𝐹1𝑔 solutions on the PF1. Then the population size 
for generation 𝑔 + 1 is determined as: 
 

𝑝𝑜𝑝𝑠𝑖𝑧𝑒𝑔+1 = 𝑚𝑖𝑛{𝑎𝑔 + [𝑏𝑔 × |(𝑃𝐹1)𝑔|, 𝑚𝑎𝑥𝑝𝑜𝑝]} 
 
where, 𝑎𝑔 represents the minimum number of solutions to include in the population beyond 
the PF1 while 𝑏𝑔 represents how the size of the population grows in relation to the size of 
the PF1. For implementation in this work, we define 𝑎𝑔 relative to the specified maximum 
population size (specifically, 𝑎𝑔 = 0.2 ∗ 𝑚𝑎𝑥𝑝𝑜𝑝) and 𝑏𝑔 = 1. This ensures that at each 
generation, the population size is slightly larger than the number of PF1 solutions. The 
𝑝𝑜𝑝𝑠𝑖𝑧𝑒𝑔+1 highest ranked solutions are the ones that move on to Generation 𝑔 + 1. There 
is a drawback to specifying a maximum population size: if |(𝑃𝐹1)𝑔| > 𝑚𝑎𝑥𝑝𝑜𝑝, then some 
solutions on the frst tier PF do not move on to the next generation-that is, the PF will be 
truncated. This could mean that a reasonable, contending solution is not made available to 
the user in the subjective decision-making stage. To prevent this, if |(𝑃𝐹1)𝑔| > 𝑚𝑎𝑥𝑝𝑜𝑝, 
we allow 𝑚𝑎𝑥𝑝𝑜𝑝 to grow based on the size of the PF1 (Chapman et al, 2018).  
 
For the GA search procedure, the cycle of fitness evaluation, reproduction, and survival 
continues until some termination criterion condition is achieved. Specifically, for this 
work, the termination condition for the algorithm is when the specified number of 
generations is reached. However, it should be noted that, as a heuristic search algorithm, 
the GA algorithm does not guarantee finding the absolute optimal solutions. Generally, the 
longer the search algorithm runs, the better the approximation to the true Pareto front. In 
practice, a balance is sort between the accuracy of the approximation and the computing 
time.  
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4.0 Applications 

Using the Pareto optimization approach, the CESA algorithm and the NSGA-II were used 
to seek optimal LHDs that simultaneously optimize multiple space-filling characteristics. 
The optimal LHDs generated are thereafter evaluated for estimating different Gaussian 
process models (Rasmussen and Williams, 2006). Gaussian process models are widely 
used in analyzing data from computer experiments due to their flexibility in approximating 
complex surfaces (Adamou, 2014). In terms of the search algorithms considered, the 
analysis in this work revealed the CESA to be less effective for broad exploration of the 
design space, and consequently unable to find the PF efficiently. We think that the column-
wise exchange mechanism makes the solutions largely dependent on the starting design 
locations and hence limited the space and efficiency of the search algorithm. On the 
contrary, the NSGA-II procedure proved to be more efficient in the exploration of the 
design space and populating the PF.  
 
4.1 Low Dimensional Design Example 

Consider the problem of constructing a design of computer experiment with 20 runs and 
two input variables. For this scenario, there is no need to consider maximum projection 
criterion because LHD already ensured a uniform distribution in 1-dimension. Thus, we 
only consider the maximin distance and minimax distance criterions. After several GA 
searches for the single criterion optimization, the optimal MmLHD and optimal mMLHD 
found have criterion values 4.0947 and 0.1646 respectively. In calculating the maximin 
criterion value for the LHD, we employed the simplified alternative maximin criterion 
proposed by Morris & Mitchell (1995), such that minimizing their alternative maximin 
criterion is the same as maximizing the standard maximin criterion. 
 
For the multiple objective optimizations, the Pareto front optimization approach and the 
search algorithms were used to seek optimal LHDs, where both the maximin and minimax 
criterions are simultaneously considered. The NSGA-II algorithm takes an average of 2 
minutes to run 100 generations on a standard desktop computer. Therefore, it takes an 
average of 3 hours for 10000 generations. Multiple separate GA searches were run in 
parallel to improve the computational efficiency. The Pareto front, containing 16 optimal 
LHDs (it includes the MmLHD and mMLHD from the single criterion optimization) was 
identified after running 70 separate GA searches of 10000 generations each. The criteria 
values are transformed to the desirability scale between 0 and 1 so that both criteria are in 
comparable scale as shown in Figure 1. 
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Figure 1: The Pareto optimal solutions based on maximin criterion and minimax 

criterion. The right and top scale represent the raw values of the criterions. 
 
