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Abstract
We study the performance of higher-order stochastic volatility [SV(p)] models in the valuation of

options. This class of models provides more flexibility to represent volatility persistence and heavy
tails and are natural extensions of the leading Hull and White (1987) model used in option pricing.
A simulation-based option pricing algorithm is developed, which uses the winsorized ARMA-based
estimator of Ahsan and Dufour (2021). The proposed algorithm is applied to S&P 500 European call
options (2015-2019). We find that the SV(3) model provides the smallest pricing error among the
competing models in all levels of moneyness. Our findings highlight the usefulness of higher-order
SV models for option pricing.
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1. Introduction

Modelling time-varying volatility of asset returns is pivotal in option pricing. To deal with
such features, two main classes of parametric models have been proposed: (1) ARCH
[Engle (1982)] and GARCH models [Bollerslev (1986)], where volatility is modelled as a
deterministic function of past shocks; (2) stochastic volatility (SV) models [Taylor (1986)],
where volatility is a latent stochastic process. Several reviews of GARCH and SV literature
are available; for GARCH, see Bollerslev (2010), and for SV, see Ghysels et al. (1996),
Broto and Ruiz (2004), and Shephard (2005).

Several studies have documented the superior performance of SV models over GARCH-
type models for several reasons. First, SV models constitute discrete versions of continuous-
time diffusion processes, which are widely used in the option-pricing literature; see Hull
and White (1987), Taylor (1994), Shephard and Andersen (2009). Second, SV models
are flexible and relatively robust to model misspecification. GARCH models often require
adding a random jump component or allowing for innovations with heavy-tailed distribu-
tions to tackle these problems. Such modifications substantially improve the performance
of the standard GARCH, but do not appear to be required for SV models; see Carnero
et al. (2004), Chan and Grant (2016). Finally, SV models perform better than GARCH-
type models in volatility forecasting, which suggests that time-varying volatility is better
modelled as a latent first-order autoregression; see Kim et al. (1998), Yu (2002), Poon and
Granger (2003), Koopman et al. (2005).

Despite these attractive features, the estimation of SV models is much more compli-
cated than it is for GARCH-type models. In particular, due to the presence of latent vari-
ables, likelihood-based methods are difficult to apply, and statistical inference (estimation
and testing) for SV models is quite challenging. Consequently, a variety of methods have
been proposed to estimate SV(1) model, where the latent volatility process is modelled
as a first-order autoregression. These include: quasi-maximum likelihood (QML) [Nelson
(1988), Harvey et al. (1994), Ruiz (1994)], the generalized method of moments (GMM)
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[Melino and Turnbull (1990), Andersen and Sørensen (1996)], the simulated method of mo-
ments (SMM) [Gallant and Tauchen (1996), Monfardini (1998), Andersen et al. (1999)],
Monte Carlo likelihood (MCL) [Sandmann and Koopman (1998)], simulated maximum
likelihood (SML) [ Danielsson (1994), Durham (2006), Durham (2007), Richard and Zhang
(2007)], the method based on linear representation [Francq and Zakoı̈an (2006)], closed-
form moment-based estimators [Dufour and Valéry (2006), Dufour and Valéry (2009), Ah-
san and Dufour (2019)], and Bayesian techniques based on Markov Chain Monte Carlo
(MCMC) methods [Jacquier et al. (1994), Kim et al. (1998), Chib et al. (2002), Fiorentini
et al. (2004), Flury and Shephard (2011)].

