
Density-based interpretable hypercube region partitioning for mixed numeric
and categorical data

Samuel Ackerman* Eitan Farchi† Orna Raz† Marcel Zalmanovici†

Maya Zohar †

Abstract
Consider a structured dataset of features, such as {SEX, INCOME,RACE,EXPERIENCE}. A user
may want to know where in the feature space observations are concentrated, and where it is sparse
or empty. The existence of large sparse or empty regions can provide domain knowledge of soft or
hard feature constraints (e.g., what is the typical income range, or that it may be unlikely to have a
high income with few years of work experience). Also, these can suggest to the user that machine
learning (ML) model predictions for data inputs in sparse or empty regions may be unreliable.

An interpretable region is a hyper-rectangle, such as {RACE ∈ {Black,White}}&
{10 ≤ EXPERIENCE ≤ 13}, containing all observations satisfying the constraints; typically, such
regions are defined by a small number of features. Our method constructs an observation density-
based partition of the observed feature space in the dataset into such regions. It has a number of
advantages over others in that it works on features of mixed type (numeric or categorical) in the
original domain, and can separate out empty regions as well.

As can be seen from visualizations, the resulting partitions accord with spatial groupings that a
human eye might identify; the results should thus extend to higher dimensions. We also show some
applications of the partition to other data analysis tasks, such as inferring about ML model error,
measuring high-dimensional density variability, and causal inference for treatment effect. Many of
these applications are made possible by the hyper-rectangular form of the partition regions.

1. Introduction

The task of conducting data exploration, visualization, and analysis, on a structured fea-
ture dataset can be challenging. The difficulties often increase when the data is high-
dimensional and has mixed feature types (numeric, nominal categorical, ordinal categor-
ical). Furthermore, it is often difficult to provide analyses that are in a meaningful format
for a human user to interpret and gain insights into the data.

Here, we outline an algorithm that describes a dataset of arbitrary feature dimension
size, where the features may be of mixed type, by partitioning the feature space into regions
according to the relative density of observed points. Such regions will be presented in a
form that is intuitive for human interpretation. From these regions, a person can understand
where in the potential space most of the data are. Our method also finds empty regions of
the same form, where data records are not observed to exist; these may be empty due to
domain-specific feature constraints (i.e., a knowledgeable person would expect them to be
empty), but they may still be of interest to the user.

The paper proceeds as follows: Section 2 introduces the relevant notation for describing
feature distributions, constructing the hyper-rectangular regions, and calculations such as
length and volume that can be performed on them. The ability to do these calculations,
and their intuitive nature, motivates much of the rest of the work. Section 3 outlines the
elements of the algorithm, in calculating observation density, and partitioning into empty
and non-empty regions. Section 4 compares our method’s properties with those of some
existing ones. Section 5 illustrates the partition method on a two-dimensional example,

*IBM Research, Haifa; samuel.ackerman@ibm.com
†IBM Research, Haifa

588

with varying parameter settings. Section 6 gives an example of a measurement of density
variability that can be performed on a partition of regions, which can capture complex
characteristics of the dataset. Section 7 gives two examples of applications of the density
partition to other data analysis tasks: inferring ML performance on unlabeled data, and
performing causal analysis on treatment outcomes. The Appendix gives more detail about
region length and volume calculations, and contains an example of a partition with these
calculations worked out step-by-step.

2. Problem description

Here we outline the relevant mathematical notation to illustrate our method. Let D be a
tabular dataset of p features, {F1, . . . , Fp} and n observations xi, i = 1, . . . , n, each of
dimension p. Our method will return a set of regions, or ‘slices’, defined on the dataset fea-
ture, where regions are separated by varying levels of observation density. Some regions
can be empty, and together they partition, or divide between them, the feature space as
contained in the dataset D. These regions will be human-interpretable and in the original
feature domains, without having to distort or grid the data. We thus have to define con-
cepts such as the features’ domains (Section 2.1), building slices from subsets of individual
features (Section 2.2), and the size of subsets and slice volumes (Section 2.3).

The n observations in D are assumed to be mutually independent and their row indices
interchangeable; the method outlined will not deal with specific cases such as time or spa-
tial indices of observations, such as image pixel data coded in matrix form, where pixels
(feature values in a given row) have a spatial dependency to neighboring pixels.

2.1 Feature domains

Our method accommodates four data feature types, with differential treatment of each,
as we will see: numeric features can be either continuous real-valued or integer-valued,
and categorical features can be either nominal (no order) or ordered. The user should
specify if integer-valued features are actually numeric or are codes for categorical levels.
Let dom(Fj), j = 1, . . . , p be the (marginal) domain of feature Fj , as observed in the
dataset D. It is assumed that dom(Fj) represents the full range of potential values of the
feature Fj ; that is, that the range as given by the sample observed in D is the range in the
hypothetical population distribution of Fj . dom(Fj) is defined as

• [min(Fj), max(Fj)], where min(Fj) and max(Fj) are the minimum and maximum
observed values of Fj in D, if Fj is real-valued. If Fj is strictly numeric integer-
valued, this is modified slightly to [min(Fj)− 0.5, max(Fj) + 0.5].

• {unique(Fj)}, the set of unique observed values in D, if Fj is nominal categorical.

• Fj may be ordered categorical with an ordered set of levels ` = {`1, . . . , `K}
(user input). Let min(Fj) = `a and max(Fj) = `b, where 1 ≤ a < b ≤ K.
The values {`a, . . . , `b} are recoded to integers {0, . . . , b − a}, so the domain is
[−0.5, (b − a) + 0.5]. Note that because the full set of levels was pre-specified and
that the levels have order, dom(Fj) may include intermediate values not observed in
D, unlike the nominal categorical domain, where only observed values are included.
Thus, the treatment of ordered categorical is similar to integers.

We assume the feature values are either fully-ordered (numeric or ordered categorical)
or not ordered (nominal categorical). We do not attempt to deal with partial orderings,

589

though, in some cases these could be treated as categorical with some values being full
ordered and others being nominal. This is because, as discussed below, we need to know
which values are contained in a given domain subset.

2.2 Feature domain subsets, slices, and the potential feature space

Let si,j ⊆ dom(Fj) be a given properly-defined subset, or interval, of a given feature do-
main; si,j can trivially be the full domain dom(Fj) itself. Below, we will consider several
different intervals, indexed by i, on the same feature Fj . For instance, if F1 (j = 1) is IN-
COME, with dom(F1) = [$0, $500,000], a legal subset could be s1,1 = [$0, $30,000],
containing relatively low-income individuals; for feature F3=STATE with dom(F3) =
{Alabama, . . . ,Wyoming}, one possibility is s1,3 = {California, New York}.

A hyper-rectangle, or ‘slice’ Si is defined as the mutual intersection of a set of {si,j}pj=1,
one on each feature Fj ; that is,

Si ≡
p⋂

j=1

si,j = si,1
⋂
· · ·
⋂
si,p

for a particular choice of subsets. If si,j = dom(Fj) for one or more features j, these
subsets are ‘complete’, and these features are considered to not define Si since there is
no restriction on their values within dom(Fj). The number of non-complete subsets, that
is
∑p

j=1 I(si,j 6= dom(Fj)), where I(·) denotes the indicator function, is the slice Si’s
dimension. Any observation x =

[
x1 . . . xp

]
, whether from D or from another similar

datasetD′ with the same features, for which all feature subsets, or constraints, are satisfied,
is said to belong to the slice. Formally, x ∈ Si iff

(∏p
j=1 I(xj ∈ si,j)

)
= 1.

For instance, the slice S1 = {$0 ≤ INCOME ≤ $30,000}& {STATE ∈ {California,
New York}} is formally defined as

⋂p
j=1 s1,j , where s1,1 and s1,3 on INCOME and STATE

are as defined above, and s1,j = dom(Fj) for j /∈ {1, 3} for the other features. This slice
contains all Californians and New Yorkers with the given income range (that is, the inter-
section of these two subsets on the two features), regardless of the values of other features;
this slice is of dimension 2. For x =

[
$25,000, 21, Colorado, Student, Female

]
,

x /∈ S1 because while x1 = $25,000 ∈ s1,1, x3 = Colorado /∈ s1,3. The observation is not
in the slice if at least one of the feature constraints (here, the state), is not satisfied. For the
other features, xj ∈ s1,j automatically because the slice does not use these features, and
thus s1,j = dom(Fj), and by definition, any observed value for feature Fj in D is in the
domain.

