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Abstract 

A Mixture Multivariate Probabilistic Models has been found to be appropriate for different 
characteristics of fish species in fish market sales. This is a convexly combined mixture 
multivariate probabilistic model which is also relatively optimum.  
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1. Introduction 

 
Different hallmarks of fish species in fish market like weight, height, various lengths are 
important features for the agro-based industries especially food industries, market places, 
scientists for bio-diversity, fisheries, etc. However, to develop and implement strategies 
that minimize the adverse effects of consequences of biodiversity, a more complete 
knowledge of how the joint distribution of the multiple variables or features of fish species 
are related or. We should know at what and how much rate the one feature is getting 
changed by the other feature. This model will help us to predict how quickly the various 
steps such as the suitable alternatives of steps (like what amount of anti-pesticides will be 
mixed to each water reservoirs) will be introduced that can maintain proper growth of fish 
species. 
 
Generally, the joint distribution of weight, height, length follow multivariate normal 
distribution. So, Multivariate Distribution can be a useful model. Various mixture models 
had been proposed for the entire distribution function, simultaneously capturing the bulk 
of the distribution (typically the main mode) with the flexibility of a probabilistic model 
for the upper/lower tails. These mixture models either explicitly include the threshold as a 
parameter to be estimated, or somewhat bypass this choice by the use of smooth transition 
functions between the bulk and tail components, thus overcoming the issues of threshold 
choice and uncertainty estimation. Frigessi et al. (2002), Mendes and Lopes (2004) present 
mixture models that combine parametric form for the bulk distribution (e.g. Gamma, 
Weibull or Normal). The drawback with all the aforementioned approaches is the prior 
specification of a parametric model for the bulk of the distribution (and associated weight 
function where appropriate).  
 
Tancredi et al. (2006) proposed a semi-parametric mixture model, A. MacDonald (2011) 
et al proposed a flexible model which includes a non-parametric smooth kernel density 
estimator below some threshold accompanied with the PP model for the upper tail above 
the threshold. A mixture of hybrid-Pareto has been carried by Carreau and Bengio (2009). 
Ciarlini et al (2004) have introduced the use of a probabilistic tool, a mixture of probability 
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distributions, to represent the overall population in such a temperature comparison. This 
super-population is defined by combining the local populations in given proportions. The 
mixture density function identifies the total data variability, and the key comparison 
reference value has a natural definition as the expectation value of this probability density. 
 
Adnan et al (2021) developed bagging and boosting based convexly combined mixture 
probabilistic models for extreme temperatures. Attempts have been made here to develop 
a mixture multivariate probability model which is suitable for the fish species.  
 
Section 2 describes the available statistical methodologies used to find a probabilistic 
model to be suitable. The concern data analysis is explained in section 3. Section 4 reveals 
the proposed mixture model for the aforementioned region. Final section draws the 
conclusion.    
 

2. Methods and Methodologies 

 
Various statistical methodologies applied here are explained below chronologically. 
 
2.1 Multivariate Normal Distribution  

The Multivariate Normal Distribution is widely used for modeling multivariate normal 
features. Let 𝑿 = [𝑋1, 𝑋2, … , 𝑋𝑝] be a p-variate multivariate normal variate that has the p-
dimensional normal density function 𝑁𝑝(𝜇, Σ) of the form  
 

     𝑓(𝒙) = 1

(2𝜋)
𝑝
2|Σ|

1
2

𝑒−
1

2
(𝑥−𝜇)′Σ−1(𝒙−𝜇), −∞ < 𝑥𝑖 < ∞,   𝑖 = 1,2,…  𝑝, (1)  

     

 
Figure-2.1 Graph of probability density function of s bivariate normal distribution. 
 

2.2 Maximum Likelihood Estimation 

Suppose 𝑋1, 𝑋2, … , 𝑋𝑛  denote 𝑛 sample observations from a multivariate normal (mvn) 
distribution 𝑁𝑝(𝜇, Σ). The method of maximum likelihood is used to fit mvn distribution 
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(1) to these data. Assuming independence of the data, the likelihood is the product of the 
densities of extreme value distribution for the observations as  

L(μ, Σ) =∏
1

(2𝜋)
𝑝
2|Σ|

1
2

𝑒−
1
2
(𝑥𝑖−𝜇)

′Σ−1(𝑥𝑖−𝜇)

𝑛

𝑖=1

 

The �̅� = ∑ 𝑋𝑖
𝑛
𝑖=1

𝑛
 and 1

𝑛
∑ (𝑋𝑖 − �̅�)(𝑋𝑖 − �̅�)

′𝑛
𝑖=1  are the mle estimators of 𝜇 and Σ.  

