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Abstract 

Since a rare observation resembles not only an unknown probability distribution but also 
their unknown characteristics, it is better to construct a basket of several characteristics 
based on subsets of observations. In this paper we offer a sequential-resampling method 
for generating several correlated observations from the same distribution from where the 
original sample is drawn. It is a kind of check and balance method for resampling each 
successive observation. 
 
Key Words: Average Log Likelihood Function ; Combination ; Dummy Missing 
Value ; Likelihood Rate ; Simple Random Sample. 
 

 

1. Introduction 

In statistics, bootstrapping is any test or metric that relies on random sampling with 
replacement. Bootstrapping allows assigning measures of accuracy (defined in terms of 
bias, variance, confidence intervals, prediction error or some other such measure) to sample 
estimates. This technique allows estimation of the sampling distribution of almost any 
statistic using random sampling methods. Generally, it falls in the broader class 
of resampling methods.  

Bootstrapping is the practice of estimating properties of an estimator (such as its variance) 
by measuring those properties when sampling from an approximating distribution. One 
standard choice for an approximating distribution is the empirical distribution function of 
the observed data. In the case where a set of observations can be assumed to be from 
an independent and identically distributed population, this can be implemented by 
constructing a number of resamples with replacement, of the observed dataset (and of equal 
size to the observed dataset). 

It may also be used for constructing hypothesis tests. It is often used as an alternative 
to statistical inference based on the assumption of a parametric model when that 
assumption is in doubt, or where parametric inference is impossible or requires complicated 
formulas for the calculation of standard errors. 

Mian et al (2017) proposed a missing value estimation method which is very similar to 
bootstrap method. I may also be called as Sequential Bootstrap Resampling Method.  
 

2. Methodology 

 
Let there be n observations and 2 missing observations  
(2002). We want to resample paired missing observations if those were not missing. We 
know nothing about missing value or the distribution of observation from where the 
observations are drawn. So, we know nothing about the new generating paired values, or 

 
2619

https://ww2.amstat.org/meetings/jsm/2017/onlineprogram/KeyWordSearchResults.cfm?keyword=Average%20Log%20Likelihood%20Function
https://ww2.amstat.org/meetings/jsm/2017/onlineprogram/KeyWordSearchResults.cfm?keyword=Combination
https://ww2.amstat.org/meetings/jsm/2017/onlineprogram/KeyWordSearchResults.cfm?keyword=Dummy%20Missing%20Value
https://ww2.amstat.org/meetings/jsm/2017/onlineprogram/KeyWordSearchResults.cfm?keyword=Dummy%20Missing%20Value
https://ww2.amstat.org/meetings/jsm/2017/onlineprogram/KeyWordSearchResults.cfm?keyword=Likelihood%20Rate
https://ww2.amstat.org/meetings/jsm/2017/onlineprogram/KeyWordSearchResults.cfm?keyword=Simple%20Random%20Sample
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Sampling_(statistics)#Replacement_of_selected_units
https://en.wikipedia.org/wiki/Sampling_(statistics)#Replacement_of_selected_units
https://en.wikipedia.org/wiki/Confidence_interval
https://en.wikipedia.org/wiki/Resampling_(statistics)
https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Empirical_distribution_function
https://en.wikipedia.org/wiki/Independent_and_identically_distributed
https://en.wikipedia.org/wiki/Resampling_(statistics)
https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Standard_error


the distribution of the observations or the parameters of the distribution or other 
characteristics like mean, median, mode, variance, skewness, kurtosis, and higher order 
moments of the distribution. In this situation we will estimate all the aforesaid 
characteristics and their volatility due to the change of sample size. We will also measure 
the deviation of the estimated characteristics from those of the missing values. So, we 
adjust our estimates of various characteristics due to the exact sample size and bandwidth 
of each of the characteristics. Later all the estimated characteristics will be used to find out 
several relations among themselves to predict the probability distribution. The parameters 
will also be estimated under the predicted probability distribution. Later on the deviation 
of the theoretically estimated characteristics and practically observed characteristics can 
be found to check how better the predicted distribution was by checking the equivalence 
of the theoretical and observed characteristics. Average Maximum Likelihood function and 
the consistent rate of the mean sum of squares of error can be found to confirm that the 
performance of the estimated generated (or missing) values and the error conducted due to 
the estimated missing values is the least. 
 