The vast majority of the above methods are either computer-intensive and/or inefficient.
Apart from the closed-form moment-based estimators, the above estimation methods are
based on simulation techniques and/or numerical optimization. Simulation-based methods
such as SML, MCL, SMM, and Bayesian MCMC methods [via the Metropolis-Hastings
algorithm or the Gibbs sampler] are computer-intensive, inflexible across models, hard to
implement in practice, and may converge very slowly; see Broto and Ruiz (2004). Imple-
menting these methods requires one to choose a sampling scheme, initial parameters, and
an auxiliary model (which is largely conventional). The choice of initial parameter values
for QML, GMM or MCMC plays a pivotal role in convergence. In particular, a poorly
assigned prior may lead to a fragile Bayesian inference. In the context of GMM estimation,
Broto and Ruiz (2004) pointed out that the criterion surface is highly irregular, so opti-
mization often fails to converge in small samples, e.g., Andersen and Sørensen (1996) have
documented a large number of non-converging GMM estimations. Further, GMM usually
produces imprecise estimates due to an ill-conditioned weighting matrix. By contrast, the
closed-form moment-based estimators are analytically tractable, computationally simple,
and very easy to implement.

In this paper, we consider higher-order stochastic volatility [SV(p)] models for option
pricing. In an SV(p) model, the underlying latent volatility process follows an autoregres-
sive process of order p. The estimation of SV(p) models is even more challenging than
it is for an SV(1) model. Due to the intrinsic complexity of SV(p) models, the work on
estimating this class of models remains scarce. Most of the proposed ones are inflexible,
computationally costly, and limited to low orders [see Gallant et al. (1997), Asai (2008),
Chan and Grant (2016)]. Recently, Ahsan and Dufour (2021) proposed simple estimation
methods for SV(p) models by exploiting the non-Gaussian ARMA representation of these
models. These ARMA-SV methods use the moment structure of the logarithm of squared
residual returns. Furthermore, these estimators are analytically tractable and computation-
ally inexpensive.

We develop an option pricing algorithm for SV(p) models, which uses the recently de-
veloped OLS-based winsorized version of the ARMA-SV (W-ARMA-SV) estimator. This
estimator substantially increases the probability of getting acceptable parameter values and
also improves efficiency. We apply the proposed algorithm to 5 years of S&P 500 European
daily call options. In all levels of moneyness, we find that the SV(3) model provides the
smallest pricing error compare to the GARCH(1, 1) model.

The paper proceeds as follows: Section 2 specifies SV(p) models and assumptions.
Section 3 discusses simple estimators and the recursive prediction algorithm. Section 4
develops a option pricing algorithm for SV(p) models. Section 5 assesses the pricing per-
formance. Section 6 concludes.
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2. Framework

We consider a standard discrete-time SV process of order p, which is described below
following Ghysels et al. (1996) and Gallant et al. (1997). Specifically, we say that a variable
yt follows a discrete-time stationary SV(p) process if it satisfies the following assumptions,
where t ∈ N0, and N0 represents the non-negative integers.
Assumption 2.1 (Stochastic volatility of order p) The process {yt : t ∈ N0} satisfies the
equations

yt = σy exp(wt/2)zt , (1)

wt =

p∑
j=1

ϕjwt−j + σvvt , (2)

where the vectors (zt, vt)
′

are i.i.d. according to a N (0, I2) distribution, while (ϕ1, . . . ,
ϕp, σy, σv)

′
are fixed parameters.

Assumption 2.2 (Stationarity) The process lt = (yt, wt)
′

is strictly stationary.
The latter assumption entails that all the roots of the characteristic equation of the

volatility process [ϕ(z) = 0] lie outside the unit circle [i.e., ϕ(z) ̸= 0 for |z| ≤ 1]. The
SV(p) model consists of two stochastic processes, where yt describes the dynamics of as-
set returns and wt := log(σ2t ) captures the dynamics of latent log volatilities.1 The latent
process wt can be interpreted as a random flow of uncertainty shocks or new information
in financial markets, while the ϕj’s capture volatility persistence.