 

2.3 Mixture Probabilistic Model  

The infinite analogue (in which g is a density function) is ∫𝑓(𝑥;  𝜃)  𝑔(𝜃)𝑑𝜃; where 𝜃 is 
the parameter o the distributions, for the density function 𝑓(𝑥;  𝜃). The mixing distribution, 
say 𝑔(𝜃), is then a probability distribution on the parameter of the distribution 𝑓(𝑥;  𝜃). 
Several authors including Adnan (2009, 2010, 2021) worked on mixture distributions.  
 
Let X be a multivariate random variable or vector taking values in sample space with the 
probability density function 
 

𝑔(𝒙)  =  π1 𝑓1 (𝒙) + . . . +  πk 𝑓𝑘 (𝒙),    𝑥~𝑁𝑝(𝜇𝑖, Σ𝑖), 
 
where 0 ≤ πi ≤  1,    𝑖 =  1, . . . , 𝑘,    π1+ . . . + πk  =  1. 
Such a model can arise if one is sampling from a heterogeneous population that can be 
decomposed into 𝑘 distinct homogeneous subpopulations, called component populations. 
If these components have been "mixed" together, and we measure only the variable 𝑋 

without determining the particular components, then this model holds. We say that 𝑋 has 
a finite mixture distribution and that 𝑔(·)  is a finite mixture density function. The 
parameters  π1 , . . . , πk   are called mixing weights or mixing proportions, and each  πi   
represents the proportion of the total population in the 𝑖𝑡ℎ  component. There is no 
requirement that the component densities should all belong to the same parametric family, 
but in this paper, we keep to the simplest case where 𝑓1 (𝑥) , . . . , 𝑓𝑘 (𝑥)  have a common 
functional form but different parameters. Note that “mixed” distribution, which we defined 
in to be distributions with both continuous and discrete parts, are actually a special type of 
mixture. Indeed, if 𝑋 is a mixed random variable, 
 
                                             𝑓𝑋(𝑥) = (1 − 𝑘)𝑓𝐶(𝑥) + 𝑘𝑓𝐷(𝑥)                                         (2) 
                             
for some continuous random variable 𝐶 , some discrete random variable 𝐷 , and some 
number 𝑘 ∈ (0, 1). Hence, a mixed random variable is a discrete mixture of a continuous 
and a discrete random variable. 
 
2.4 Goodness of Fit Test 

The goodness of fit (GOF) tests measure the compatibility of a random sample with a 
theoretical probability distribution function. In other words, these tests show how well the 
distribution is selected fits to given data. That is, goodness of fit tests can be used to 
compare the fitted distributions, select one of the models, and determine how well it fits to 
data. In assessing whether a given distribution is suited to a data-set, the goodness of fit 
tests like Anderson Darling, Cramer-von Mises, Chi-square, Doornik-Hansen, Henze-
Zirkler, Royston have been conducted. Wichitchan, S. et al (2021) has proposed a new 
goodness of fit test that observes several type I errors. Some state that the data came from 
a multivariate normal distribution and some decides the opposite. The following is the 
Multivariate Chi-square statistic (Voinov, V. et al, 2016) where the Dzhaparidze–Nikulin 
(DN) test statistic is mainly discussed. 
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where 𝑈𝑛2  is the Dzhaparidze–Nikulin (DN) test statistic which is distributed as Chi-
square test. However, for the simplicity, average squared distance between observed 
frequencies and expected frequencies has been found to measure the discrepancy between 
data based observed frequencies (nf) and theoretical frequencies (ne).  
 

Average Squared Discrepancy =  1
𝑛
(𝑛𝑓 − 𝑛𝑒)′(𝑛𝑓 − 𝑛𝑒). 

 
3.  Analysis of the Data 

 

The information gathered from the features of the fish species is described in section 3.1. 
Section 3.2 describes about the determination of the multivariate normal distribution. QQ 
plot, Dzhaparidze–Nikulin (DN) Chi-square goodness of fit test of the different 
distributions are shown in section 3.3, 3.4 and 3.5 respectively. In section 3.6 and 3.7 
represent the contour plot and density plot of the mixture multivariate normal distribution.  
 
3.1 Information gathered from the fish species of sales data  
The data of the fish species of sales has been collected from Kaggle 
(https://www.kaggle.com/aungpyaeap/fish-market). The data set has 159 observations and 
7 variables. The variables’ information and summary statistics are given as below. 
 
'data.frame': 159 obs. of  7 variables: 
 $ ï..Species: chr  "Bream" "Bream" "Bream" "Bream" ... 
 $ Weight    : num  242 290 340 363 430 450 500 390 450 500 ... 
 $ Length1   : num  23.2 24 23.9 26.3 26.5 26.8 26.8 27.6 27.6 28.5 ... 
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 $ Length2   : num  25.4 26.3 26.5 29 29 29.7 29.7 30 30 30.7 ... 
 $ Length3   : num  30 31.2 31.1 33.5 34 34.7 34.5 35 35.1 36.2 ... 
 $ Height    : num  11.5 12.5 12.4 12.7 12.4 ... 
 $ Width     : num  4.02 4.31 4.7 4.46 5.13 ... 
 