2.1 Generating First Resampled Observation (Estimating First Missing Value) from 

a Sample of Size n 

Let the observations 𝑥1,𝑥2,…, 𝑥𝑛−2 be non-missing and two observations to be resampled. 
Let the generated observation be y and z. We want to estimate y and z. So out of (𝑛 − 2) 
non-missing observations 𝑛 − 2𝐶𝑛−2−2

 samples each of size (𝑛 − 2 − 2) can be drawn. We 
can generate 𝑛 − 2𝐶𝑛−4

 samples each of which is consisting of (𝑛 − 4)  non-missing 
observations pretending the rest non-missing observations as the missing observation. So, 
the 𝑛 − 2𝐶𝑛−4

  generated samples are as below: 
 

𝒏 − 𝟐𝑪𝒏−𝟒
 samples each of size (𝒏 − 𝟒)                 Assumed missing observation 

𝑥1,𝑥2, … , 𝑥𝑛−2    𝑥𝑛−1, 𝑥𝑛 
…    … 

𝑥1,𝑥3, … , 𝑥𝑛−1    𝑥2, 𝑥𝑛 
𝑥3, … , 𝑥𝑛    𝑥1, 𝑥2 

 
So, we have calculated a class of characteristics (demonstrated in Table 1) to develop and 
observe several relationships among themselves (characteristics). For each of these 
characteristics, we will observe its deviation from the same characteristic with the presence 
of two dummy missing observations. Let us at first explain the easiest characteristic say 
sample mean and its sample standard deviation from the assumed missing value as 
addressed in Table 2. 
 
Now,    𝐿 = 𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2) … 𝑓(𝑥𝑛−2; �̅�, 𝑆2) 
 

log (𝐿) = 𝑙𝑜𝑔[𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2) … 𝑓(𝑥𝑛−2; �̅�, 𝑆2)] 
 

log(𝐿) = 𝑙𝑜𝑔(𝑓(𝑥1; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥2; �̅�, 𝑆2)) + ⋯ + 𝑙𝑜𝑔(𝑓(𝑥𝑛−2; �̅�, 𝑆2)) 
 

∴
1

𝑛−2
log(𝐿) = 1

𝑛−2
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))𝑛−2

𝑖=1  
 

which can be termed as the average expected log likelihood function or expected log 
likelihood rate. Now, we should generate short incremented (various) values for 𝑥 form the 
following range  
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(
1

𝑛−2
∑ 𝑥𝑖

𝑛−2
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥1′̅̅ ̅̅̅|+|𝑥2

̅̅̅̅̅−𝑥2′̅̅ ̅̅̅|+⋯

+|𝑥𝑛−2𝐶𝑛−4
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−𝑥𝑛−2𝐶𝑛−4

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

𝑛−2𝐶𝑛−4

,
1

𝑛−2
∑ 𝑥𝑖

𝑛−2
𝑖=1 +   k

|𝑥1
̅̅̅̅̅−𝑥1′̅̅ ̅̅̅|+|𝑥2

̅̅̅̅̅−𝑥2′̅̅ ̅̅̅|+⋯

+|𝑥𝑛−2𝐶𝑛−4
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−𝑥𝑛−2𝐶𝑛−4

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

𝑛−2𝐶𝑛−4

). 