Let us now transform yt by taking the logarithm of its squared value. We get in this
way the following measurement equation:

log(y2t ) = log(σ2y) + wt + log(z2t ) = µ+ wt + ϵt (3)

where µ := E[log(y2t )] = log(σ2y) + E[log(z2t )] and ϵt := log(z2t ) − E[log(z2t )]. Under
the normality assumption for zt, the errors ϵt are i.i.d. according to the distribution of a
centered log(χ2

1) random variable [i.e., ϵt has mean zero and variance E(ϵ2t )] with

E[log(z2t )] ≃ −1.27 , σ2ϵ := E(ϵ2t ) = π2/2 , (4)

E(ϵ3t ) = ψ(2)(1/2) , E(ϵ4t ) = π4 + 3σ2ϵ , (5)

where ψ(2)(z) is the polygamma function of order 2; see Abramowitz and Stegun (1970,
Chapter 6).2 On setting

y∗t := log(y2t )− µ , (6)

and by combining (2) and (3), the SV(p) model can be written in state-space form:

State Transition Equation: wt =

p∑
j=1

ϕjwt−j + vt , (7)

Measurement Equation: y∗t = wt + ϵt , (8)

where vt’s are i.i.d. N (0, σ2v) and ϵt’s are i.i.d. log(χ2
1); for further discussion of this

representation, see Nelson (1988), Harvey et al. (1994), Ruiz (1994), Shephard (1994),
Breidt and Carriquiry (1996), Harvey and Shephard (1996), Kim et al. (1998), Sandmann
and Koopman (1998), Steel (1998), Chib et al. (2002), Knight et al. (2002), Francq and
Zakoı̈an (2006), Omori et al. (2007).

1Usually the yt’s are residual returns, such that yt := rt − µr and rt := 100[log(pt)− log(pt−1)], where
µr is the mean of returns (rt) and pt is the raw prices of an asset. It is noteworthy to mention that yt is
ordinarily the error term of any time series regression model, see Jurado et al. (2015).

2The log(χ2
1) distribution is often approximated by a normal distribution with mean of −1.2704 and vari-

ance of π2/2 [see Broto and Ruiz (2004)], or by a mixture distribution [see Kim et al. (1998)].
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3. Simple ARMA-based estimation

Recently, Ahsan and Dufour (2021) proposed simple estimators for SV(p) models by ex-
ploiting the ARMA representation of the process y∗t . They derived the following ARMA(p, p)
representation for y∗t :

y∗t =

p∑
j=1

ϕjy
∗
t−j + ηt −

p∑
j=1

θjηt−j (9)

with ηt −
∑p

j=1 θjηt−j = vt + ϵt −
∑p

j=1 ϕjϵt−j , where the error processes {vt} and
{ϵt} are mutually independent, the errors vt are i.i.d. N(0, σ2v), and the errors ϵt are i.i.d.
according to the distribution of a log(χ2

1) random variable.
From the above expression, y∗t has the following autocovariances:

cov(y∗t , y
∗
t−k) := γy∗(k) =


ϕ1γy∗(k − 1) + · · ·+ ϕpγy∗(k − p) + σ2

v + σ2
ϵ ; if k = 0,

ϕ1γy∗(k − 1) + · · ·+ ϕpγy∗(k − p)− ϕkσ2
ϵ ; if 1 ≤ k ≤ p,

ϕ1γy∗(k − 1) + · · ·+ ϕpγy∗(k − p); if k > p.
(10)

The above autocovariances yield the following closed-form expressions for SV parameters:

ϕp = Γ −1
(p+j−1)γ(p+j), j ≥ 1 (11)

σy = [exp(µ+ 1.27)]1/2, (12)

σv = [γy∗(0)− ϕ
′

pγ(1) − π2/2]1/2, (13)

where ϕp := (ϕ1, . . . , ϕp)
′
, γ(p+j) := [γy∗(p+ j), . . . , γy∗(2p+ j − 1)]

′
are vectors and

Γ(p+j−1) is a p-dimensional Toeplitz matrices such that

Γ(p+j−1) :=


γy∗(p+ j − 1) γy∗(p+ j − 2) · · · γy∗(j)
γy∗(p+ j) γy∗(p+ j − 1) · · · γy∗(j + 1)

...
...

...
γy∗(2p+ j − 2) γy∗(2p+ j − 3) · · · γy∗(p+ j − 1)

 .
where p is the SV order, γy∗(k) = cov(y∗t , y

∗
t−k), with y∗t and µ defined in (3).