This specification of slices is motivated by our related work (e.g., [1]), which uses
this definition to define data subsets with high rates of machine learning classifier error,
which are returned to a user to help diagnose the classifier’s areas (in terms of feature value
combinations) of weakness. There, the focus was on making the output ‘interpretable’ to
the user. The logic is that a user can easily comprehend the meaning of slices such defined,
particularly when the slice dimension is relatively low, say, no more than some p∗, such as
3 or 4; the same intuition applies here.

The potential feature space, as given by the observedD, is defined as S =
⋂p

j=1 dom(Fj).
That is, S is the hyper-rectangle that inscribes, or is the tightest rectangular bound, on D;
this is analogous to a rectangle that tightly bounds a set of points in 2-D Euclidean space,
without allowing axis rotations.1

1This definition of S makes it sensitive to extreme outliers, since it is defined by the bounding observations
in each direction. In Section 3.1 we show how S can be made more robust by re-defining it after pre-filtering
the most extreme outliers.

590

2.3 Subset sizes and slice volumes

For each domain type, an appropriate size metric |dom(Fj)| can be defined. For integer
and ordered categorical features, where dom(Fj) = [a, b], |dom(Fj)| := b − a + 1; this
corresponds to the unique potential number of integer or category values. For continuous
real-valued domains of form dom(Fj) = [a, b], |dom(Fj)| := b−a, the size of the interval
on the real line. For nominal categorical, |dom(Fj)| is the length of the defining set, the
number of unique categories observed. Similarly, we can define the size |si,j | of a proper
subset si,j ⊂ dom(Fj). For integer, and nominal and ordered categorical features, |si,j | is
calculated in the same way as |dom(Fj)|. For si,j = [a, b], if Fj is ordered categorical, this
interval represents the range of categories between levels a and b, some of which may not
be observed; for integer-valued features Fj , [a, b] contains all values between the integers
a+ 0.5 and b− 0.5. For real-valued features, see Appendix A.2.

So that measurements are standardized across features and datasets, the fractional length
of a subset si,j is defined as L(si,j) = |si,j |/|dom(Fj)|, where 0 < L(si,j) ≤ 1, since si,j
must always be nonempty. By definition, L(dom(Fj)) = 1. Just as a rectangular prism
has volume equal to the product of edge lengths, we can thus geometrically define the vol-
ume of a slice Si defined by subsets {si,j} as V (Si) =

∏p
j=1 L(si,j); this is equivalent

to only considering the product of lengths for features that define it, since the others have
length 1. Slice volumes thus also satisfy 0 < V (Si) ≤ 1. For the full feature space,
V (S) =

∏p
j=1 L(dom(Fj)) =

∏p
j=1 1 = 1. If a set of slices {Si} fully partition S, then∑

i V (Si) = V (S) = 1. Appendix A.3 shows a full example of a density partition, spec-
ification of slices {Si}, calculation of lengths of their defining subsets {si,j} and volumes
{V (Si)}, and that the volumes sum to 1.

Realistic dataset features typically have non-uniform marginal distributions and inter-
feature dependence (e.g., correlations and domain feature constraints). For instance, we’d
expect the feature Fj = STATE to have a non-uniform distribution over U.S. states, since
states have very variable population sizes. A feature Fj = INCOME would also likely have
a non-uniform distribution, since income distributions are often skewed, with very high
incomes (which stretch the domain boundaries) being very rare. For features HEIGHT and
WEIGHT on a dataset of humans, it is rare to see very heavy short people or very light
tall people (where “very” here means in the upper range of the marginal observed values
of a feature, disregarding the other features); these are feature constraints that are soft,
but certain feature value combinations may be impossible in the domain (e.g., an attorney
without a law degree). These give rise to regions (which we model by hyper-rectangles)
that have sparse density or are empty. Realistic datasets thus should have varying feature
density throughout the potential space S, which makes it logical to partition S by density.
See Section 6 for an example of a summary metric that can address identifying when D
seems to have too much uniformity and mutual independence, which would be unrealistic.

3. Algorithm Overview

Here, we outline the elements of our method, which consists of the following steps, applied
iteratively:

1. Calculation of a numeric target y = {yi}ni=1 that serves as a proxy for the density of
observation i.

2. Use regression trees with target y to partition the feature space S on featuresF1, . . . , Fp.

3. Carve out empty space along the way from the newest resulting split.

591

3.1 Density proxy determination

Our method requires a numeric target yi for each observation xi, which represents this
observation’s multivariate density within the feature space S, similarly to kernel density
estimation (KDE) or the methods in density-based clustering, such as DBSCAN. Observa-
tions with high density should have many other points within a small neighborhood, while
sparse points should have relatively few neighborhoods or be surrounded by more empty
space, similarly to how KDE estimates a point’s density by distances to all or some of its
neighbors. As discussed in Section 3.2, yi will then serve as the target for partition. As
such, it should be approximately monotonically increasing or decreasing with the density
of xi; that is, a higher value can represent higher density or more anomalousness, which
should correspond to lower density.

There are several methods that can be used. One is to use a distance-based clustering
algorithm, such as OPTICS (Ordering Points To Identify the Clustering Structure, [3]),
where a numeric output such as the core distance of xi can be used as yi; the cluster
identifications are not used. In OPTICS, the core distance is the distance from xi to its
mth closest neighbor, where m is the (user-specified) minimum number of observations
within an ε-radius neighborhood of xi for it to be considered a core point. Thus, a lower
core distance should indicate a higher density of xi. Gower distance ([11]) is a metric
which calculates the multivariate distance between observations xi and xj as the average of
their feature-wise distances. The distances can be tailored to the feature type (e.g., range-
normalized Manhattan distance for numeric, Dice coefficient for nominal categorical, or
Manhattan distance for ordered categorical; see [2]), which means it can apply to mixed
data types. If Gower distance is used as the distance metric in, say, OPTICS, the core
distance (i.e., yi) can be considered as a distance-based density measure of observation xi.

Depending on the implementation, clustering-based methods can also scale poorly with
n in terms of computational complexity. An alternative to obtaining a proxy yi by cluster-
ing with an appropriate distance-based metric is to use an anomaly score; here, a higher
anomaly score should correspond to lower density, but it may not correspond directly or
proportionately to distance-based sparsity. One such anomaly scoring method is isolation
forests (IF, [13]), which build a forest (ensemble) of trees on subsets of the features; the
trees perform binary splits on the ranges of the features to isolate observations. The more
splits required to isolate an observation xi, the more anomalous it is; the anomaly score
(normalized to [0, 1]) can be used as yi, so a higher score indicates lower density. IF is very
fast and computationally light. An extension of IF ([6], implemented for Python as [7]),
corrects some of the weaknesses of [13] in splits on categorical variables, which tend to
have lower weight than numeric variables in determining the anomaly scores, due to their
typical lower number of unique values.

It is important to note that since the feature space S =
⋂p

j=1 dom(Fj) is the bounding
hyper-rectangle of all observations in D, its definition is sensitive to outliers if they affect
the boundary points of the domain of a feature. For instance, say F1 is INCOME, and the
current domain is [$0, $200,000]; if a new observation is added with F1 = $1,000,000,
the dom(F1) now grows five-fold. Assuming none of the other feature domains are af-
fected, S now grows five-fold along the F1 dimension. Since V (S) must always be 1, this
means this single observation has created an empty region S = {$200,000 < INCOME <
$1,000,000} of volume approximately 0.8, and so the non-empty slices built on D previ-
ously would now shrink by approximately a factor of 5.

Such outliers will tend to receive a score yi that indicates high sparsity or anomalous-
ness. To make the partition more robust, it may be wise to omit the observations with, say,
the highest 1% of sparsity scores before defining S and conducting the partition. If this

592

million-dollar income observation is unique in the dataset, including it in the partition may
make the results non-robust, and so it may be dropped. However, say that 5% of the obser-
vations have income of $1,000,000, and the next highest income is $200,000, these high
earners will likely be neighbors of each other in S, giving them less extreme density targets
than otherwise. Even though they are unusual relative to the other observations, some of
them will likely be included in D even if, say, the sparsest 1% are trimmed. Trimming the
sparsest observations can affect observations not on the boundaries of S if, say, they are
surrounded by relatively empty space. In this case, trimming them can give a more parsi-
monious representation of the empty space than if the partition has to ‘cut around’ these
observations. This is a similar issue to the general decision of how many outliers to trim
from a sample when estimating the population distribution to make the estimate robust to
outliers; if points that are unusual but not very extreme are trimmed, the resulting estimate
may not be accurate since these unusual points in fact do describe the distribution.

