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Abstract 
The role of each of the probability process in a mixture stochastic process has been 
unfolded to demonstrate to what extent it does contribute to each partition of the total 
probability process and the results of which factors of each probability process are 
participating in that mixture stochastic process. It has been observed that it is a result of 
the joint effect of how steep each process is compared to the other ones and what are the 
effects of each of the densities over several partitions. 
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1. Introduction 
 
Mixture distribution was first coined in 1894. Several authors defined mixtures of 
distributions and studied various mixture distributions which they called several finite and 
infinite mixture distributions.  
 
Most of them investigated additive mixture rather than multiplicative mixture. But in real 
life multiplicative mixture is more representative than the additive mixtures, since in 
multiplicative mixture distribution, appropriate randomness in both mixing and mixtured 
distribution is considered. None of the authors (1992, 2004) of mixture distributions 
demonstrated what is the clear automated role and contribution of each of the probability 
density functions in a Mixture probability distribution and to what extent each probability 
density function contributes to several partitions of total mixture probability distribution 
and what are the influences of different factors of each mixing probability density function 
participating in that mixture probability distribution.  

 
As such, the aim of this paper is to unmask the explicit role(s) of each density function 
played in a finite mixture distribution. Adnan (2020) demonstrated the role of each density 
in a mixture distribution. This paper demonstrates the role of each density of a probability 
process in a mixture stochastic process. 
 

2. Construction of the Existing Mixture Distributions  
 
A mixture distribution is a weighted average of probability distribution of positive weights 
that sum to one. The weights themselves comprise a probability distribution called the 
mixing distribution. Due to the property of weights, a mixture is a probability distribution. 
The parameter θ of a family of distributions, given by the density by the density function 
𝑓𝑓(𝑥𝑥;𝜃𝜃), is itself a subject to the change variation. The mixing distribution 𝑔𝑔(𝑥𝑥;𝜃𝜃) is then 
a probability distribution on the parameter of the distributions. The general formula for the 
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finite mixture is ∑ 𝑓𝑓(𝑥𝑥;𝜃𝜃𝑖𝑖𝑘𝑘
𝑖𝑖=1 )𝑔𝑔(𝜃𝜃𝑖𝑖) and the infinite counterpart is ∫𝑓𝑓(𝑥𝑥;𝜃𝜃)𝑔𝑔(𝜃𝜃)𝑑𝑑𝜃𝜃 where 

g is the density function. 
 

3. Finite Mixture Probability Distribution along with its Instantaneous Effects 
 
The Mixture Probability Mass Function of the mixture of two continuous probability 
density functions 𝑓𝑓1 and 𝑓𝑓2 of the mixture random variable X is given by 
 

P (𝑋𝑋 = 𝑟𝑟) =  
�𝑛𝑛𝑥𝑥�𝑓𝑓1

(𝑛𝑛−𝑟𝑟)𝑓𝑓2
(𝑟𝑟)

(𝑓𝑓1𝑓𝑓2)(𝑛𝑛)    ∀ 𝑟𝑟 = 0,  1,  2, … ,  𝑛𝑛,        (1) 
 
where, each of 𝑓𝑓1 and 𝑓𝑓2 is a 𝑛𝑛 times differentiable density function of 𝑥𝑥. Here, 𝑓𝑓1

(𝑛𝑛−𝑟𝑟) is 
the (𝑛𝑛 − 𝑟𝑟) th derivative and 𝑓𝑓2

(𝑟𝑟) is the 𝑟𝑟 th derivative of the functions 𝑓𝑓1  and 𝑓𝑓2 
respectively. (𝑓𝑓1𝑓𝑓2)(𝑛𝑛) is the 𝑛𝑛th derivative of the multiple of functions 𝑓𝑓1 and 𝑓𝑓2. Each of 
𝑓𝑓1  and 𝑓𝑓2  is a 𝑛𝑛 degree polynomial density function of 𝑥𝑥 . Each of 𝑓𝑓1  and 𝑓𝑓2  is 𝑛𝑛  times 

differentiable with respect to 𝑥𝑥. The term 𝑓𝑓1
(𝑛𝑛−𝑟𝑟)𝑓𝑓2

(𝑟𝑟)

(𝑓𝑓1𝑓𝑓2)(𝑛𝑛)  is the contribution of the  𝑟𝑟th term to 
the coefficient of the Binomial expansion responsible for how steep is the polynomial 
function 𝑓𝑓2 and its successive contribution in the joint slope of the term after 
differentiation(s). Here, 𝑓𝑓1and 𝑓𝑓2 are not complimentary probability functions. 𝑓𝑓1 + 𝑓𝑓2 is 
not necessarily 1, since both are continuous functions of 𝑥𝑥. 
 