Now, it is natural to estimate γy∗(k) and µ by the corresponding empirical moments:

γ̂y∗(k) =
1

T − k

T−k∑
t=1

y∗t y
∗
t+k, µ̂ =

1

T

T∑
t=1

log(y2t ) , (14)

where by construction y∗t is a mean corrected process. Setting j = 1 in (11) and replacing
theoretical moments by their corresponding empirical moments yield the following simple
ARMA-SV estimator of the SV(p) coefficients:

ϕ̂p = Γ̂ −1
(k,p)γ̂(k,p), (15)

σ̂y = [exp(µ̂+ 1.27)]1/2, (16)

σ̂v = [γ̂y∗(0)− ϕ̂
′

pγ̂(k,p) − π2/2]1/2. (17)
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3.1 Restricted estimation

These simple estimators may yield a solution outside the admissible area, i.e., some of
the eigenvalues of the latent volatility process [it is an AR(p) process] may lie outside the
unit circle or equal to unity. This issue can arise especially in small samples or in the
presence of outliers. When this happens, a simple fix is projecting the estimate on the
space of acceptable parameter solutions by altering the eigenvalues that lie on or outside
the unit circle. The characteristic equation of the latent AR(p) process is given by C(λ) =
λp−ϕ1λp−1−· · ·−ϕp = 0, and the stationary condition requires all roots lie inside the unit
circle, i.e., |λi| < 1, i = 1, · · · , p. If the estimated parameters fail to satisfy this condition,
then the restricted estimation can be done in the following two steps:

1. Given the estimated unstable parameters, we calculate the roots of the characteristic
equation and restrict their absolute values to less than unity.

2. Given these restricted roots, we calculate the constrained parameters which ensure
stationarity.

For example, in case of an SV(2) model, the characteristic equation of the latent volatil-
ity process is C(λ) = λ2 − ϕ1λ − ϕ2 = 0. It may have two types of roots: (i) if

ϕ21 + 4ϕ2 ≥ 0, then C(λ) has two real roots, and these are given by λ1,2 =
ϕ1±
√

ϕ2
1+4ϕ2

2
and (ii) if ϕ21 + 4ϕ2 < 0 then C(λ) has two complex roots, and these are given by

λ1,2 = ϕ1

2 ± i
√

−(ϕ2
1+4ϕ2)

2 . When the estimated polynomial coefficients produce an unsta-
ble solution, then we restrict the absolute value of the roots less than unity, i.e. |λ1,2| < 1
or |λ1,2| = 1 −∆ where ∆ is a very small number. Given these restricted roots, we solve
for restricted parameters which ensure the stationarity condition. These steps can be done
very easily in MATLAB. In MATLAB, the roots function calculates the roots given the
parameters, and the poly function calculates the parameters given the roots.

3.2 ARMA-based winsorized estimation

One can achieve better stability and efficiency of ARMA-SV estimator by using “win-
sorization” which exploits (11). Winsorization (censoring) substantially increases the prob-
ability of getting admissible values. From (11), it is easy to see that:

ϕp =

∞∑
j=1

ωjΓ
−1
(p+j−1)γ(p+j) (18)

for any ωj sequence with
∑∞

j=1 ωj = 1. Using (18), we can define a more general class
of estimators for ϕp by taking a weighted average of several sample analogs of the ratio
Γ −1
(p+j−1)γ(p+j):

ϕ̃p =

J∑
j=1

ωjΓ̂
−1
(p+j−1)γ̂(p+j), (19)

where 1 ≤ J ≤ T − p with
∑J

j=1 ωj = 1 and T is the length of time series. We can expect
that a sufficiently general class of weights may improve the efficiency of the ARMA-SV
estimators.

Using (19), Ahsan and Dufour (2021) proposed the OLS-based winsorized ARMA-SV
(W-ARMA-SV) estimator of ϕp as follows:

ϕ̂p
ols

= (ā′ā)−1ā′ē, (20)
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where ā = (Γ̂(p)ω
1/2
1 , . . . , Γ̂(p+J−1)ω

1/2
J )′ and ē = (γ̂(p+1)ω

1/2
1 , . . . , γ̂(p+J)ω

1/2
J )′.