3.2 Region partitioning

Once we have a have a numeric target y which serves as a proxy for the density, a density-
based partition of S can be obtained by a model mapping D → y. If the model performs
hierarchical binary splits on the input features F1, . . . , Fp, this yields interpretable rectan-
gular slices (as defined in Section 2) on these features.

One such widely-used techniques are regression trees ([4]). Regression trees construct
binary trees on the input features, which at each node conduct a binary split on one of the
features (or a one-hot encoding column corresponding to one level of a nominal categorical
feature) such that the mean squared error (or a similar metric) of the numeric target {yi}
for observations xi is minimized given the choice of split on the range of the chosen feature
Fj .

An illustration is shown in Figure 1, where a regression tree maps a univariate feature
x = F1 to a numeric target y, where yi = f(xi) is the KDE of F1 at a given value xi.
Each vertical dashed line is a split on F1 in the tree, and the interval between each pair of
consecutive dashed vertical lines constitutes a region, or slice (see Section 2). For instance,
here dom(F1) = [187, 711] and we have 8 slices, where S1 = {187 ≤ F1 ≤ 207} and
S8 = {567.5 < F1 ≤ 711}. Within each slice, the solid horizontal line is E(yi | xi ∈ Sj),
the average value of yi in each slice. Since y is the KDE, this average reflects the average
density of the observations, and thus follows the shape of the KDE curve. In this way, the
set of slices {Sj}8j=1 represents a density-based partition of the observed span dom(F1).

3.3 Carving out empty regions

One major aspect of our method is its ability to carve out slices that represent empty space
in S. We currently search for empty space in two locations:

1. Only on the feature and split value used by the regression tree at that step (Sec-
tion 3.3.1).

2. After splitting, at any feature and location of the ‘outside’ of the observed points in
that slice (Section 3.3.2).

Another heuristic would be to find internal empty space in a given slice, which would
split the slice into at least one empty slice, at least two new non-empty slices. However, we
do not currently implement this.

593

200 300 400 500 600 700

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Regression tree y ~ F_1

F1

y

Figure 1: Regression tree on a univariate numeric feature F1 (horizontal axis) and numeric
target y, in this case the kernel density estimate.

3.3.1 Empty regions at regression tree splits

An illustrative example is shown in Figure 2. In Figure 1, the rightmost two slices are
S7 = {416.5 < F1 ≤ 567.5} and S8 = {567.5 < F1 ≤ 711}. However, the interval
(469, 666), indicated by the green vertical lines in Figure 2, is empty, which is useful
information to the user. The split points (e.g., F1 = 567.5) are the mid-points between the
highest and lowest values in the slices on the left and right, respectively, and the splitting
decision is typically greedy in that it does not account for empty space in the observed
values of numeric features Fj . The length (see Appendix A.2) of this empty interval is
0.3755782 of the overall domain.

Our method uses a heuristic that empty space, such as (469, 666) above, which strad-
dles the location of a regression tree split, will only be carved out if its length L(·) > minL,
for a user-specified value 0 ≤ minL ≤ 1. Setting minL = 1—that is, the maximum
possible—means no empty space will ever be carved out, and so the partition will remain
as in Figure 1, where each slice contains observations. Setting minL = 0 means all possi-
ble empty space (subject to the limit p∗ on slice dimension), no matter how small, will be
carved out, which over-fits the partition to the observed data, in which case the empty re-
gions may not represent real feature constraints, but rather artefacts of the data. We recom-
mend setting minL = 0.1, for instance (see example Figure 3). In that case, the empty space
in Figure 2 would be large enough, and so the resulting partition would have S1, . . . , S6 as
in Figure 1, but with S7 = {416.5 < F1 ≤ 469}, an empty slice S8 = {469 < F1 < 666}
and S9 = {666 ≤ F1 ≤ 711}. The example shown here is on numeric data, but the same
procedure applies to nominal categorical features, as discussed below.

3.3.2 Empty regions after regression splits

After carving out empty space from splits, we also employ a heuristic to carve out empty
space anywhere on the ‘outside’ of a given slice Sk after it is formed from a regression
tree split, as opposed to specifically at the regression tree split feature and value. The
method determines the empty space between the boundaries of Sk and the boundaries of
the observed {xi : xi ∈ Sk}. For instance, in the above, S2 = {207 < F1 ≤ 237}, but the

594

450 500 550 600 650 700

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Finding empty spaces

F1

y

Figure 2: Empty space (between green lines) around split (red dashed line) between right-
most slices S7 and S8 in Figure 1.

observed values span only [216, 233] (between the green lines); the empty boundary space
for this feature in slice S2 is s′2,1 = (207, 216)

⋃
(233, 237] (on either side of the green

lines); for real-valued, integer-valued, or ordered categorical features, this empty space can
be a union of two sets. If p ≥ 2, this trimming can occur on any of the features, while the
first form of trimming occurs only on the feature used to split the nodes, and only at that
split threshold.

The (potentially zero-size) boundary gaps s′k,j in slice Sk are calculated for each fea-
ture Fj , j = 1, . . . , p. If any have L(s′k,j) > minL, these are iteratively trimmed in
decreasing order of size, resulting in an empty space of Sk

⋂
s′k,j , and Sk is re-defined as

Sk \ (Sk
⋂
s′k,j), subtracting the empty space. That is, the interval sk,j which defines Sk

on feature Fj is redefined as sk,j \ s′k,j For instance, S2 could then be re-defined as the
smaller S2 = {216 ≤ F1 ≤ 233}, and two new empty slices, {207 < F1 < 216}
and {233 < F1 ≤ 237} would be added, since the empty gap S2

⋂
s′2,1 consists of non-

contiguous intervals.
In each iteration, before trimming, the slice Sk =

⋂p
j=1 sk,j . Carving on Fj results in

a trimmed slice Sk = (
⋂

i6=j sk,i)
⋂
(sk,j \ s′k,j) and one or two (if s′k,j is non-continguous)

empty slice(s) (
⋂

i6=j sk,i)
⋂
(s′k,j), which have the same definition on all features except

j. If, before trimming sk,j 6= dom(Fj), then Sk was already defined on Fj . Hence, slice
Sk’s dimension will not increase after trimming, and will also equal the dimension of the
empty slice; otherwise, if sk,j = dom(Fj) before trimming, its dimension would increase
by 1, and so would the empty space. Thus, for trimming to occur at each iteration, two
conditions must be met:

1. The dimension of Sk must remain ≤ p∗ after trimming. That is, it must have either
been < p∗, or, if the dimension was = p∗, it must have been defined on Fj . See
Section 2.1.

2. The resulting empty slice must be large enough on all dimensions. That is, we must
have L(sk,i) > minL, ∀i 6= j, and L(s′k,j) > minL as well. This restriction applies
only to the empty space, and recall that no such restriction is put on the regression
tree when forming the slices initially. If, for instance, the resulting Sk is re-defined

595

such that L(sk,j \ s′k,j) ≤ minL (it is ‘narrow’ along feature Fj), this is fine.

In the example of S2 above defined only on F1, L(s′2,1) is too small to trim, so S2 is
left as is.

Note that the for simplicity, the illustrations of regression trees and empty space carving
have used a univariate numeric case, but the same calculations of empty space carving can
be done on categorical features as well. For instance, say there are two features F1 and F2,
where F2 is RACE, with dom(F2) = {White,Black,Asian}. Say, S is first partitioned only
on F1 into slices S1 and S2; that is, S1 = s1,1 and S2 = s2,1, which are complementary
subsets of dom(F1). Even though S1 is not defined on F2 (i.e., currently s1,2 = dom(F2)),
say S1 only contains observations with F2 ∈ {Black,White} (all Asian individuals are in
S2). There is therefore an empty gap in this slice, s′1,2 = {F2 ∈ {Asian}}, where the
complement is s1,2 \ s′1,2 = {White,Black}; that is, S1 could be defined on F2 as well,
since the data it contains do not span the full dom(F2).