 
Here k may be 0.50 or 1 or 2 or so on. The increment ℎ can take the value 0.01 or 0.05 or 
0.10 and so on. The values could be as below 
 

1

𝑛−2
∑ 𝑥𝑖

𝑛−2
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥1′̅̅ ̅̅̅|+|𝑥2

̅̅̅̅̅−𝑥2′̅̅ ̅̅̅|+⋯

+|𝑥𝑛−2𝐶𝑛−4
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−𝑥𝑛−2𝐶𝑛−4

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

𝑛−2𝐶𝑛−4

, 

 

1

𝑛−2
∑ 𝑥𝑖

𝑛−2
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥1′̅̅ ̅̅̅|+|𝑥2

̅̅̅̅̅−𝑥2′̅̅ ̅̅̅|+⋯

+|𝑥𝑛−2𝐶𝑛−4
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−𝑥𝑛−2𝐶𝑛−4

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

𝑛−2𝐶𝑛−4

+ ℎ, 

 

1

𝑛−2
∑ 𝑥𝑖

𝑛−2
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥1′̅̅ ̅̅̅|+|𝑥2

̅̅̅̅̅−𝑥2′̅̅ ̅̅̅|+⋯

+|𝑥𝑛−2𝐶𝑛−4
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−𝑥𝑛−2𝐶𝑛−4

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

𝑛−2𝐶𝑛−4

+ 2ℎ, 

 

1

𝑛−2
∑ 𝑥𝑖

𝑛−2
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥1′̅̅ ̅̅̅|+|𝑥2

̅̅̅̅̅−𝑥2′̅̅ ̅̅̅|+⋯

+|𝑥𝑛−2𝐶𝑛−4
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−𝑥𝑛−2𝐶𝑛−4

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

𝑛−2𝐶𝑛−4

+ 3ℎ, 

…………………………………………………, 

1

𝑛−2
∑ 𝑥𝑖

𝑛−2
𝑖=1 +  k

|𝑥1
̅̅̅̅̅−𝑥1′̅̅ ̅̅̅|+|𝑥2

̅̅̅̅̅−𝑥2′̅̅ ̅̅̅|+⋯

+|𝑥𝑛−2𝐶𝑛−4
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−𝑥𝑛−2𝐶𝑛−4

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

𝑛−2𝐶𝑛−4

. 

 
If we assume one of the aforesaid two observations to be resampled as the estimate of the 
n-1th pretended missing observation, and (if we consider) the available original 
observations 𝑥1,𝑥2, … , 𝑥𝑛−2  as the (𝑛 − 2)  other non-missing observations then the 
consecutive Maximum Likelihood Function or Likelihood Rate will be  
 

𝐿′ = 𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2) …  𝑓(𝑥𝑛−2; �̅�, 𝑆2)𝑓(𝑥𝑛−1; �̅�, 𝑆2) 
 

log (𝐿′) = 𝑙𝑜𝑔[𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2) …   𝑓(𝑥𝑛−2; �̅�, 𝑆2)𝑓(𝑥𝑛−1; �̅�, 𝑆2)] 
 

log(𝐿′) = 𝑙𝑜𝑔(𝑓(𝑥1; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥2; �̅�, 𝑆2) + ⋯ + 𝑙𝑜𝑔(𝑓(𝑥𝑛−1; �̅�, 𝑆2)) 
 

1

𝑛−1
log(𝐿′) = 1

𝑛−1
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))𝑛−1

𝑖=1  
 
We will search the incremented value of the n-1th observation for which the expected log 
likelihood rate and the observed log likelihood rate will be same i.e.  
 

1

𝑛−2
log(𝐿) = 1

𝑛−2
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))𝑛−2

𝑖=1 ≅
1

𝑛−1
log(𝐿′) = 

1

𝑛−1
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))𝑛−1

𝑖=1 . 
 
The incremented value of the n-1th observation for which the likelihood functions are same, 
will be an efficiently-estimated value of the n-1th resampled observation. 
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However, if we get more than two estimates of the resampled observation, we can check 
for which estimate of the resampled observation the first two moments are close to those 
of the original  (𝑛 − 2)  observations. Hence, we will find the closer estimate of the 
resampled observation. Therefore, if we get more than two or three or more estimates of a 
resampled observation, we can use all the estimates to estimate that resampled observation. 
Hence, we will estimate the (n-1)th resampling observation which is the estimate of one 
resampled value out of two resampled observation.     
 