Clearly, different OLS-based W-ARMA-SV can be generated by considering different
weights w1, . . . , wJ . In our empirical applications, we focus on the case where the weights
are equal (ωj = 1/J). Note that, in case of an SV(2), the W-ARMA-SV-OLS (with equal
weights) yields:

ϕ̂ols1 =

∑J
j=1[γ̂y∗(j + 1)γ̂y∗(j + 2)− γ̂y∗(j)γ̂y∗(j + 3)][γ̂y∗(j + 1)2 − γ̂y∗(j)γ̂y∗(j + 2)]∑J

j=1[γ̂y∗(j + 1)2 − γ̂y∗(j)γ̂y∗(j + 2)]2

(21)

ϕ̂ols2 =

∑J
j=1[γ̂y∗(j + 1)γ̂y∗(j + 3)− γ̂y∗(j + 2)2][γ̂y∗(j + 1)2 − γ̂y∗(j)γ̂y∗(j + 2)]∑J

j=1[γ̂y∗(j + 1)2 − γ̂y∗(j)γ̂y∗(j + 2)]2
. (22)

The above simplification [simple regressions] follows from (11) with p = 2, which can be
written as following:

[
ϕ1
ϕ2

]
=

[
γy∗(j + 1) γy∗(j)
γy∗(j + 2) γy∗(j + 1)

]−1 [
γy∗(j + 2)
γy∗(j + 3)

]
=

 γy∗ (j+1)γy∗ (j+2)−γy∗ (j)γy∗ (j+3)

γy∗ (j+1)2−γy∗ (j)γy∗ (j+2)
γy∗ (j+1)γy∗ (j+3)−γy∗ (j+2)2

γy∗ (j+1)2−γy∗ (j)γy∗ (j+2)

 .
(23)

All these estimators are depend on J and for J = 1, they are equivalent to the simple
ARMA-SV estimator which is given by (15).

3.3 Recursive estimation for SV(p) models

It is possible to estimate higher-order SV(p) models using a recursive Durbin-Levinson
(DL) type estimation algorithm. For notational convenience, we use a different indexa-
tion for the autoregressive parameters of the volatility process [only for this section]. For
example, the SV(p) parameters are now denoted by ΘSV

p := ({ϕp,j}pj=1 , σpv, σy)
′
.

The recursive estimation of the ARMA-SV estimator exploits extended Yule-Walker
(EYW) equations of the observed process. When the MA order is fixed, the system of
the EYW equations constitutes a nested Toeplitz system. A Generalized Durbin-Levinson
algorithm for the ARMA-SV estimator for SV(p) model is useful when neither the AR
order nor the MA order is known. We consider the case i = p, i.e., the MA order is p,
which also implies that the AR order is p.

For i = 0, use the Durbin-Levinson algorithm to calculate

{ϕ̂(0)p,j | p ≥ 1, j = 1, . . . , p}.

For i ≥ 1, calculate
ϕ̂
(i−1)
p,0 = −1,

and

ϕ̂
(i)
p,j = ϕ̂

(i−1)
p+1,j −

ϕ̂
(i−1)
p+1,p+1

ϕ̂
(i−1)
p,p

ϕ̂
(i−1)
p,j−1, where p ≥ 1, j = 1, . . . , p,

σ̂y = [exp(µ̂+ 1.27)]1/2,

σ̂pv = [γ̂y∗(0)−
p∑

j=1

ϕ̂p,j γ̂y∗(j)− π2/2]1/2.

This algorithm is the same as Tsay and Tiao (1984) algorithm [except for equations in-
volving σ̂y and σ̂pv] for calculating the extended sample autocorrelation function under the
stationarity assumption.
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4. Option pricing with SV(p) models

The main reason for estimating stochastic volatility models for option pricing is that we are
interested in the time series of volatilities and/or the volatility estimates’ accuracy. Volatil-
ities can be estimated using a Kalman smoother conditional on the parameters assuming
that the measurement error ϵt is Gaussian. Alternatively, by a simulation smoother (ex-
tended Kalman filter) conditional on the parameters using the mixture distribution of the
measurement error density f(ϵt).