From the following figure, it is observed that there are trends among all variables.  

 
Figure 2: Scatterplot of the variables of the fish species sales. 
 
3.2 Determining the distribution for the data 

To search the appropriate probability distribution for fish-species data, the goodness of fit 
tests like Dzhaparidze–Nikulin (DN) Chi-square goodness of fit tests, Q-Q plot, contour 
plot, density plot, etc have been observed. For the sake of easy visualization, only 73 
observations and two variables (weight and length1) have been considered. The scatter plot 
of these two variables is shown below. 

 
Figure 3: Scatterplot between Weight and Length1. 
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Maximum likelihood estimated parameters of multivariate normal distribution are given in 
the following table.    

Table 1: Estimated parameters of Multivariate Data. 
 

Parameters Estimates 

Mean Vector (μ) (
460.6055
29.6589

) 

Variance Covariance Matrix (S) (
167063 4151
4151 124

) 
 
         

The density function of Multivariate Normal fails to fit the data along with the following 
density according to the Chi-square test with p-value (0.055).         
  

    𝑓(𝒙) =

1

2𝜋|(
167063 4151
4151 124

)|

1
2

𝑒
−
1

2
((
𝑊𝑒𝑖𝑔ℎ𝑡
𝐿𝑒𝑛𝑔𝑡ℎ1

)−(
460.6055
29.6589

))

′

(
167063 4151
4151 124

)
−1
((
𝑊𝑒𝑖𝑔ℎ𝑡
𝐿𝑒𝑛𝑔𝑡ℎ1

)−(
460.6055
29.6589

))
, 

        𝑖 = 1,2,…  𝑝. 0 < 𝑊𝑒𝑖𝑔ℎ𝑡 < 1650, 7.50 < 𝐿𝑒𝑛𝑔𝑡ℎ1 < 59. 
 
3.3 Quantile-Quantile (Q-Q) plot 

Following Figure represent the Q-Q plot of the sorted values (in ascending order) of the 
variables weight and length1 is 

determined by 𝑦𝑖 = 𝐹−1 (
𝑖−0.5

𝑛+1
). Figure 3(a) checks whether the Q-Q plots follow 

univariate normal distributions.     
 

 
 
 

 
Figure 4:  Q-Q plot for Normal distribution. 
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This plot shows that the points fall approximately along with 450 reference line. We 
therefore conclude that the individual variable of these data follows univariate normal 
distribution. 
 
3.4 Chi-square Test 

Let the null and alternative hypothesis are H0: Data follows multivariate normal 
distribution and HA: Data does not follow multivariate normal distribution. The calculation 
of Chi-square statistic on the basis of 73 observations under the postulated models is 
performed. So, we use the estimated parameter �̂� = (460.6055

29.6589
) , and 𝑆 =

(
167063 4151
4151 124

) to perform this test.  The estimated value of chi-square statistic on the 
basis of 51 years of maximum temperature data under the postulated models are shown in 
the following Table 6. 

 

Table 2: Calculation for Chi-square goodness of fit test 
 

 
So, the null hypothesis is not rejected at 5% level of significance. Therefore, the data 
follows Multivariate Normal distribution.  
 
3.6 Probability Plot 

The Probability plot of the sorted values (in ascending order) of the observed data has been 
found in the following figure. We observe that these data have roughly normal shape 
distribution. 

 
Figure 5:  Empirical Probability plot for data. 
 

3.7 Bivariate plots 

In Figure 5, density plot also shows that data plots are approximately close to the original 
density. We therefore conclude that data follows bivariate normal distribution. 
 
 
 
 
 

Distribution Statistic (𝜒2) p-value 

Extreme Value distribution 7.6 0.055 
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Figure 6:  Bivariate histogram, countour points plot and Density plot for the data. 
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By observing the bivariate plots, it seems that there is more than one mean vector (one near 
(
460.6055
29.6589

) and another near (5100.6055
29.6589

)) in the observed bivariate normal distribution 
for the data. So, bimodality of the fish species indicates us to impose the mixture of two 
multivariate normal distribution in order to identify the better mixture multivariate normal 
distribution for the observed data.  
 