The designs on the Pareto Front were subjected to further evaluation using graphical 
summaries, in order to examine design robustness to different weightings of the competing 
objectives as well as trade-offs between criteria among competing designs.  Six optimum 
designs were selected from the Pareto Front by the Utopia point method (Lu et al., 2011) 
with 𝐿1 norm across all possible weights. Figure 2 is a mixture plot that shows the weight 
distributions for the selected designs. The Figure shows that designs 10 and 1 are optimal 
for large ranges of weights. Specifically, design 10 is optimal for weights ranges between 
0.25 and 0.6 for the maximin criterion and between 0.4 to 0.75 for the minimax criterion 
while design 1 is optimal for weights ranges between 0.725 and 1 for the maximin criterion 
and between 0 and 0.275 for the minimax criterion. Designs 16, 15 and 4 are optimal for 
small ranges of weights while design 11 is optimal for only very specific values of weights. 
A plot such as this can be valuable for the practitioner when there is uncertainty about how 
different criteria should be valued. From the mixture plot, we can also deduce that; designs 
4 and 10 offer some balances when both criterions are simultaneously considered, designs 
1 appears optimal when the maximin criterion is valued more while designs 15 and 16 
appears optimal when the minimax criterion is valued more. 
 

 
Figure 2: The mixture plot for the six optimum designs. 

 
Figure 3 is the trade-off plot (Lu et al, 2011) showing the criteria values for the five selected 
designs from the Utopia point approach. In the plot, the criteria values for each of the 6 
designs use two scales: the desirability scale between 0 and 1 (inner vertical axis) and the 
original scale of the criteria values. We sort the designs based on a primary criterion (here 
chosen to be the maximin criterion). The observations from the trade-off plot are similar to 
that from the mixture plot discussed above. From Figure 3, notice that design 1, which has 
optimal performance for the maximin criterion has a poor performance for the minimax 
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criterion. Similarly, design 16 which has optimal performance for the minimax criterion 
has a poor performance for the maximin criterion. Designs 10 and 4 represent choices with 
some balanced performance when both criteria are considered simultaneously. 

 
Figure 3: The plot showing trade-offs between the 6 optimum designs. 

 
Next, the performances of the six optimum designs are examined through simulation 
studies. Two-dimensional data with run size 20 is generated from the response surface 
model of the form; 𝑧(𝑥) = 𝑥1𝑒𝑥𝑝(−𝑥1

2 − 𝑥2
2), 𝑥1, 𝑥2 ∈  [−2,2]2 and Gaussian process 

model with a constant mean is fitted to the data. For the covariance function of the Gaussian 
process, we considered the product power exponential correlation function using three 
different choices of the smoothing parameter, 𝑣.  Using a 100 × 100 grid points in two-
dimensional space, the mean squared prediction error of the designs were estimated. 

 
Figure 4: FDS plot for comparing the 6 designs using response surface design; 𝑧(𝑥) =

𝑥1𝑒𝑥𝑝(−𝑥1
2 − 𝑥2

2), 𝑥1, 𝑥2 ∈  [−2,2]2 
Figure 4 shows the fraction of design space (FDS) plot for comparing the six optimum 
designs. Each curve in the FDS plots represents a single design and it reflects the fraction 
of the design that has the prediction variance above certain percentage. Intuitively, a design 
with small, squared prediction error through the design space corresponds to a low flat 
curve in the FDS plot. Figure 4 shows that the designs with some balance in mM and Mm 
(10-light blue, 4-blue, 11-green and 15-yellow) generally perform better in terms of the 
prediction errors when compared with designs that are optimal in single criterion (design 
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1 (MmLHD) and design 16 (mMLHD)). Specifically, design 15 has the lowest mean 
squared prediction error. Two alternative forms of the response surface model are explored 
to further observe the performance of the six designs. The results obtained are found to be 
consistent.  

4.2 High Dimensional Design Example 

In this section, we explore the performance of the proposed methodology on a design 
problem with higher dimensions (more design factors), larger number of runs, and more 
criteria to be considered. In addition to the maximin and minimax criteria, space-filling 
over the subspaces of active variables is also a desirable property. Hence, the projection 
property in design selection needs to be considered, and this property can be quantified by 
the maximum projection criterion. Consider the problem of constructing a design of 
computer experiment with 50 runs and 4 input variables. After several GA searches for the 
single criterion optimization, the optimal MmLHD, MaxProLHD and mMLHD found have 
criterion values 2.5854, 37.1714 and 0.4062 respectively. Due to largely increased search 
space, the NSGA-II algorithm took an average of 16 minutes to run 100 generations on a 
standard desktop computer. The Pareto Front, containing 536 optimal LHDs (includes the 
MmLHD, MaxProLHD and mMLHD from the single criterion optimization) was 
identified after running 50 separate GA searches of 10000 generations each.  