Option prices depend on the average expected volatility over the option contract’s
length, and this averaging should reduce standard errors. In the limit, the average volatility
over a long horizon converges to the unconditional variance, which is known without error
when conditioning the process’s parameters.

Under a set of assumptions, Hull and White (1987) showed that the value of a Euro-
pean call option on stocks based on a general specification of stochastic volatility is the
Black-Scholes price integrated over the distribution of the mean volatility. Using a char-
acteristic function approach, Heston (1993) derived a closed-form solution for a European
call option based on a square-root specification of volatility. For most other SV models,
including SV(p) models, option prices have no closed form solution and hence have to be
approximated. A flexible way for approximating option prices is via Monte Carlo simula-
tions. Hull and White (1987) outlined an efficient procedure for conducting Monte Carlo
simulations to calculate a European call option on stocks.

To examine the economic importance of SV(p) models on option pricing, we price
options using both the SV(1) and SV(p) models. To price options, we follow an algorithm
similar to Mahieu and Schotman (1998) and Yu et al. (2006). Table 1 summarizes some
well-known SV models and shows their parameter relations. For the continuous-time SV
models, their Euler discrete-time versions are considered. Some specifications in Table 1
may be different from the actual specifications given in the original papers. However, they
are equivalent to each other via Ito’s lemma. SV(p) models are natural extensions of Hull
and White (1987) model used in the option pricing literature.

Consider a European call option on a stock with maturity τ (measured in the number
of days). The value of the call option is given by

C(St, w0,t:t−p) = e−rτEQ
t [max(St+τ −X, 0)].

where St is the spot price of the underlying index at time t, r is the risk-free rate (an
annual rate, expressed in terms of continuous compounding), and X is the strike price. The
expected payoff is a function of both the current and past lags of log-volatilities w0,t:t−p =
(w0,t, . . . , w0,t−p)

′ and the current spot price St. The expectation is taken with respect to
the risk-neutral density of the stock price.

Hull and White (1987) assume a continuous-time SV process and show that the value
of the option depends on the expected average variance of the exchange rate over the re-
maining life of the option, conditional on the current volatility. Following Hull and White
(1987) and assuming that volatility risk is not priced, the pricing formula can be written as
follows:

C(St, w0,t:t−p) = e−rτ

∫ ∞

0
BS(w̃t+τ )p(w̃t+τ |w0,t:t−p)dw̃t+τ = e−rτEt[BS(w̃t+τ )] ,

where BS(w̃t+τ ) is the Black-Scholes value

BS(w̃t+τ ) = FtN (d1)−XN (d2)

 
247



Table 1: Alternative specifications for the latent volatility process

Studies Models
Taylor (1982), Wiggins (1987), Chesney and Scott (1989), log σ2

t = µ+ ϕ(log σ2
t−1 − µ) + σvvt

Jacquier et al. (1994), Kim et al. (1998) and Scott (1987)
Scott (1987), Andersen (1994), and Stein and Stein (1991) σt = µ+ ϕ(σt−1 − µ) + σvvt
Heston (1993) σt = ϕσt−1 + σvvt
Hull and White (1987) and Johnson and Shanno (1987) log σ2

t = µ+ ϕ log σ2
t−1 + σvvt

Andersen (1994) σ2
t = µ+ ϕ(σ2

t−1 − µ) + σvvt
Clark (1973) log σ2

t = µ+ σvvt

Yu et al. (2006) (σ2
t )

δ−1

δ
= µ+ ϕ

(
(σ2

t−1)
δ−1

δ
− µ

)
+ σvvt

Ahsan and Dufour (2021) log σ2
t = µ+ ϕj

∑p
j=1 log σ

2
t−j + σvvt

Notes:

1. Yu et al. (2006) proposed a nonlinear SV specification with the inverse Box-Cox transformation and δ
is a parameter of the smooth function.

in which Ft is the forward price applying to time t+ τ , and d1 and d2 are defined as

d1 =
ln(Ft/X) + 1

2 w̃
2
t+τ

w̃t+τ
, d2 = d1 − w̃t+τ

w̃2
t+τ =

∫ t+τ

t
exp(w2

s)ds

The expectation is taken with respect to the conditional density p(w̃t+τ |w0,t:t−p) of the total
lifetime volatility w̃t+τ given w0,t:t−p. Since we assume that volatility risk is not priced,
the density p(w̃t+τ |w0,t:t−p) coincides with the actual density. Note that the expectation is
taken conditional on knowing the current and past log-volatilities w0,t:t−p, i.e. assuming
that the market knows the volatility. The density p(w̃t+τ |w0,t:t−p) is a function of the
parameters of the stochastic volatility process, but does not involve any data information.
The econometric problem is to estimate the option value given time-series data of stock
prices, but without directly observing log volatilities w0,t:t−p — these volatilities are only
available through the stochastic volatility model. In discrete time we replace the integral∫ t+τ
t exp(w2

s)ds by the summation w̃2
t+τ =

∑τ
i=1 exp(wt+τ ) (see Amin and Ng (1993)).

Further, assuming continuous yield dividends Ft = Ste
(r−q)τ , where q is the constant

dividend yield. The value of the European call option can be computed by direct simulation
given in Algorithm 1.

5. Option valuation performance

In this section, the SV(p) option pricing algorithm (proposed in Algorithm 1) is applied to
daily S&P 500 index European call options. We consider five years of option prices from
Jan. 2015 to Dec. 2019. The data is sourced from the OptionMetrics database. We also
obtain daily S&P 500 prices from the Yahoo Finance website. All options were quoted on
the CBOE. The midpoint between bid and ask prices is used as the option price. We filter
zero volume quotes and apply the filtering rules suggested by Bakshi et al. (1997) and only
keep options with 126 days to maturity. We fix the daily risk-free rates to r = 0.0039%,
q = 0 and K = 100, 000.
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Algorithm 1 SV(p) option pricing algorithm

Ensure: Initialize with drawing ŵ0,t:t−p = (ŵt, . . . , ŵt−p)
′ from the simulation smoother.

1: for k ← 1 to K do
2: for i← 1 to τ do
3: Draw vi ∼ N (0, 1)
4: Generate a sequence of wt+i, i = 1, . . . , τ according to wt+i = µ̂ +∑p

j ϕ̂jwt+i−j + σ̂vvt+i

5: Calculate w̃2
t+τ =

∑τ
i=1 exp(wt+i)

6: Calculate d1 =
ln(Ft/X)+ 1

2
w̃2

t+τ

w̃t+τ
, d2 = d1 − w̃t+τ

7: Calculate the Black-Scholes value BS1(w̃t+τ ) = FtN (d1)−XN (d2)
8: Repeat Steps 4-7 using {−vi} and calculate the Black-Scholes value
BS2(w̃t+τ )

9: Calculate the average value of BS1(w̃t+τ ) and BS2(w̃t+τ ) and define it as
B̄S(w̃t+τ )

10: end for
11: Repeat Steps 2-10 for K times to give a sequence of B̄S(k)(w̃t+τ ) values.
12: Compute the Hull-White-type option price as HW(w̃t+τ ) =

e−rτ 1
K

∑K
i=1 B̄S

(k)
(w̃t+τ )

13: end for
Require: Parameter estimates of the SV(p) model: θ̂ =

(
µ̂, ϕ̂1, . . . , ϕ̂p, σ̂v

)′
.

Require: Filtered latent log volatilities ŵ0,t:t−p = (ŵt, . . . , ŵt−p)
′.

Require: Observed values from option and price data: τ, r, St, X, q.