𝐸𝐸(𝑥𝑥) = n
�� 𝑑𝑑𝑑𝑑𝑑𝑑�𝑓𝑓2(𝑥𝑥)��{∫𝑓𝑓1(𝑥𝑥)d𝑥𝑥}�

(𝑛𝑛−1)

��𝑓𝑓2(𝑥𝑥)��𝑓𝑓1(𝑥𝑥)��
(𝑛𝑛) ,            (2) 

𝐸𝐸(𝑥𝑥(𝑥𝑥 − 1)) = n(n − 1)
�� 𝑑𝑑

2

𝑑𝑑𝑑𝑑2
�𝑓𝑓2(𝑥𝑥)��{∫𝐹𝐹1(𝑥𝑥)d𝑥𝑥}�

(𝑛𝑛−2)

��𝑓𝑓2(𝑥𝑥)��𝑓𝑓1(𝑥𝑥)��
(𝑛𝑛) , 

𝑉𝑉(𝑥𝑥) = n(n − 1)
�� 𝑑𝑑

2

𝑑𝑑𝑑𝑑2
�𝑓𝑓2(𝑥𝑥)��{∫𝐹𝐹1(𝑥𝑥)d𝑥𝑥}�

(𝑛𝑛−2)

��𝑓𝑓2(𝑥𝑥)��𝑓𝑓1(𝑥𝑥)��
(𝑛𝑛) +                  n

�� 𝑑𝑑𝑑𝑑𝑑𝑑�𝑓𝑓2(𝑥𝑥)��{∫𝑓𝑓1(𝑥𝑥)d𝑥𝑥}�
(𝑛𝑛−1)

��𝑓𝑓2(𝑥𝑥)��𝑓𝑓1(𝑥𝑥)��
(𝑛𝑛) −

 �n
�� ddx�f2(x)��{∫ f1(x)dx}�

(n−1)

��f2(x)��f1(x)��
(n) �

2

,                              (3) 

 
Similarly, the Mixture Probability Mass Function of the mixture of k continuous density 
functions 𝑓𝑓1,𝑓𝑓2, …, 𝑓𝑓𝑘𝑘 of the mixture random variable X is given P(𝑟𝑟1 number of successes 
according to the density 𝑓𝑓1 , 𝑟𝑟2  number of successes according to 𝑓𝑓2 ,…, 𝑟𝑟𝑘𝑘  number of 
successes according to 𝑓𝑓𝑘𝑘 in 𝑛𝑛 trials), 
 

𝑃𝑃 (𝑋𝑋 = 𝑟𝑟𝑖𝑖) =  
� 𝑛𝑛
𝑟𝑟1,𝑟𝑟2,…,𝑟𝑟𝑘𝑘�𝑓𝑓1

(𝑟𝑟1)𝑓𝑓2
(𝑟𝑟2)……..𝑓𝑓𝑘𝑘

�𝑟𝑟𝑘𝑘�

(𝑓𝑓1𝑓𝑓2……𝑓𝑓𝑘𝑘)(𝑛𝑛)    ∀𝑟𝑟𝑖𝑖 = 0,  1,  2, … ,  𝑛𝑛.         (4) 
 
Each of 𝑓𝑓1, 𝑓𝑓2, …, 𝑓𝑓𝑘𝑘 is a 𝑛𝑛 degree polynomial function of 𝑥𝑥. Each of 𝑓𝑓1, 𝑓𝑓2, …, 𝑓𝑓𝑘𝑘 is 𝑛𝑛 