So, we have described how 𝑛 − 2𝐶𝑛−2−2

 samples have been generated assuming two non-
missing observations as two missing ones in each case and calculated their sample averages 
to find out a bandwidth for the first missing value. Here the missing value has been 
determent adding the half of the bandwidth of the 1st missing value with the average of all 
of the available non-missing values. Similarly, several sample characteristics and their 
bandwidth can be calculated to find out different characteristics of the missing data as well 
as the distribution from which the sample (consisting of the 1st missing value and non-
missing value) has been drawn. So, sample variance, sample higher order moments, sample 
median, mode, skewness, kurtosis, tail behaviors, etc. can be found using their respective 
bandwidth. Several relationships can be explored from the aforesaid estimated 
characteristics to recognize the pattern of the distribution and its relevant features. The 
relevant features, estimated parameters and the predicted distribution are used to fit the 
observed sample data. So least square fitting or least deviation fitting or any sort of other 
goodness of fit can be used to check the performance of the predicted probabilistic model 
along-with the bandwidth based estimated parameters and the characteristics. After 
checking the fitting performance of the predicted model for the observed data, we can 
observe whether the average log-likelihood function for both the non-missing and the first 
missing or resampled observation is equivalent that of the average log-likelihood rate for 
the all non-missing values.  
 
After estimating the first resampled observation, we will estimate the 2nd as well as the last 
resampled observation based on the non-missing values and the estimated 1st resampled 
observation. Hence, we will repeat the previously developed method of resampling one 
observation as follows.  
 
2.2 Generating Last Resampled Observation (Estimating Last Missing Value) 

from a Sample of Size n using the First Generated Observation 

Suppose there are 𝑛 observations out of which (𝑛 − 1) non-missing observations and one 
observation to be generated. We also suppose that observations 𝑥1,𝑥2,…, 𝑥𝑛−1 are non-
missing and one observation 𝑥𝑛 is to be resampled. We want to estimate𝑥𝑛. So out of (𝑛 −
1) non-missing observations, (𝑛 − 1) samples each of which is of size (𝑛 − 2) can be 
drawn assuming each sample has one missing observation. Assuming one non-missing 
observation as a missing one we can generate (𝑛 − 1) samples each of which is consisting 
of (𝑛 − 2) non-missing observations pretending the rest non-missing observations as the 
missing observation. So, the (𝑛 − 1) generated samples are as below: 
 

(𝒏 − 𝟏) samples each of size (𝒏 − 𝟐)                Assumed missing observation 

𝑥1,𝑥2, … , 𝑥𝑛−2    𝑥𝑛−1 
𝑥1,𝑥2, … , 𝑥𝑛−1    𝑥𝑛−2 

…    … 
𝑥1,𝑥3, … , 𝑥𝑛−2    𝑥2 
𝑥2,𝑥3, … , 𝑥𝑛−1    𝑥1 
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So, we have calculated a class of characteristics (demonstrated in Table 1) to develop and 
observe several relationships among themselves (characteristics). For each of these 
characteristics, we will observe its deviation from the same characteristic with the presence 
of dummy missing observation. Let us at first explain the easiest characteristic say sample 
mean and its deviation from the assumed missing value as addressed in Table 2. Now,  
   

𝐿 = 𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2) … 𝑓(𝑥𝑛−1; �̅�, 𝑆2) 
 

log (𝐿) = 𝑙𝑜𝑔[𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2) … 𝑓(𝑥𝑛−1; �̅�, 𝑆2)] 
 

log(𝐿) = 𝑙𝑜𝑔(𝑓(𝑥1; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥2; �̅�, 𝑆2)) + ⋯ + 𝑙𝑜𝑔(𝑓(𝑥𝑛−1; �̅�, 𝑆2)) 
 