We consider only Out-of-The-Money (OTM) call options. Using X/St as a definition
of moneyness, we filter out Deep-Out-The-Money (DOTM) options with moneyness larger
than 1.25 for call options. A wider range of moneyness could be considered. However, for
DOTM options, all models should require a correction to include the impact of jumps. We
investigated what happens for moneyness ranging from 0.95 to 1.25. We refer to call as
DOTM options if their moneyness is between 1.1 and 1.25 and as Out-The-Money (OTM)
if 1.02 < X/St ≤ 1.1. Options are at-the-money (ATM) if 0.95 < X/St ≤ 1.02.

For each filtered call option, we recalibrate the model with new parameter estimates.
So the models are estimated using asset returns from Jan. 1996 to the day the option was
recorded. This removes the effect of measurement error, which may cause some instability
in model parameters. We report the estimated parameter and standard deviation across
samples in Table 2. From the estimated models, we get the parameter estimates and filtered
current and past volatilities. Using these parameter estimates, the evaluation of option
prices via Monte Carlo is straightforward.

We consider relative root mean squared error, %RMSE, which is computed as follows

%RMSE =
$RMSE

V̄
, where $RMSE =

√√√√ 1

N

N∑
i

(
Vi − V model

i

)2
,

where Vi is the observed price, V model
i is the model price and V̄ is the average price. We

consider three lower-order SV(p) models and GARCH(1, 1) of Heston and Nandi (2000).
Table 3 reports the performance of the competing models. The main findings are the

following. First, the SV(3) model provides the smallest pricing error among the competing
models. This finding holds across different levels of moneyness. Second, in all levels of
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moneyness, the GARCH(1, 1) model of Heston and Nandi (2000) is outperformed by all
SV models: pricing errors of the GARCH(1, 1) model are large.

Table 2: GARCH and SV estimates: Estimation Period (Jan 1996- Dec 2019)

GARCH Parameters λ ω α β γ

GARCH(1, 1) Estimates 0.0055 1.77E-08 5.11E-06 0.8201 139.7759
SD 0.0003 4.51E-08 3.50E-07 0.0110 0.8385

SV Parameters ϕ1 ϕ2 ϕ3 σy σv

SV(1) Estimates 0.9849 0.8881 0.7609
SD 0.0035 0.0270 0.0367

SV(2) Estimates 0.3385 0.6470 0.8881 0.5982
SD 0.0148 0.0203 0.0270 0.0540

SV(3) Estimates 0.1404 0.3951 0.4402 0.8881 0.5622
SD 0.0541 0.1133 0.0637 0.0270 0.0825

Notes: The models are estimated using S&P returns from Jan. 1996 to the day the option was recorded. This

removes the effect of measurement error, which may cause some instability in model parameters. We report

the mean estimated parameter (Estimates) and standard deviation (SD) across samples.

Table 3: Option-Pricing Results: Estimation Period (Jan 2015- Dec 2019)

%RMSE relative to GARCH(1, 1) of Heston and Nandi (2000)
Monyness SV(1) SV(2) SV(3)

All (0.95 ≤ X/St ≤ 1.25) 0.3760 0.3946 0.3535
ATM (0.95 ≤ X/St ≤ 1.05) 0.2188 0.2534 0.2022
OTM (1.05 < X/St ≤ 1.15) 0.4044 0.4210 0.3782
DOTM (1.15 < X/St ≤ 1.25) 0.4452 0.4556 0.4238

Notes: These %RMSE are relative to the reference model GARCH(1, 1) of Heston and Nandi (2000) and
values smaller than unity indicate better pricing performance than the GARCH(1, 1) model.

6. Conclusion

We consider higher-order SV models for forecasting volatility and pricing options, in which
we depart from the existing literature that uses only the first-order persistence in latent
volatility. We estimate this class of models by the simple W-ARMA estimator proposed
by Ahsan and Dufour (2021). Given the simple estimates with the procedures developed
in Section 4, pricing derivatives are straightforward. Empirically, we find that the SV(3)
model provides the smallest pricing error among the competing models in all levels of
moneyness. This finding highlights the usefulness of higher-order SV models for option
pricing.
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