times differentiable with respect to 𝑥𝑥. The term 𝑓𝑓1
(𝑟𝑟1)𝑓𝑓2

(𝑟𝑟2)……..𝑓𝑓𝑘𝑘
�𝑟𝑟𝑘𝑘�

(𝑓𝑓1𝑓𝑓2……𝑓𝑓𝑘𝑘)(𝑛𝑛)  is the contribution of 
the 𝑟𝑟𝑖𝑖 th term to the coefficient of the Multinomial expansion responsible for how steep is 
the 𝑓𝑓𝑖𝑖  polynomial function and its successive contribution in the joint slope of the term after 
differentiation(s). Here, for 𝑓𝑓1, 𝑓𝑓2, …, 𝑓𝑓𝑘𝑘 ; 𝑓𝑓1 + 𝑓𝑓2+⋯+ 𝑓𝑓𝑘𝑘 is not necessarily 1, since each 
of them is a continuous function of 𝑥𝑥. The moments of the finite k-mixture distribution is 
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𝐸𝐸(𝑋𝑋𝑖𝑖) = n
�� 𝑑𝑑𝑑𝑑𝑑𝑑�𝑓𝑓𝑖𝑖(𝑥𝑥)��{∫𝑓𝑓1(𝑥𝑥)d𝑥𝑥}………{∫𝑓𝑓𝑘𝑘(𝑥𝑥)d𝑥𝑥}�

(𝑛𝑛−1)

��𝑓𝑓𝑘𝑘(𝑥𝑥)�…�𝑓𝑓1(𝑥𝑥)��
(𝑛𝑛) ,           (5)  

 
4. Finite Mixture Probability Process along with its Instantaneous Effects 

 
The Mixture Probability Mass Function of the mixture of two continuous processes 𝑓𝑓1(𝑡𝑡) 
and 𝑓𝑓2(t) of the mixture random family of random variable N(t) is given by 
 
 P(𝑟𝑟 number of successes according to the density function 𝑓𝑓2 in 𝑛𝑛 trials) 
 

 = P (𝑁𝑁(𝑡𝑡) = r)  =  �
𝑛𝑛
𝑟𝑟�𝑓𝑓1

(𝑛𝑛−𝑟𝑟)(𝑡𝑡)𝑓𝑓2
(𝑟𝑟)(𝑡𝑡)

(𝑓𝑓1𝑓𝑓2)(𝑛𝑛)(𝑡𝑡)
  ,            (6) 

      ∀ 𝑟𝑟 = 0,  1,  2, … ,  𝑛𝑛 
 
Here, 𝑓𝑓1

(𝑛𝑛−𝑟𝑟)(𝑡𝑡), 𝑓𝑓2
(𝑟𝑟)(𝑡𝑡) are the Stochastic Differentiable densities 𝑓𝑓1 (𝑡𝑡), 𝑓𝑓2 (𝑡𝑡) of the 

Stochastic Processes. 
 
Here, 𝑓𝑓1

(𝑛𝑛−𝑟𝑟) is the (𝑛𝑛 − 𝑟𝑟) th derivative and 𝑓𝑓2
(𝑟𝑟) is the 𝑟𝑟 th derivative of the functions 𝑓𝑓1 

and 𝑓𝑓2 respectively. (𝑓𝑓1𝑓𝑓2)(𝑛𝑛) is the 𝑛𝑛th derivative of the multiple of functions 𝑓𝑓1 and 𝑓𝑓2. 
Each of 𝑓𝑓1 and 𝑓𝑓2 is at least an 𝑛𝑛 degree polynomial probability density process of 𝑡𝑡. Each 

of 𝑓𝑓1  and 𝑓𝑓2  is 𝑛𝑛  times differentiable with respect to 𝑡𝑡 . The term 𝑓𝑓1
(𝑛𝑛−𝑟𝑟)𝑓𝑓2

(𝑟𝑟)

(𝑓𝑓1𝑓𝑓2)(𝑛𝑛)  is the 
contribution of the  𝑟𝑟th term to the coefficient of the Binomial expansion responsible for 
how steep is the polynomial function 𝑓𝑓2 and its successive contribution in the joint slope 
of the term after differentiation (s). Here, 𝑓𝑓1and 𝑓𝑓2  are not complimentary probability 
functions of the two stochastic processes. 𝑓𝑓1 + 𝑓𝑓2  is not necessarily 1, since both are 
continuous functions of t. 
 