∴
1

𝑛−1
log(𝐿) = 1

𝑛−1
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))𝑛−1

𝑖=1  
 

which can be termed as the average expected log likelihood function or expected log 
likelihood rate. Now, we should generate short incremented (various) values for 𝑥 form the 
following range  
 

(
1

𝑛−1
∑ 𝑥𝑖

𝑛−1
𝑖=1 −  k

|𝑥1̅̅̅̅ −𝑥𝑛−1|+|𝑥2̅̅̅̅ −𝑥𝑛−2|+⋯

+|𝑥𝑛−2̅̅ ̅̅ ̅̅ ̅−𝑥2|+|𝑥𝑛−1̅̅ ̅̅ ̅̅ ̅−𝑥1|

𝑛−1
,

1

𝑛−1
∑ 𝑥𝑖

𝑛−1
𝑖=1 +  k

|𝑥1̅̅̅̅ −𝑥𝑛−1|+|𝑥2̅̅̅̅ −𝑥𝑛−2|+⋯
+|𝑥𝑛−2̅̅ ̅̅ ̅̅ ̅−𝑥2|+|𝑥𝑛−1̅̅ ̅̅ ̅̅ ̅−𝑥1|

𝑛−1
). 

 
Here k may be 0.50 or 1 or 2 or so on. The increment ℎ can take the value 0.01 or 0.05 or 
0.10 and so on. The values could be as below 
 

1

𝑛−1
∑ 𝑥𝑖

𝑛−1
𝑖=1 −  k

|𝑥1̅̅̅̅ −𝑥𝑛−1|+|𝑥2̅̅̅̅ −𝑥𝑛−2|+⋯

+|𝑥𝑛−2̅̅ ̅̅ ̅̅ ̅−𝑥2|+|𝑥𝑛−1̅̅ ̅̅ ̅̅ ̅−𝑥1|

𝑛−1
, 

 

1

𝑛−1
∑ 𝑥𝑖

𝑛−1
𝑖=1 −  k

|𝑥1̅̅̅̅ −𝑥𝑛−1|+|𝑥2̅̅̅̅ −𝑥𝑛−2|+⋯

+|𝑥𝑛−2̅̅ ̅̅ ̅̅ ̅−𝑥2|+|𝑥𝑛−1̅̅ ̅̅ ̅̅ ̅−𝑥1|

𝑛−1
+ ℎ, 

 

1

𝑛−1
∑ 𝑥𝑖

𝑛−1
𝑖=1 −  k

|𝑥1̅̅̅̅ −𝑥𝑛−1|+|𝑥2̅̅̅̅ −𝑥𝑛−2|+⋯

+|𝑥𝑛−2̅̅ ̅̅ ̅̅ ̅−𝑥2|+|𝑥𝑛−1̅̅ ̅̅ ̅̅ ̅−𝑥1|

𝑛−1
+ 2ℎ, 

 

1

𝑛−1
∑ 𝑥𝑖

𝑛−1
𝑖=1 −  k

|𝑥1̅̅̅̅ −𝑥𝑛−1|+|𝑥2̅̅̅̅ −𝑥𝑛−2|+⋯

+|𝑥𝑛−2̅̅ ̅̅ ̅̅ ̅−𝑥2|+|𝑥𝑛−1̅̅ ̅̅ ̅̅ ̅−𝑥1|

𝑛−1
+ 3ℎ, 

…………………………………………………, 

1

𝑛−1
∑ 𝑥𝑖

𝑛−1
𝑖=1 +  k

|𝑥1̅̅̅̅ −𝑥𝑛−1|+|𝑥2̅̅̅̅ −𝑥𝑛−2|+⋯

+|𝑥𝑛−2̅̅ ̅̅ ̅̅ ̅−𝑥2|+|𝑥𝑛−1̅̅ ̅̅ ̅̅ ̅−𝑥1|

𝑛−1
. 