This gap has length L(s′1,2) = 1/3, since it contains one of three possible values of
RACE, and forms an 2-dimensional empty slice defined as S3 = S1

⋂
s′1,2. If the maximum

dimension p∗ > 1, and if S3 is large enough on all sides (both L(s1,2), L(s′1,1) > minL),
then S3 (Asian individuals satisfying S1, which are unobserved inD) becomes a new empty
slice, defined as S3 = s3,1

⋂
s3,2, where s3,1 = s1,1 and s3,2 = s′1,2. S1 is re-defined as S1\

(S1
⋂
s′1,2) = s1,1

⋂
(s1,2 \ s′1,2) (narrowing S1 to omit Asian individuals, a combination

that is not observed in D).

4. Alternative methods

As mentioned in Section 2, the main aspects of our method are

1. Allows density to be characterized on features of mixed type, without discretization,
gridding, or encoding that distorts the original feature values.

2. Returns regions in the form of interpretable hyper-rectangles.

3. Returns regions that are empty (contain no observed features) in addition to those
with data.

There are other methods that characterize an observed data space by density. ML clus-
tering methods, by definition, typically only characterize groups of observed data points,
and not empty space (item 3). This includes methods like DBSCAN ([9]) and others. DB-
SCAN and related methods (HDBSCAN, etc.) can identify density-based cluster patterns
that can be of arbitrary shapes (e.g., not spherical or rectangular) that capture visual patterns
that can be discerned in 2-D space; by extension, they should also work in higher-dimension
space and with non-Euclidean distance metrics. While they may perform clustering well on
difficult problems, in our application we actually want clusters of pre-defined shape types
(rectangular) and not of arbitrary type (item 2).

There are several similar methods to ours that do match on item 2, and return hyper-
rectangular regions. One is [15]; however, this requires numeric features only, as well as
pre-gridding (item 1). Another method ([5], a patent filed by Oracle International Group),
can work on mixed feature types, and also includes methods to build and update partitions
with new data. It does pre-grid numeric data, but we note that this method also addresses
several concerns that ours does not, particularly the ability to update a partition on a dataset
when new data arrive without having to re-run the partitioning on the combined data.

The method in [5] differs in two major ways from ours in terms of the split decision.
First, their decision to split a region on a feature axis is made on a marginal (individual

596

feature axis) basis based on that feature’s distribution as the target. As discussed, our
method uses a density target (Section 3.1) that uses all features’ values which may obscure
differences in the marginal distributions, particularly when the feature dimension is high.
Secondly, their criterion for selecting a split point in a histogram so it results in two regions
that differ maximally by density. The criterion is “selecting a splitting plane at a valley,
which is a bin of low density in the histogram, between two peaks, which are bins of high
density and wherein a difference between peak and valley histogram counts are statistically
significant” ([5], page 20). This method splits on a valley surrounded by two peaks, an ideal
bi-modal scenario. Assuming this is to be interpreted strictly, we note that our method does
not make this assumption. Instead, since the splitting decisions are based on the regression
tree, our method can split on cases where there is a uni-modal density, such as a peak with
flat areas (‘valleys’ without a corresponding peak on the other side) on one or both sides;
the first case would resemble a monotonic increasing or decreasing density scenario, such
as a step function.

5. Examples

For the following, we use the Adult dataset ([12]), a subset of records of respondents to
the U.S. Census conducted in 1994; the illustrations use a n = 1, 000-observation sub-
set and only the F1 = AGE and F2 = HOURS PER WEEK (hours worked per week)
features. Note, the dataset was filtered to omit non-working respondents, that is, with
HOURS PER WEEK = 0. Thus, p = 2 and we set p∗ = 2 as well to allow partitions to be
made on both features; both features are also coded as integer-valued (see Section 2.1). An
additional parameter min slice size frac, not discussed earlier, is set to 0.1, mean-
ing the regression tree will not form a leaf (i.e., a potential partition slice) if contains less
than 10% of the dataset observations (0.1n), with a minimum size of 2 observations; this is
a form of robustness control on the partition.

Figure 3 show the visualization of a scatterplot of the dataset observations, with an
overlay of rectangles representing the resulting partition. Seven non-empty slices are found
for each, but the partitions differ in the amount of empty space carved out from these slices
to form new empty slices, so the total number of slices can differ. Empty space slices are
shaded in red, with the hue darkening with increasing volume; those with data are shaded in
green, with the hue darkening with increasing average density (decreasing anomalousness
or core distance). Shadings are only comparable for partitions within a plot, not between
plots. The plots are shown for values of minL = 0.0, 0.1, and 1.0 (see Section 3.2), which
controls the amount of empty space carved out. As noted, the top plot, with minL = 0.0,
results in many small empty (red) partitions, since all empty spaces of any size are carved
out; the resulting partition is unlikely to be very robust to, say, another sample similar to
D, due to the overfitting. In the bottom plot, on the other extreme, no empty spaces are
carved out. One-dimensional slices are rectangles for which one side occupies the entire
axis (such as the rightmost slice in this plot), and two-dimensional slices have both sides
being shorter than the respective axes.

In the middle plot, with minL = 0.1, only three empty slices, in the upper and lower
right hand corners, are found. These represent a constraint that, in the given dataset, at
least, that workers are unlikely to be older (recall non-workers are omitted). Furthermore,
the upper right hand empty space is wider along the AGE axis, indicating that older workers
(about, say their mid-70s) are unlikely to work a high number of hours (above, say, 55) per
week. Note that there is a single unusual respondent aged 90, who is significantly older than
the next oldest respondent, aged 80, and retaining such outliers can alter the configuration
of slices. In addition to this outlier, there are several outliers in the upper portion of the

597

plot, indicating respondents working a very high number of hours (more than 90). The
more dense (smaller points), more ‘typical’ observations are in the center of S, containing
respondents of typical working ages (20s-60s) working typical workweeks (≈ 30−60 hours
per week). Here, the slices tend to have smaller volume to fit the bulk of the data better.
The plot would look cleaner if two empty slices in the bottom right corner were merged,
but we do not conduct any such post-processing, and the empty spaces are a byproduct of
the partition on observed data.

6. Analysis metrics

Once a density partition S1, . . . , Sk is made of S, we can perform some calculations to
summarize the results. As noted in Section 2, a realistic dataset should have unevenly-
distributed points within S, and these partitions by density, in addition to empty spaces,
if found, should characterize the domain constraints of the features. Hence, a realistic
dataset—or a synthetic dataset generated to have realistic, and not independent, inter-
feature associations—should have slices of various volumes and densities. In addition to
summarizing the distribution of observation density in a single dataset, we may also want
to compare the distributions of two different datasets.

Say a partition on D results in K slices. Let φ(Sk) =
∑n

i=1 I(xi∈Sk)
n , k = 1, . . . ,K be

the fraction of the observations in D contained in slice Sk; φk = 0 if Sk is empty space. If
Sk is dense, φ(Sk) should be high relative to its volume V (Sk). Recall that

∑K
k=1 V (Sk) =

1, hence the volumes can act as weights without re-scaling. Let µ =
∑K

k=1 φ(Sk)V (Sk)
be the mean fractional support, weighted by the slice volume. Define

χ(D, {Sk}) =
1

K − 1

K∑
k=1

V (Sk)
(
φ(Sk)− µ

)2
as the variance of {φ(Sk)}weighted by the volumes {V (Sk)}. Define χ(D, {Sk}) = 0

ifK = 1, that is, the method is unable to partition at all (S1 = S itself). This should occur if
the density of observations are relatively uniform; to control for the case where observations
of different densities are dispersed in S like a ‘soup’ so that a partition needs to be overly
fine to separate observations by density, we recommend requiring the minimum decrease
in MSE by splitting a node to be above a minimum threshold, such as a fixed percentage
of the overall variance in y. We would thus expect higher values of χ(D, {Sk}), which
can also be used to compare partitions on two datasets, to indicate higher non-uniformity in
distribution across S . As noted in Section 3.1, extreme outliers should be trimmed before
such an analysis, otherwise χ would be too sensitive to outliers, due to changes in the
volume of empty space in S.