Similar to the previous example, the impact of different subjective choices and weightings 
on the solutions on the Pareto Front are examined via graphical summaries. Five optimum 
designs were selected from the 536 designs on the Pareto Front by the Utopia point method 
with 𝐿1 norm across all possible weights. Figure 5 shows the 3D mixture plot of the 5 
optimum designs. Every point in the triangle corresponds to a weight combination with the 
sum of the three weights equaling one. Hence, the vertices and the edges correspond to 
optimizing based on a single criterion and two of the three criteria, respectively. The weight 
combinations corresponding to the same optimal design are displayed in the same region 
in the same color. From Figure 5, we see that some designs; 163, 41 and 162 are optimal 
for large ranges of weights. The 5 optimum designs identified by the Utopia point method 
do not include the optimal MmLHD MaxProLHD and mMLHD from the single criterion 
optimization.  

 

 

Figure 5: The 3D mixture plot of the five optimum designs. 
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The trade-offs between the reduced set of designs are shown in Figure 6. The designs are 
sorted based on the maximin criterion. The observations from the plot are similar to that 
from the 3D mixture plot. From both plots, design 41 appears to favor the maximin criterion 
more, design 162 appears to favor the minimax criterion more and design 210 appears to 
favor the maximum projection criterion more.  

 

 

Figure 6: The plot showing trade-offs between the 5 optimum designs 
 
The performances of the five optimum designs together with the optimal designs from the 
single criterion optimization were then examined via simulation. Four-dimensional data 
with run size 50 is generated from the response surface model of the form; 𝑧(𝑥) =
𝑒𝑥𝑝(𝑠𝑖𝑛(0.9 × (𝑥1 + 0.48)^10)), 𝑥i ∈  [0,1]4 and Gaussian process is fitted to the data. 
Using a 104 grid points in four-dimensional space, the mean squared prediction errors of 
the designs were estimated. Figure 7 shows the fraction of design space (FDS) plot for 
comparing the designs. Specifically, design1(MmLHD), design530 (MaxProLHD) and 
design 534(mMLHD) are the optimal designs found for single criterion optimization.  
 

 
Figure 7: FDS plot for comparing the designs using response surface design; 𝑧(𝑥) =

𝑒𝑥𝑝(𝑠𝑖𝑛(0.9 × (𝑥1 + 0.48)^10)), 𝑥i ∈  [0,1]4 
 

The Figure shows that the MaxProLHD (purple) performs well when the quantile is below 
around 0.9 but poorly afterwards. The Pareto Front designs: 41(light-blue), 162(light-
green) and 163 (red) have more robust performance, especially when preventing the worst-
case scenario. Design 41 generally performs well across the design space. Two alternative 
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forms of the response surface model are explored to further observe the performance of the 
designs and as expected, the results and observations are found to be consistent with the 
example reported. In general, optimal LHDs from the multiple criteria optimizations are 
better choices compared to optimal LHDs from single criterion optimization.  
 

5.0 Summary and Conclusion 

In the design of computer experiments, most of the existing search algorithms are designed 
for optimizing single criterion when generating LHDs. However, the fundamental 
differences in the emphasized criterion often result in suboptimal designs, which performs 
well on one aspect of the design and relatively poor on other aspects. Simultaneously 
considering multiple criteria is desired to generate better designs with improved and 
balanced performance on multiple aspects of the design characteristics. Moreover, the 
presence of multiple objectives in a problem, in principle, gives rise to a set of Pareto-
optimal solutions, instead of a single optimal solution.  

Utilizing the pareto optimization approach, the column-exchange simulated annealing 
algorithm and nondominated sorting genetic algorithm are employed with examples of 
varied dimensions of input factors, and the generated optimal LHDs are evaluated based 
on their performance across simulations with different true response surface models and 
compared with designs from single criterion optimization to show their improved 
performance. The nondominated sorting genetic algorithm proved more efficient in 
eliminating noncontending choices from the solution space, thereby allowing identification 
of the most promising designs. Although, this present work considers simultaneous 
combinations of the minimax, maximin and maximum projections criterions. The 
methodology can be extended to combinations of other criterions used for the design of 
computer experiments.  
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