 
If we assume any of the aforesaid observations as the estimate of the nth pretended missing 
observation, and (if we consider) the available original observations 𝑥1,𝑥2, … , 𝑥𝑛−1 as the 
(𝑛 − 1)  other non-missing observations then the consecutive Maximum Likelihood 
Function or Likelihood Rate will be  
 

𝐿′ = 𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2) …  𝑓(𝑥𝑛; �̅�, 𝑆2) 
 

log (𝐿′) = 𝑙𝑜𝑔[𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2) …  𝑓(𝑥𝑛; �̅�, 𝑆2)] 
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log(𝐿′) = 𝑙𝑜𝑔(𝑓(𝑥1; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥2; �̅�, 𝑆2) + ⋯ + 𝑙𝑜𝑔(𝑓(𝑥𝑛; �̅�, 𝑆2)) 

 
1

𝑛
log(𝐿′) = 1

𝑛
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))𝑛

𝑖=1  
 
We will search the incremented value of the nth observation for which the expected log 
likelihood rate and the observed log likelihood rate will be same i.e.  
 

1

𝑛−1
log(𝐿) = 1

𝑛−1
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))𝑛−1

𝑖=1 ≅
1

𝑛
log(𝐿′) = 

1

𝑛
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))𝑛

𝑖=1 . 
 
The incremented value of the nth observation for which the likelihood functions are same, 
will be an efficiently-estimated value of the missing or resampled observations. However, 
if we get more than two estimates of the resampled observation, we can check for which 
estimate of the resampled observation the first two moments are close to those of the 
original  (𝑛 − 1) observations. Hence, we will find the closer estimate of the resampled 
observation. Therefore, if we get more than two or three or more estimates of a missing or 
resampled observation, we can use all the estimates to estimate that resampled observation. 
So, we have described how (𝑛 − 1) samples have been generated assuming one non-
missing observation as a missing one in each case and calculated their sample averages to 
find out a bandwidth for the resampled observation. Here the resampled observation has 
been determent adding the half of the bandwidth of the resampled observation with the 
average of all the available non-missing values. Similarly, several sample characteristics 
and their bandwidth can be calculated to find out different characteristics of the resampled 
data as well as the distribution from which the sample (consisting of resampled value and 
non-missing or non-resampled observation) has been drawn. So, sample variance, sample 
higher order moments, sample median, mode, skewness, kurtosis, tail behaviors, etc. can 
be found using their respective bandwidth. Several relationships can be explored from the 
aforesaid estimated characteristics to recognize the pattern of the distribution and its 
relevant features. The relevant features, estimated parameters and the predicted distribution 
are used to fit the observed sample data. So least square fitting or least deviation fitting or 
any sort of other goodness of fit can be used to check the performance of the predicted 
probabilistic model along-with the bandwidth based estimated parameters and the 
characteristics. After checking the fitting performance of the predicted model for the 
observed data, we can observe whether the average log-likelihood function for both the 
non-missing and resampled observations is equivalent that of the average log-likelihood 
rate for the all non-missing values.  
 
2.3 Generating First Resampled Observation from a Sample of Size 6 

For more clarification let 𝑛 = 6. So, there are 4 non-missing observations and 2 dummy 
missing observations. The non-missing observations are 𝑥1,𝑥2,𝑥3, 𝑥4  and the dummy 
missing observations are 𝑥6 and 𝑥5. Assuming two non-missing observations as missing 
ones we can generate 6  samples each of which is consisting of 2 non-missing observations 
assuming the rest non-missing observations as the missing observations. So, the 6 samples 
are as below: 
 

Samples of size 2                                                  Assumed missing observations 
𝑥1,𝑥2    𝑥3, 𝑥4 
𝑥1,𝑥3    𝑥2, 𝑥4 
𝑥1,𝑥4    𝑥2, 𝑥3 
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𝑥2,𝑥3    𝑥1, 𝑥4 
𝑥2,𝑥4    𝑥1, 𝑥3 
𝑥3,𝑥4    𝑥1, 𝑥2 

 
From table A1 of appendix, we have calculated a class of characteristics to develop and 
observe some relationships among them (characteristics). For each of these characteristics 
we will observe its deviation from the same characteristic with the presence of assumed 
missing observation. Let us at first explain the easiest characteristics say sample mean and 
its deviation from the assumed missing value in the table A2. 