7. Further applications

Beyond simply constructing a density-based partition on a dataset, our method has potential
applications to other data analysis tasks, as discussed below.

7.1 Identification of areas of low classifier performance

A related work to that presented here is a tool called Frea-AI ([1]). This tool similarly uses
decision trees to identify low-dimensional slices of observations where a classifier model
has lower predictive accuracy than it does on D overall; these areas are ‘weak’ in terms
of the classifier’s performance. The slices in Frea-AI are of the same form as the ones

598

Figure 3: Density-based partition of n = 1000 observations from ‘Adult’ dataset on
F1 = AGE and F2 = HOURS PER WEEK. The plots show, from top to bottom, results
with minL = 0.0, 0.1, and 1.0.

599

here. Since the decision tree suffers from the same greediness feature as regression trees
(see Section 3.2) in that the compactness (i.e., observation density) of the tree nodes is not
considered, we have noted that sometimes the Frea error-based slices span too wide a range,
and include some points that are in sparse regions of S. We are currently investigating
whether mis-classified observations, as compared to correctly-classified ones, tend to fall
in sparser or denser areas.

However, it is possible that the error-based slicing results could be improved or supple-
mented by a density-based analysis, such as including density in the optimization criterion,
or by restricting the search for error-based slices to the denser regions of S. This is be-
cause predictions on observations x made in very sparse regions of S may be inherently
unreliable, and thus such observations which have classification errors may not be due to
deficiencies in the classifer. The user may be more concerned about identifying error-prone
regions in dense areas of S. For instance, if an ML model predicts a consumer’s spending
based on the individual’s characteristics, it may be more worrisome if it makes errors on
middle-class consumers (a more dense area) than on millionaires (likely in sparser areas of
S).

Another potential use in modeling classifier error is to infer from partitions {Si} on a
dataset D to a similar dataset D′ which may be unlabeled, and thus to infer about the clas-
sification error on it. First, it may be reasonable to assume that the classification error for
observations in D′ in a given slice Si may be similar to that observed in Si for observations
in D. Second, if a given empty slice Si in D is non-empty in D′, perhaps the classification
error rate for these observations is likely to be relatively high. These two facts may help
either approximate or set a conservative bound on the expected classification error rate on
D′.

7.2 Causal inference

In the example below, we see whether our designation of slices that are empty or of sparse
density can indicate groups of observations (feature value combinations) for which a causal
analysis of comparison of outcome effects between treatment levels cannot be effectively
conducted.

7.2.1 Background

Causal inference is a technique used, particularly in observational studies, to infer the effect
of a categorical “treatment” variable on some (typically numeric) outcome of interest. The
effect is measured by comparing the difference in average outcome value between groups
with different treatments. For instance, one may want to assess the difference in life ex-
pectancy (outcome) between smokers and non-smokers (“smoking” is a binary treatment
variable). In the dataset we will use, the authors want to estimate the effect of partici-
pating in a work training program (TRAINING=1 means they received the treatment of
training) on income (in 1978); hence, the average 1978 incomes of individuals receiving or
not receiving training will be compared.

In randomized clinical trials (RCTs) to, say, estimate the effect of a given drug treat-
ment on cholesterol levels (outcome), participants may be randomly allocated to receive
either the drug or a placebo (control). Each of these groups, whether they received a drug,
placebo, or some other control, is a treatment group. The randomization is intended so
that for any feature of interest (e.g., age, race, sex, health conditions), when comparing the
average outcome between the treatment groups (typically the drug at different levels and
the control vs each other), the effect should only be due to the difference in the treatment.
However, certain instances, treatment randomization cannot be done. For instance, it is

600

unethical to randomly assign people to smoke, or perhaps we wish to study some histor-
ical phenomenon; so, we often have to rely on observational data or studies. This means
that comparing the average outcome difference may reflect other confounding factors; for
instance, people who smoke may have lower life expectancy because they also tend to
have certain other health conditions or behaviors, which non-smokers display to a different
degree, which also affect the outcome.

In a causal inference analysis, we require that various feature combinations (e.g. males
between 30 < age < 50) display “positivity”, that is, that they have been observed enough
in both the treatment and non-treatment groups, so we can compare their averages. One way
to deal with this in causal inference is to make the treatment and non-treatment groups more
similar along certain feature dimensions. For instance, the propensity score, which reflects
the likelihood of an individual being in the (not randomly assigned) treatment group, given
various dataset features, is calculated. Individuals with certain feature combinations (e.g.,
certain “slices”) with very low average propensity, are unlikely to be in the treatment group;
such groups are said to “violate” the positivity assumption. A causal inference analysis will
consist of comparing individuals’ outcome under the treatment they received (in this case,
training or not) with the estimated outcome under treatments they didn’t receive. But if
their average propensity score is low, this means we may have very little (or zero) data
(observations) of such people in one of the treatment groups, and hence these individuals
(in the form of slices grouping these individuals along common feature values) should be
removed from the data before re-calculating the average difference in outcome.2

In [16], an example of a causal inference analysis using Python’s causallib module
([18], see also [17]), on the Lalonde dataset, is shown. The Lalonde dataset is used for
estimating the effect of participating in a work training program on earnings of individuals
in 1978. It consists of the original participants in the experiment, who were randomly as-
signed to either receive training or not, supplemented by a random draw of individuals from
a population-level survey, to serve as additional control (non-training) observations. The
numeric features used in the dataset are {AGE, EDUCATION, RE74, RE75, RE78}, where
RE74, RE75, and RE78 are the earnings in 1974, 1975 and 1978 correspondingly. The cate-
gorical features used are {TRAINING, BLACK, HISPANIC, MARRIED, NO-DEGREE},
all of which are binary indicators. In this case, the treatment indicator is TRAINING (bi-
nary positive if received training), and the outcome variable is RE78 (numeric earnings
received in 1978). This dataset is very imbalanced on the treatment variable, it has 22,106
records in total, out of which only 185 received training.

Direct causal inference analysis for this dataset, without adjustment, isn’t successful
due to high percentage of positivity-violating records. To overcome this, the propensity
score is estimated, and a binary “violation” indicator is set to 1 for all records with propen-
sity score below a certain threshold. Then a decision tree based algorithm is proposed to
find “slices” (i.e. hyper-rectangles) with high percentage of violating records (for example,
the slice defined by {AGE < 55}& {BLACK ∈ {False}}& {RE75 > 10,000} is found),
and once removed, the causal inference yields much better results.

Table 1 describes the violating slices found and removed in the work. The effect cal-
culated before finding and removing the slices was −$2, 658. The negativity of this initial
result is contradictory, as it implies that participants in the training program are estimated
to earn less than those who did not receive training. After removing the violating slices the
effect rose to $567; the fact this is positive rather than negative suggests it is a more logical
result.

Here we propose a method for finding slices with high percentage of positivity violating
2Readers interested in more details about causal inference are referred to [14]; video slides are available at

https://www.bradyneal.com/causal-inference-course

601

Feature Rules Treated Size
True False

BLACK ∈ {False} RE75 > 10K AGE > 21 0 11056 11056
BLACK ∈ {False} RE75 > 5.5K MARRIED ∈ {True} 1 11049 11050
BLACK ∈ {False} RE75 > 13K AGE > 40 0 6373 6373
BLACK ∈ {False} RE74 > 0K AGE > 39 0 5096 5096

RE74 > 20K RE75 > 15K AGE > 40 0 2707 2707

Table 1: List of slices removed in [18].

records using our density partitioning algorithm.
Sparseness of a slice indicates low probability of a record to have features that abide the

slice’s rule. Therefore, when looking at sparse slices conditioned on the treatment feature
(in this case, TRAINING), the probability of an unconditioned record in the same slice
to receive that specific treatment assignment is low. Hence, sparse slices conditioned by
TRAINING are likely to have a high percentage of violating records when removing that
condition.

Our density partition algorithm supports exactly this type of conditioning; the algorithm
can be told to build a separate regression tree on the observations with each level of a
categorical conditioning variable. When given a conditioning feature, the density partition
algorithm first splits the data on each value of the conditioning feature, and then calculates
the rest of the tree, and so each slice includes a condition on this specific feature as well as
other conditions on other features.