𝐸𝐸(𝑁𝑁) = n
�� 𝑑𝑑𝑑𝑑𝑑𝑑�𝑓𝑓2(𝑡𝑡)��{∫𝑓𝑓1(𝑡𝑡)d𝑡𝑡}�

(𝑛𝑛−1)

��𝑓𝑓2(𝑡𝑡)��𝑓𝑓1(𝑡𝑡)��
(𝑛𝑛) ,            (7) 

𝐸𝐸(𝑁𝑁(𝑁𝑁 − 1)) = n(n − 1)
�� 𝑑𝑑

2

𝑑𝑑𝑑𝑑2
�𝑓𝑓2(𝑡𝑡)��{∫𝐹𝐹1(𝑡𝑡)d𝑡𝑡}�

(𝑛𝑛−2)

��𝑓𝑓2(𝑡𝑡)��𝑓𝑓1(𝑡𝑡)��
(𝑛𝑛) , 

𝑉𝑉(𝑁𝑁) = n(n − 1)
�� 𝑑𝑑

2

𝑑𝑑𝑑𝑑2
�𝑓𝑓2(𝑡𝑡)��{∫𝐹𝐹1(𝑡𝑡)d𝑡𝑡}�

(𝑛𝑛−2)

��𝑓𝑓2(𝑡𝑡)��𝑓𝑓1(𝑡𝑡)��
(𝑛𝑛) + n

�� 𝑑𝑑𝑑𝑑𝑑𝑑�𝑓𝑓2(𝑡𝑡)��{∫𝑓𝑓1(𝑡𝑡)d𝑡𝑡}�
(𝑛𝑛−1)

��𝑓𝑓2(𝑡𝑡)��𝑓𝑓1(𝑡𝑡)��
(𝑛𝑛) −

 �n
�� ddt�f2(t)��{∫ f1(t)dt}�

(n−1)

��f2(𝑡𝑡)��f1(𝑡𝑡)��
(n) �

2

,                                   (8) 

 
Similarly, the Mixture Probability Mass Function of the mixture of k continuous density 
functions of k processes 𝑓𝑓1 ,𝑓𝑓2 , …, 𝑓𝑓𝑘𝑘  of the mixture random variable N is given P(𝑟𝑟1 
number of successes according to the density 𝑓𝑓1 , 𝑟𝑟2  number of successes according to 
𝑓𝑓2,…, 𝑟𝑟𝑘𝑘 number of successes according to 𝑓𝑓𝑘𝑘 in 𝑛𝑛 trials), 
 

  𝑃𝑃 (𝑁𝑁(𝑡𝑡) = 𝑟𝑟𝑖𝑖) =  
� 𝑛𝑛
𝑟𝑟1,𝑟𝑟2,…,𝑟𝑟𝑘𝑘�𝑓𝑓1

(𝑟𝑟1)(𝑡𝑡)𝑓𝑓2
(𝑟𝑟2)(𝑡𝑡)……..𝑓𝑓𝑘𝑘

�𝑟𝑟𝑘𝑘�(𝑡𝑡)

(𝑓𝑓1𝑓𝑓2……𝑓𝑓𝑘𝑘)(𝑛𝑛)   ∀𝑟𝑟𝑖𝑖 = 0,  1,  2, … ,  𝑛𝑛.         (9) 
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Each of 𝑓𝑓1, 𝑓𝑓2, …, 𝑓𝑓𝑘𝑘  is a 𝑛𝑛 degree polynomial function of t. Each of 𝑓𝑓1, 𝑓𝑓2, …, 𝑓𝑓𝑘𝑘  is 𝑛𝑛 

times differentiable with respect to t . The term 𝑓𝑓1
(𝑟𝑟1)(𝑡𝑡)𝑓𝑓2

(𝑟𝑟2)(𝑡𝑡)……..𝑓𝑓𝑘𝑘
�𝑟𝑟𝑘𝑘�(𝑡𝑡)

(𝑓𝑓1𝑓𝑓2……𝑓𝑓𝑘𝑘)(𝑛𝑛)  is the 
contribution of the 𝑟𝑟𝑖𝑖 th term to the coefficient of the Multinomial expansion responsible for 
how steep is the 𝑓𝑓𝑖𝑖  polynomial function and its successive contribution in the joint slope of 
the term after differentiation(s). Here, for 𝑓𝑓1, 𝑓𝑓2, …, 𝑓𝑓𝑘𝑘 ; 𝑓𝑓1 + 𝑓𝑓2+⋯+ 𝑓𝑓𝑘𝑘 is not necessarily 
1, since each of them is a continuous function of t. The moments of the finite k-mixture 
distribution is 