 

Now,   𝐿 = 𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2)𝑓(𝑥3; �̅�, 𝑆2)𝑓(𝑥4; �̅�, 𝑆2) 
 

log (𝐿) = 𝑙𝑜𝑔[𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2)𝑓(𝑥3; �̅�, 𝑆2)𝑓(𝑥4; �̅�, 𝑆2)] 
 
log(𝐿) = 𝑙𝑜𝑔(𝑓(𝑥1; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥2; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥3; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥4; �̅�, 𝑆2)) 
 

1

4
log(𝐿) =1

4
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))4

𝑖=1  
 

which can be termed as the average expected likelihood or expected likelihood rate.  
 
Now, we should generate short incremented various values form the range  
 

(

1

4
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥1′̅̅ ̅̅̅|+|𝑥2

̅̅̅̅̅−𝑥2′̅̅ ̅̅̅|+|𝑥3
̅̅̅̅̅−𝑥3′̅̅ ̅̅̅|+|𝑥4

̅̅̅̅̅−𝑥4′̅̅ ̅̅̅|+|𝑥5
̅̅̅̅̅−𝑥5′̅̅ ̅̅̅|+|𝑥6

̅̅̅̅̅−𝑥6′̅̅ ̅̅̅|

6
,

1

4
∑ 𝑥𝑖

4
𝑖=1 +

 k
|𝑥1
̅̅̅̅̅−𝑥1′̅̅ ̅̅̅|+|𝑥2

̅̅̅̅̅−𝑥2′̅̅ ̅̅̅|+|𝑥3
̅̅̅̅̅−𝑥3′̅̅ ̅̅̅|+|𝑥4

̅̅̅̅̅−𝑥4′̅̅ ̅̅̅|+|𝑥5
̅̅̅̅̅−𝑥5′̅̅ ̅̅̅|+|𝑥6

̅̅̅̅̅−𝑥6′̅̅ ̅̅̅|

6

). 

 
Here k may be 0.50 or 1 or 2 or so on. The increment ℎ can take the value 0.01 or 0.05 or 
0.10 and so on. The values the values could be  
 

1

4
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|

4
,  

1

4
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|

4
+ ℎ, 

1

4
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|

4
+ 2ℎ,  

1

4
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|

4
+ 3ℎ, 

…………………………………………………,  
1

4
∑ 𝑥𝑖

4
𝑖=1 +  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|

4
. 

 
If we assume any one of the two afore said observations as the 5th observation and the four 
other observations are the given original observations𝑥1,𝑥2,𝑥3, 𝑥4; then the consecutive 
average observed likelihood or observed likelihood rate will be  
 

𝐿′ = 𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2)𝑓(𝑥3; �̅�, 𝑆2)𝑓(𝑥4; �̅�, 𝑆2) 𝑓(𝑥5; �̅�, 𝑆2) 𝑓(𝑥6; �̅�, 𝑆2) 
 
log (𝐿′) = 𝑙𝑜𝑔[𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2)𝑓(𝑥3; �̅�, 𝑆2)𝑓(𝑥4; �̅�, 𝑆2)𝑓(𝑥5; �̅�, 𝑆2)𝑓(𝑥6; �̅�, 𝑆2)] 

 
log(𝐿′) = 𝑙𝑜𝑔(𝑓(𝑥1; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥2; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥3; �̅�, 𝑆2))

+ 𝑙𝑜𝑔(𝑓(𝑥4; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥5; �̅�, 𝑆2) + 𝑙𝑜𝑔(𝑓(𝑥6; �̅�, 𝑆2)) 
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1

6
log(𝐿′) =1

6
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))6

𝑖=1  
 
We will search the incremented value of the 5th observation for which the expected 
likelihood rate and the observed likelihood rate will be same i.e.  
 