Therefore, to find slices with high violation percentage, we can condition our slices on
TRAINING. For a given baseline (non-treatment) feature slice, such as {HISPANIC ∈
{True}}, if the density differs substantially when additionally conditioned on different
treatment levels, this may indicate violation of positivity. The intuition is that low den-
sity (sparsity) should correspond roughly with a low number of observations in a given
region, and that positivity is violated if a given feature group has very low representation in
some values of the treatment, and so outcome effect for this group cannot be estimated well
across different treatments. In this case, with the treatment feature being binary, we need
only check the opposite TRAINING value found. For instance, if conditioning identified
the slice {TRAINING ∈ {False}} & {HISPANIC ∈ {True}} as being particularly sparse,
if the ‘opposite’ treatment slice {TRAINING ∈ {True}}& {HISPANIC ∈ {True}} is rel-
atively dense, then perhaps the subset {HISPANIC ∈ {True}} (for all treatment groups)
should be omitted as it may violate positivity.

Filtering after checking the opposite treatment is needed because the sparse slices we
choose may remain sparse after removing the treatment condition. In that case, the proba-
bility of a record to be in the slice is low for a reason other than the treatment. For example,
the slice defined by {BLACK ∈ {True}} & {HISPANIC ∈ {True}} & {TRAINING ∈
{True}} is sparse because there are no black Hispanics in the dataset, and not because of
the TRAINING condition. This does not indicate a low probability for a record in the slice
to receive this treatment assignment, but just a low probability in general for the baseline
feature combination, and so the slice {BLACK ∈ {True}} & {HISPANIC ∈ {True}}
doesn’t necessarily have a high violation percentage. Because of this, the relevant slices to
omit for causal inference are those that specifically have very different densities depending
on which treatment level they are conditioned on.

Note, however, that while having similarities in their objective targets, these two algo-
rithms present different approaches and so do not completely correspond with one another.
In addition, we may receive different results because the density partition doesn’t target the

602

causal inference task directly.

7.2.2 Results

When running our method on the Lalonde dataset, we get many slices with relatively
high violation percentage. For example, we get the slice defined by {32 < AGE <
55} & {HISPANIC ∈ {True}} & {NO-DEGREE ∈ {True}} & {TRAINING ∈ {True}},
which after removing the TRAINING condition has a support of 442 records, and violation
proportion of 0.86. Our approach in the density partitioning isn’t to maximize the num-
ber of violating records, but just to divide the space by the density. Because of this, the
slices we receive may be smaller and so we include slices with a higher number of records,
sometimes at the expense of the violating percentage.

Feature Rules Treated Size
True False

HISPANIC ∈ {True} NO-DEGREE ∈ {True} 32 < AGE < 55 0 442 442
BLACK ∈ {False} NO-DEGREE ∈ {True} HISPANIC ∈ {False} 9 12,831 12,840

HISPANIC ∈ {True} NO-DEGREE ∈ {True} 29 < AGE < 31 2 59 61

Table 2: List of filtered slices.

Table 2 describes the violating slices found. Though the slices returned by the den-
sity partition are different from the slices found in [16], they have similarities. While
some of the slices received by the density partition have a low percentage of record in-
tersection with the decision tree slices, some have up to 70% overlap. Notice that there
is also some correspondence between the slice rules. While we receive condition on age
such as {32 < AGE < 55}, the decision tree slice receives similar conditions on age
(e.g. {AGE > 39}). Curiously, while we receive {HISPANIC ∈ {True}} conditions in
all slices, the decision tree slices usually include a {BLACK ∈ {False}} condition. At
first glance these seem like completely different conditions, but after a deeper look we can
see there is indeed a relation between the two; They both target “non-black” people. So
while there is a difference in the condition (likely caused by the different approaches of the
algorithms), there is resemblance in their targeted records, with non-empty intersection.
Another interesting aspect is that while the decision tree slices conditions on the numeric
RE75 and RE74 features, our slices don’t condition on them at all and instead condition on
other categorical features such as NO-DEGREE. This difference may be due to aspects of
the density approach, for example the difference between the influence of numeric features
and of categorical features on the Gower distance calculation.

After uniting slices, we remove them from the dataset.

violating treated
to remove False True violating portion False True treated portion
False 5,095 3,668 0.41 8,578 174 0.94
True 3,307 10,036 0.75 13,332 11 0.001

Table 3: Statistics of removed slices.

Table 3 illustrates the results of the slices that were combined and removed. The num-
ber of records removed adds up to 13,343 (= 3307 + 10, 036) individuals. Out of these,
75% (= 10, 036/13, 343) were ‘violating’ and only 11 individuals who received treatment
were removed. After removing the slices, we estimated the effect which rose to −$1969.

603

0 10000 20000 30000 40000 50000
RE78

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

RE78 histogram before removal
Treatment

training=0
training=1

(a)

0 10000 20000 30000 40000 50000
RE78

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

RE78 histogram after removal
Treatment

training=0
training=1

(b)

Figure 4: Density histogram of RE78, (a) from before removing the slices from the dataset
and (b) from after the removal. The plots show that the graphs of TRAINING=0 and of
TRAINING=1 get slightly closer after the removal.

While this number is still negative, we do see an increase from−$2658, the effect estimated
before removing the slices.

In conclusion, though not built for this task, we are able to use the density partition
algorithm to find slices that violate the positivity assumption. By removing these slices
when performing causal inference, we are able to increase the validity of the analysis.
These results show great promise in further research on the topic.

8. Conclusion

We have presented a method that partitions the observed feature space of a dataset into
human-interpretable slices, which allow a user to understand how the observations are dis-
tributed in the feature space. If some areas are dense while large portions of the space are
sparse or dense, this is important for data exploration and deployment of ML solutions.
Furthermore, we have illustrated several applications of our technique to related ML tasks,
as well as additional analysis metrics that can be used on the resulting partition. Interested
readers are referred to Appendix A.3 for a full example of the partition calculations.

References

[1] Ackerman, Samuel, Raz, Orna, and Zalmanovici, Marcel. “FreaAI: Automated Ex-
traction of Data Slices to Test Machine Learning Models”. In: Engineering Depend-
able and Secure Machine Learning Systems (2020).

[2] Anand, Divyanshu. Gower’s Distance. 2020. URL: https://medium.com/
analytics-vidhya/gowers-distance-899f9c4bd553.

[3] Ankerst, Mihael et al. “OPTICS: Ordering Points To Identify the Clustering Struc-
ture”. In: ACM SIGMOD international conference on Management of data (1999).

[4] Breiman, Leo et al. Classification and Regression Trees. Chapman and Hall/CRC,
1984.

[5] Campos, Marcos and Milenova, Boriana. Orthogonal Partitioning Clustering. US
Patent 20030212702A1, filed April 29, 2003, and issued November 13, 2003. URL:
https : / / patents . google . com / patent / US20030212702 ? oq =
20030212702A1.

604

[6] Cortes, David. “Distance approximation using Isolation Forests”. In: arXiv (2019).

[7] Cortes, David. isotree: Isolation-based Outlier Detection. 2019. URL: https://
isotree.readthedocs.io/en/latest/.

[8] Dua, Dheeru and Graff, Casey. UCI Machine Learning Repository. 2017. URL:
http://archive.ics.uci.edu/ml.

[9] Ester, Martin et al. “A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise”. In: Proceedings of the 2nd International Conference
on Knowledge Discovery and Data Mining (1996), pp. 226–231. URL: https:
//www.aaai.org/Papers/KDD/1996/KDD96-037.pdf.

[10] Forina, M. et al. PARVUS: An extendable package of programs for data exploration,
classification and correlation. 1988.

[11] Gower, J. C. “A General Coefficient of Similarity and Some of Its Properties”. In:
Biometrics 4 (1971), pp. 857–871.

[12] Kohavi, Ron and Becker, Barry. Adult Dataset. UCI Machine Learning Repository.
1996. URL: https://archive.ics.uci.edu/ml/datasets/adult.

[13] Liu, Fei Tony, Ting, Kai Ming, and Zhou, Zhi-Hua. “Isolation Forest”. In: IEEE 8th
International Conference on Data Mining (2008).

[14] Neal, Brady. Introduction to Causal Inference From a Machine Learning Perspec-
tive. 2020. URL: https://www.bradyneal.com/Introduction_to_
Causal_Inference-Dec17_2020-Neal.pdf.