4. Proposed mixture extreme value distribution 

 

The distribution of the bivariate normal distribution of weight and leanth1, 𝑓(𝑥) , is 
estimated by a mixture of two distributions having same probability distribution but 
different parameters. Mixture bivariate normal distribution can be formed with weights 
(1 − 𝑝) and 𝑝  (where, p refers p-value). If we get the higher p-value for the goodness of 
fit test in case of the mixture bivariate normal distribution, and that p-value is greater than 
those of the other distributions, then we can say that the mixture bivariate normal 
distribution is the best probabilistic model for the observed data. So, the mixture model of 
the bivariate normal distribution with weights (1 − 𝑝) and 𝑝  is given (Adnan et al,2011) 
as of the following form 
 

𝑓(𝑥) = (1 − 𝑝) ∗ 𝑓1(𝑥) + 𝑝 ∗ 𝑓2′(𝑥) 
 
where,  𝑓1(𝑥) is the density function of the one bivariate normal distribution with the 
estimated value of mean vector parameter and 𝑓2(𝑥) is the density function of another 
bivariate normal distribution with the estimated value of different mean vector parameter. 

 
Table 3:  Calculation for Chi-square goodness of fit test. 
 

Distribution 
Squared Distance Between Observed and Expected 

Frequency 

Mixture multivariate normal 
distribution 

              8.700009e-07 
 

 
Therefore, probability density function of mixtured extreme value distribution is given by 
𝑓(𝑥)
= (1 − 0.0551237)

∗
1

2𝜋 |(
167063 4151
4151 124

)|

1
2

𝑒
−
1
2(
(
𝑊𝑒𝑖𝑔ℎ𝑡
𝐿𝑒𝑛𝑔𝑡ℎ1

)−(
460.6055
29.6589

))

′

(
167063 4151
4151 124

)
−1
((
𝑊𝑒𝑖𝑔ℎ𝑡
𝐿𝑒𝑛𝑔𝑡ℎ1

)−(
460.6055
29.6589

))
 

+ 0.0551237 ∗

1

2𝜋|(
167063 4151
4151 124

)|

1
2

𝑒
−
1

2
((
𝑊𝑒𝑖𝑔ℎ𝑡
𝐿𝑒𝑛𝑔𝑡ℎ1

)−(
460.6055
29.6589

))

′

(
2∗167063 2∗4151
2∗4151 2∗124

)
−1
((
𝑊𝑒𝑖𝑔ℎ𝑡
𝐿𝑒𝑛𝑔𝑡ℎ1

)−(
5100.6055
29.6589

))
. 

 
Now, let us consider now the null and alternative hypothesis will be H0: Data follows 
mixture bvn distribution against HA: H0 is not true.  
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Figure 7:  Mixture Bivariate density plot, countour plot for the data. 
 
Therefore, the final mixture model for temperatures of the aforementioned region is as 
follows:   
 
𝑓(𝑥)
= (1 − 0.0551237)

∗
1

2𝜋 |(
167063 4151
4151 124

)|

1
2

𝑒
−
1
2(
(
𝑊𝑒𝑖𝑔ℎ𝑡
𝐿𝑒𝑛𝑔𝑡ℎ1

)−(
460.6055
29.6589

))

′

(
167063 4151
4151 124

)
−1
((
𝑊𝑒𝑖𝑔ℎ𝑡
𝐿𝑒𝑛𝑔𝑡ℎ1

)−(
460.6055
29.6589

))
 

+ 0.0551237 ∗

1

2𝜋|(
167063 4151
4151 124

)|

1
2

𝑒
−
1

2
((
𝑊𝑒𝑖𝑔ℎ𝑡
𝐿𝑒𝑛𝑔𝑡ℎ1

)−(
460.6055
29.6589

))

′

(
2∗167063 2∗4151
2∗4151 2∗124

)
−1
((
𝑊𝑒𝑖𝑔ℎ𝑡
𝐿𝑒𝑛𝑔𝑡ℎ1

)−(
5100.6055
29.6589

))
. 

; 0 ≤ weight ≤ 1650, 7.5 ≤ length1 ≤ 59. 
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The pdf of the following part is given as below. 
 

0.0551237 ∗

1

2𝜋|(
167063 4151
4151 124

)|

1
2

𝑒
−
1

2
((
𝑊𝑒𝑖𝑔ℎ𝑡
𝐿𝑒𝑛𝑔𝑡ℎ1

)−(
460.6055
29.6589

))

′

(
2∗167063 2∗4151
2∗4151 2∗124

)
−1
((
𝑊𝑒𝑖𝑔ℎ𝑡
𝐿𝑒𝑛𝑔𝑡ℎ1

)−(
5100.6055
29.6589

))
. 

 ; 0 ≤ weight ≤ 1650, 7.5 ≤ length1 ≤ 59. 

 
Figure 8:  Bivariate density plot, countour plot for the second mixing compnent for the 
data. 
 

Conclusion 

 

Optimum Mixture Probabilistic Model based several convexly combined multivariate 
distributions can be found. 
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