   𝐸𝐸(𝑁𝑁𝑖𝑖) = n
�� 𝑑𝑑𝑑𝑑𝑑𝑑�𝑓𝑓𝑖𝑖(𝑡𝑡)��{∫𝑓𝑓1(𝑡𝑡)d𝑡𝑡}………{∫𝑓𝑓𝑘𝑘(𝑡𝑡)dt}�

(𝑛𝑛−1)

��𝑓𝑓𝑘𝑘(𝑡𝑡)�…�𝑓𝑓1(𝑡𝑡)��
(𝑛𝑛) ,         (10) 

   
5. Relation to Traditional Binomial and Multinomial Distributions 

 
Since each of the functions 𝑓𝑓1 , 𝑓𝑓2 is a function of t and at least n times differentiable with 
respect to t, each term of Binomial expansion demonstrates the joint slope of their product. 
Here each term of the Binomial expansion expresses how much of the total probability is 
being distributed to different binomial terms according to  
 

� 𝑛𝑛
𝑟𝑟1𝑟𝑟2�𝑓𝑓1

(𝑟𝑟1)(𝑡𝑡)𝑓𝑓2
(𝑟𝑟2)(𝑡𝑡)

(𝑓𝑓1𝑓𝑓2)(𝑛𝑛)  100 %.  
 
Since each of the K density functions 𝑓𝑓1, 𝑓𝑓2, …, 𝑓𝑓𝑘𝑘 is a function of t and at least n times 
differentiable, each term of the expansion demonstrates the joint slope of their product 
term. Here each term of the Multinomial expansion expresses how the total probability is 
being distributed to different terms according to  
 

   
� 𝑛𝑛
𝑟𝑟1,𝑟𝑟2,…,𝑟𝑟𝑘𝑘�𝑓𝑓1

(𝑟𝑟1)(𝑡𝑡)𝑓𝑓2
(𝑟𝑟2)(𝑡𝑡)……..𝑓𝑓𝑘𝑘

�𝑟𝑟𝑘𝑘�(𝑡𝑡)

(𝑓𝑓1𝑓𝑓2……𝑓𝑓𝑘𝑘)(𝑛𝑛)(𝑡𝑡)  100 %. 
 
Unlike two complementary related fixed probability of success and that of failure, 𝑓𝑓1 and 
𝑓𝑓2 are two probability density success functions of two stochastic processes. In traditional 
Binomial distribution, probability of obtaining a fixed number of successes depends on 
how many number of successes one is interested to find and what is the extent of the 
probability of getting a success. But in the proposed Finite Mixture Distribution, the 
probability of obtaining a fixed number of successes according to a success function 
depends on how many number of successes one is interested to find and what is the product 
of the rates of the forces of that success function of one process and the other success 
function of another process.     
 

7. Connection to the Generalized Leibnitz Theorem 
 
The probability mass function in equation (1) must satisfy the fundamental rule of a 

probability distribution which is ∑ �𝑛𝑛𝑟𝑟�𝑓𝑓1
(𝑛𝑛−𝑟𝑟)(𝑡𝑡)𝑓𝑓2

(𝑟𝑟)(𝑡𝑡)
(𝑓𝑓1𝑓𝑓2)(𝑛𝑛)

𝑛𝑛
𝑟𝑟=1 = 1. So, it immediately gives the 

following equation after cross multiplication as below 
 
   (𝑓𝑓1𝑓𝑓2)(𝑛𝑛) =  ∑ �𝑛𝑛𝑟𝑟� 𝑓𝑓1

(𝑛𝑛−𝑟𝑟)𝑓𝑓2
(𝑟𝑟)𝑛𝑛

𝑟𝑟=1                                   (6)           
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The left-hand side of the equation (6) is the numerator of the probability mass function in 
equation (1). This equation is also known as the Leibniz theorem in Calculus due to 
Gottifried Leibnitz (Stewart, J. 2020) stating how to find the nth derivative of the product 
of two n-differentiable functions 𝑓𝑓1 and 𝑓𝑓2  each of which is a function of 𝑥𝑥 . The 
generalized form of Leibnitz theorem also can also be obtained from the generalized Finite 
Mixture Distribution via the following equation 
 