[15] Ordońẽz, Carlos et al. “A Clustering Algorithm to Discover Low and High Density
Hyper-Rectangles in Subspaces of Multidimensional Data”. In: College of Comput-
ing Technical Report (1999).

[16] Shimoni, Yishai, Karavani, Ehud, and Danziger, Michael. Lalonde Dataset (jupyter
notebook for causallib). 2020. URL: https://github.com/IBM/causallib/
blob/master/examples/lalonde.ipynb.

[17] Shimoni, Yishai et al. “An Evaluation Toolkit to Guide Model Selection and Cohort
Definition in Causal Inference”. In: arXiv preprint arXiv:1906.00442 (2019).

[18] Shimoni, Yishai et al. causallib: A library of causal inference tools by IBM Haifa
Research Labs. 2019. URL: https://pypi.org/project/causallib/0.
5.0b0/.

605

A. Appendix

A.1 Notation glossary

Notation Definition Reference
p Number of features in dataset D Section 2
p∗ Maximum allowed dimension of a slice Si Section 2.1
Fj jth dataset feature Section 2
dom(Fj) Domain of feature Fj Section 2.1
S Full feature space of dataset D Section 2.3
Si A slice or hyper-rectangle of features, indexed i Section 2.1
si,j Subset of dom(Fj), indexed i (particularly defining slice Si) Section 2.1
s′i,j A subset of si,j that is empty Section 3.3
| · | Raw (not fractional) length of a subset Section 2.3
L(·) Fractional length of a subset si,j for a given feature Section 2.3, A.2
minL Minimum fractional length to carve out an empty subset si,j Section 3.3
V (·) Volume of a given slice Si Section 2.3, A.2

Table 4: Glossary of notation.

A.2 Edge length and volume calculation

As noted in Section 2, a slice Si is defined as
⋂p

j=1 si,j , where each subset si,j ⊆ dom(Fj).
Furthermore, the slice volume V (Si) =

∏p
j=1 L(si,j), where L(si,j) = |si,j |/|dom(Fj)| is

the length of si,j as a fraction of the domain of feature Fj .
Slices, whether or not they contain observations, must have positive volume; therefore

we must have |si,j | > 0, ∀j = 1, . . . , p which define a slice Si. Subsets si,j = [a, b] on
integer or ordered categorical features cannot be defined to contain no space. For ordinal
categorical, si,j = [a, a] contains the single level a; for integer, si,j containing the single
integer a′ is redefined as si,j = [a, b] = [a′ − 0.5, a′ + 0.5], so that an integer a′ contains
the space of length 0.5 to left and right between it and the integers a′ ± 1. For a nominal
categorical feature Fj , if si,j = ∅ is the empty set, it will have |si,j | = 0. But such a
subset will never be considered, because regression tree nodes splitting on Fj will always
contain at least one value. Also, say the tree has been split on a different feature Fk; if
the observations in both binary nodes (i.e., slices that are not defined on Fj) both contain
examples of all levels in dom(Fj), there is no empty space for Fj , and empty space must
have L(si,j) > 0. Therefore, |si,j | > 0 always for subsets that will be encountered for
integer, and ordinal and nominal categorical features Fj .

However, we do want to allow subsets like si,j = [a, a] when Fj is real-valued; as
above, such an interval will only be used in a slice definition if it contains observations, and
cannot be used in defining an empty region Si. For instance, if the feature Fj=INCOME
is real-valued (i.e., including cents and not just whole dollars) si,j = [$0.00, $0.00] may
be nonempty, containing those with zero income; in fact, this may be a particularly dense
interval due to the particular significance of the dollar value 0. Thus, we want |si,j | > 0
even though mathematically, a−a = 0. Thus, si,j = [a.a] will only be relevant if it contains
observations, but the calculation of |si,j | will allow us in the same way to calculate |si,j |
for si,j = [a, b], a 6= b, which either do or do not contain observations.

Our procedure is as such: we pre-remove all features of any type containing only a
single value, so if dom(Fj) = [a, b] for real-valued feature Fj , we must have a 6= b. Let

606

nj ≥ 2 and ni,j be the number of unique values observed for Fj overall in D and in the
interval si,j , respectively. As will be seen, if si,j contains observations, ni,j = 1 if a = a,
otherwise ni,j > 1 (at least the two endpoints a and b). Mathematically, for a real-valued
variable Fj , a point (single observed value a), represented by the interval [a, a], has length
0, and so does the sum of lengths of intervals containing the individual observed values of
Fj . However, for the sake of computation, we will instead assign a small positive constant
0 < ε < 1 (e.g., ε = 0.001) to represents the ‘fractional space’ taken up by the observed
values of Fj . It is also preferable that ε < min

(
xk−xi

|dom(Fj)| : xi < xk

)
, where xi, xk are

observed values of Fj , that is, the smallest fractional distance between two consecutive
different observed values when sorted. This ensures that for consistency, any positive-
length interval [xi, xk] will have its adjusted length L reflect more the value xk − xi (raw
length) than the number of unique values it contains.

Thus, for intervals si,j of form [a, b], (a, b), (a, b], or [a, b) of a real-valued feature
Fj , we define

L(si,j) = (1− ε) b− a
|dom(Fj)|

+ ε
ni,j
nj

(b − a)/|dom(Fj)| is the ‘raw’ fractional length without the adjustment. Consider, for
real-valued feature Fj with dom(Fj) = [a, b], any set of K intervals {si,j}Ki=1 which fully
partition dom(Fj), where si,j has endpoints ai,j , bi,j . The first and last intervals s1,j and
sK,j must be closed on the left and right, respectively (containing the limits of the domain
a and b), but the other ones can be open or closed on either end, as appropriate. The raw
fractional lengths of intervals must have

∑K
i=1

bi,j−ai,j
b−a = 1. Similarly, if ni,j is the number

of unique observation values in si,j (0 if si,j contains none), and nj is the total number of
unique observed values of feature Fj ,

∑K
i=1

ni,j

nj
= 1. This is because nj =

∑K
i=1 ni,j

since the intervals si,j are a partition (don’t overlap and cover dom(Fj) completely), and
thus any mutual intersection is empty. Thus, any unique observed value of Fj , of which
there are nj , appears in exactly one of the si,j , and any unique value in any si,j must be one
of the nj unique observed values of Fj .

Thus, we have
K∑
i=1

L(si,j) = (1− ε)

(
K∑
i=1

bi,j − ai,j
b− a

)
+ ε

(
K∑
i=1

ni,j
nj

)
= (1− ε)1 + ε(1) = 1

.
The raw lengths of all slices thus sum up to 1 − ε, while the remaining ε area is used

to adjust according to the observed values. The sum of lengths of subsets in any partition
of dom(Fj) must sum to 1, while each L(si,j) > 0 for each si,j in the partition, which is
trivial to show for the other feature types. This is necessary because L(si,j) must able to
be determined while the density partition is occurring (e.g., to decide if empty space is to
be carved out) without the other slices in the partition being determined.

Note that for p = 1 (a single feature F1 = Fj), each interval si,j = si,1 is its own
slice Si (as in Section 3.2). Thus, since S = dom(F1), the partition {si,1} of dom(F1)
also partitions S; for single dimensions, we have V (Si) = V (si,1) = L(si,1), and so∑K

i=1 L(si,j) =
∑K

i=1 V (Si) = 1, as required.
For example, say dom(Fj) = [10.95, 110.95], with length 100 and nj = 500 unique

values; if ε = 0.001, the non-empty interval si,j = [12.5, 12.5], with ni,j = 1 unique
values, would have length L(si,j) = 0.999 0

100 + 0.001 1
500 = 0.000002, rather than 0. If

si,j = [12.5, 62.5] (half the span) contained only 3 out of 500 unique values (meaning the
distribution is skewed), its length is L(si,j) = 0.999 50

100 + 0.0001 3
500 = 0.499506, rather

than 0.5. Thus, while the adjusted lengths should differ very slightly from the raw lengths,
it allows all relevant intervals to have positive length.