           (𝑓𝑓1𝑓𝑓2 … … 𝑓𝑓𝑘𝑘)(𝑛𝑛) = ∑ �

𝑛𝑛
𝑟𝑟1, … . 𝑟𝑟𝑖𝑖 , … , 𝑟𝑟𝑘𝑘� 𝑓𝑓1

(𝑟𝑟1) … … . . 𝑓𝑓𝑖𝑖
(𝑟𝑟𝑖𝑖) … . … 𝑓𝑓𝑘𝑘

(𝑟𝑟𝑘𝑘)
𝑟𝑟𝑖𝑖    (7)       

 
6. Some Examples of Finite Mixture Distributions for Two Distributions 

 
Suppose that we have two density functions Poisson processes 𝑓𝑓1(𝑡𝑡) = 𝑒𝑒−𝛼𝛼𝛼𝛼𝛼𝛼𝑡𝑡  and 
𝑓𝑓2(𝑡𝑡) = 𝑒𝑒−𝛽𝛽𝛼𝛼𝛽𝛽𝑡𝑡. We want to observe the probability distribution of r number of successes 
according to function 𝑓𝑓2(𝑡𝑡) if there are n total number of trials. For, 𝑛𝑛 = 1, the probability 
of r success are 1−𝛼𝛼𝛼𝛼

2−(𝛼𝛼+𝛽𝛽)𝛼𝛼
, 1−𝛽𝛽𝛼𝛼
2−(𝛼𝛼+𝛽𝛽)𝛼𝛼

 where 𝑟𝑟 = 0,  1 respectively. For 𝑛𝑛 = 2, the probability 

of r success are 𝛼𝛼2𝛼𝛼2−2𝛼𝛼𝛼𝛼
(𝛼𝛼+𝛽𝛽)2𝛼𝛼𝛽𝛽𝛼𝛼2−4𝛼𝛼𝛽𝛽(𝛼𝛼+𝛽𝛽)𝛼𝛼+2𝛼𝛼𝛽𝛽

, 2𝛼𝛼𝛽𝛽𝛼𝛼2−2(𝛼𝛼+𝛽𝛽)𝛼𝛼+2
(𝛼𝛼+𝛽𝛽)2𝛼𝛼𝛽𝛽𝛼𝛼2−4𝛼𝛼𝛽𝛽(𝛼𝛼+𝛽𝛽)𝛼𝛼+2𝛼𝛼𝛽𝛽

, 
𝛽𝛽2𝛼𝛼2−2𝛽𝛽𝛼𝛼

(𝛼𝛼+𝛽𝛽)2𝛼𝛼𝛽𝛽𝛼𝛼2−4𝛼𝛼𝛽𝛽(𝛼𝛼+𝛽𝛽)𝛼𝛼+2𝛼𝛼𝛽𝛽
 for 𝑟𝑟 = 0,  1,2 respectively. 

 
For the two density functions Poisson processes 𝑓𝑓1(𝑡𝑡) = 𝑒𝑒−𝛼𝛼𝛼𝛼 (𝛼𝛼𝛼𝛼)2

2!
 and 𝑓𝑓2(𝑡𝑡) = 𝑒𝑒−𝛽𝛽𝛼𝛼 (𝛽𝛽𝛼𝛼)2

2!
, 

for 𝑛𝑛 = 1, the probability of r success is 2−𝛼𝛼𝛼𝛼
4−(𝛼𝛼+𝛽𝛽)𝛼𝛼

, 2−𝛽𝛽𝛼𝛼
4−(𝛼𝛼+𝛽𝛽)𝛼𝛼

 where 𝑟𝑟 = 0,  1 respectively. 
 

Conclusion 
 
The proposed way of generating finite mixture distribution(s) of stochastic processes can 
be used for mixing more than two continuous probability distributions where each of 
binomial expansion represents how the contribution of the  𝑟𝑟th term to the coefficient of the 
Binomial expansion is responsible for the steepness of the density functions of the 
processes and their successive contributions to the joint slope(s) after differentiation(s).  
 
The distribution of the product of two continuous probability density functions of two 
processes is splitted to several partitions showing the momentum of the distribution at 
several segments for a specific number of success(es) due to how steep a density function 
is and how the other density function affects the slope of the first function on the overall 
joint slope for individual binomial term. 
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