607

A.3 Volume calculation example

Below, we show an illustration of a fully worked-out example of slice volumes based on a
density partition. The partition is done on the Wine quality dataset (originally from [10],
available from [8]), using only the F1=FLAVANOIDS (real-valued) and F2=PROLINE
(integer-valued) features, retaining only the first 50 observations for the sake of compact-
ness. This shortened dataset is reproduced in Table 9. The density partition was run with
minL = 0.1 and minimum slice support of 10 observations.

The feature domains of the features are shown in Table 5. Note that the domain of
PROLINE, which is integer-valued, is the observed range extended by 0.5 on either end.

Feature Fj min max domain (dom(Fj)) length (|dom(Fj)|) unique values (nj)
FLAVANOIDS 2.19 3.93 (2.19, 3.93) 1.74 42

PROLINE 680 1680 [679.5, 1680.5] 1,001 42

Table 5: Feature summary statistics and domains for wine dataset in Table 9.

Based on this dataset, seven slices {Si}7i=1, are determined. Figure 5 plots the scatter-
plot of observations and overlay of the slice definitions, which are shown in Table 6; the
first four slices (green) have observations, the last three (red) are empty.

The regional partition proceeded as follows:

1. S split at FLAVANOIDS≈ 3.3, forming eventual {S1, S2, S3, S5, S6} to the left and
{S4, S7} to the right.

2. Empty region S7 was then carved out by finding a significant empty area on the
PROLINE axis below 984.5, forming S4.

3. The left side was split on PROLINE=882.5, forming {S1, S5} below and {S2, S3, S6}
above.

4. On the bottom, S5 is carved out by finding empty space below FLAVANOIDS=2.41,
thus forming S1.

5. On the top, a split was made at PROLINE=1072.5 to form {S2} alone below and
{S3, S6} above.

6. S2 was not trimmed since no significant space was found on the edges of the points.

7. On the top, The empty S6 was carved out, containing the area above PROLINE=1515.5,
also forming S3.

In each case here, due to the relative mutual proximity of the observations, all carving
out of empty regions was done by the heuristic of finding empty space on any feature after
a regression tree split was made, rather than widening the empty space found on the feature
used to split a node in the tree (see Section 3.3).

When slices are defined on the integer-valued PROLINE feature, the bounds are again
extended by 0.5 on either end from the range of observed values, to aid in the calculations
in Table 7. Furthermore, for slices that are empty and defined on the real-valued feature
(FLAVANOIDS), the edge will be an interval that is open on at least one of the ends, since
it excludes an observed data value that defines the boundary of the neighboring non-empty
slice.

Table 7 shows the raw edge lengths (see Appendix A.2, Section 2.3) for each slice in
Table 6, taking the difference between the bounds on each feature in the slice, divided by the
domain length (Table 5). For the feature F2=PROLINE, which is integer-valued, the raw

608

Figure 5: Scatterplot of wine quality dataset and density-based partition. Green slices have
observations, and the red ones are empty. Slice defintions are shown in Table 6. Slices are
labeled according to their ID in the table.

length is the same as the final length L(si,2) for this feature. Since FLAVANOIDS is real-
valued, an additional adjustment is shown in Table 8, with ε = 0.001, as in Appendix A.2.

Table 8 calculates L(si,1), the adjusted length of the slice edge length for the F1 FLA-
VANOIDS feature, with a slight correction of the raw lengths in Table 7, using the number
of unique values of FLAVANOIDS (ni,1, i = 1, . . . , 7) in each slice, as shown in Ap-
pendix A.2. The slice volume for slice Si is then V (Si) = si,1 × si,2, where si,2 is the
raw length of the PROLINE edge from Table 7. These volumes sum within an error of less
than 0.04% of 1.0, the volume of the full feature space S (see Section 2.3); this is due to
numerical rounding errors from calculations on floating-point values.

609

Slice ID i Slice definition Si = si,1
⋂
si,2 Support

1
{2.41 ≤ FLAVANOIDS ≤ 3.3049999475479126}&
{679.5 < PROLINE < 882.5} 10

2
{2.19 ≤ FLAVANOIDS ≤ 3.3049999475479126}&
{882.5 < PROLINE < 1072.5} 15

3
{2.19 ≤ FLAVANOIDS ≤ 3.3049999475479126}&
{1072.5 < PROLINE < 1515.5} 15

4
{3.3049999475479126 ≤ FLAVANOIDS ≤ 3.93}&
{984.5 < PROLINE < 1680.5} 10

5
{2.19 < FLAVANOIDS < 2.41}&
{679.5 < PROLINE < 882.5} 0

6
{2.19 < FLAVANOIDS < 3.3049999475479126}&
{1515.5 < PROLINE < 1680.5} 0

7
{3.3049999475479126 < FLAVANOIDS < 3.93}&
{679.5 < PROLINE < 984.5} 0

Table 6: Slice definitions found on wine quality dataset.

Slice ID i FLAVANOIDS (F1) |si,1| PROLINE (F2) |si,2|

1 3.3049999475479126−2.41
1.74 = 0.5143677859470761 882.5−679.5

1001 = 0.20279720279720279

2 3.3049999475479126−2.19
1.74 = 0.6408045675562717 1072.5−882.5

1001 = 0.18981018981018982

3 3.3049999475479126−2.19
1.74 = 0.6408045675562717 1515.5−1072.5

1001 = 0.44255744255744256

4 3.93−3.3049999475479126
1.74 = 0.3591954324437285 1680.5−984.5

1001 = 0.6953046953046953

5 2.41−2.19
1.74 = 0.12643678160919553 882.5−679.5

1001 = 0.20279720279720279

6 3.3049999475479126−2.19
1.74 = 0.6408045675562717 1680.5−1515.5

1001 = 0.16483516483516483

7 3.93−3.3049999475479126
1.74 = 0.3591954324437285 984.5−679.5

1001 = 0.3046953046953047

Table 7: Raw edge lengths for each slice in Table 6

610

Slice ID i FLAVANOIDS (F1) VOLUME V (Si)

ni,1 adjusted length L(si,1) L(si,1)× L(si,2)

1 9 0.999(0.5143677859470761) + 0.001(9
42) = 0.5140677038754148 0.10425149

2 14 0.999(0.6408045675562717) + 0.001(1442) = 0.6404970963220488 0.12157288

3 14 0.999(0.6408045675562717) + 0.001(1442) = 0.6404970963220488 0.28345676

4 9 0.999(0.2442529037080962) + 0.001(9
42) = 0.2442229365186738 0.24975027

5 0 0.999(0.20279720279720279) + 0.001(0
42) = 0.20259440559440559 0.02564103

6 0 0.999(0.6408045675562717) + 0.001(0
42) = 0.6401637629887155 0.10562713

7 0 0.999(0.3591954324437285) + 0.001(0
42) = 0.35883623701128475 0.10933572

Table 8: Adjusted edge length for FLAVANOIDS, and slice volume. Here, ε = 0.001.

611

FLAVANOIDS (F1) PROLINE (F2) Slice ID i

1 3.06 1065 2
2 2.76 1050 2
3 3.24 1185 3
4 3.49 1480 4
5 2.69 735 1
6 3.39 1450 4
7 2.52 1290 3
8 2.51 1295 3
9 2.98 1045 2

10 3.15 1045 2
11 3.32 1510 4
12 2.43 1280 3
13 2.76 1320 3
14 3.69 1150 4
15 3.64 1547 4
16 2.91 1310 3
17 3.14 1280 3
18 3.40 1130 4
19 3.93 1680 4
20 3.03 845 1
21 3.17 780 1
22 2.41 770 1
23 2.88 1035 2
24 2.37 1015 2
25 2.61 845 1
26 2.68 830 1
27 2.94 1195 3
28 2.19 1285 3
29 2.97 915 2
30 2.33 1035 2
31 3.25 1285 3
32 3.19 1515 3
33 2.69 990 2
34 2.74 1235 3
35 2.53 1095 3
36 2.98 920 2
37 2.68 880 1
38 2.43 1105 3
39 2.64 1020 2
40 3.04 760 1
41 3.29 795 1
42 2.68 1035 2
43 3.56 1095 4
44 2.63 680 1
45 3.00 885 2
46 2.65 1080 3
47 3.17 1065 2
48 3.39 985 4
49 2.92 1060 2
50 3.54 1260 4

Table 9: First 50 observations of wine quality data, for two selected numeric observations.

612