1

4
log(𝐿) = 1

4
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))4

𝑖=1 ≅
1

6
log(𝐿′) =1

6
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))6

𝑖=1 . 
 

The incremented value of the 5th and 6th observations for which the likelihood functions 
are same, will be the estimated values of the first of the two missing or resampled 
observations. 
 
If we get more than two estimates of the resampled observation (since we get two values 
of the 5th observation for whom the likelihood rates are same), we can check for which 
estimate of the resampled observation the first two moments are close to those of the 
original 4 observations. Hence, we will find the estimate of the resampled observations.  
 
If we get more than two or three or more estimates of each of the resampled observations, 
we can have the corresponding averages all the estimates of the resampled observations 
and can assume that as the estimate of that resampled observation. Hence, we have derived 
the 5th observation. We will now estimate the 6th (last) observation.    
 
2.4 Generating Last Resampled Observation from a Sample of Size 6 

Now let 𝑛 = 6.  So there are 5 non-missing observations and one dummy missing 
observation. The non-missing observations are 𝑥1,𝑥2,𝑥3, 𝑥4, 𝑥5  and the dummy missing 
observation is 𝑥6. So, assuming one non-missing observation as a missing one we can 
generate 5 samples each of which is consisting of 4 non-missing observations assuming the 
rest non-missing observations as the missing observation. So, the 5 samples are as below: 
 
Samples of size 4                                                                Assumed missing observation 

𝑥1,𝑥2,𝑥3, 𝑥4    𝑥5 
𝑥1,𝑥2,𝑥3, 𝑥5    𝑥4 
𝑥1,𝑥2,𝑥4,𝑥5    𝑥3 
𝑥1,𝑥3,𝑥4,𝑥5    𝑥2 
𝑥2,𝑥3,𝑥4,𝑥5    𝑥1 

 
So, we have calculated a class of characteristics (Table A3) to develop and observe some 
relationships among them (characteristics). For each of these characteristics we will 
observe its deviation from the same characteristic with the presence of assumed missing 
observation. Let us at first explain the easiest characteristics say sample mean and its 
deviation from the assumed missing value in the Table A4. 
 
Now,   𝐿 = 𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2)𝑓(𝑥3; �̅�, 𝑆2)𝑓(𝑥4; �̅�, 𝑆2)𝑓(𝑥5; �̅�, 𝑆2) 
 

log (𝐿) = 𝑙𝑜𝑔[𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2)𝑓(𝑥3; �̅�, 𝑆2)𝑓(𝑥4; �̅�, 𝑆2)𝑓(𝑥5; �̅�, 𝑆2)] 
 
log(𝐿) = 𝑙𝑜𝑔(𝑓(𝑥1; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥2; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥3; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥4; �̅�, 𝑆2)

+ 𝑙𝑜𝑔(𝑓(𝑥5; �̅�, 𝑆2)) 
 

1

5
log(𝐿) = 

1

5
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))5

𝑖=1  
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which can have been termed as the average expected log likelihood or expected log 
likelihood rate. Now, we should generate short incremented various values form the range  
 

(

1

5
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|+|𝑥5
̅̅̅̅̅−𝑥5|

5
,

1

5
∑ 𝑥𝑖

4
𝑖=1 +  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅ ̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|+|𝑥5
̅̅̅̅̅−𝑥5|

5

). 

 
Here k may be 0.50 or 1 or 2 or so on. The increment ℎ can take the value 0.01 or 0.05 or 
0.10 and so on. The values the values could be  
 

1

5
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅ ̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|+|𝑥5
̅̅̅̅̅−𝑥5|

5
, 

 
1

5
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|+|𝑥5
̅̅̅̅̅−𝑥5|

5
+ ℎ, 

 
1

5
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|+|𝑥5
̅̅̅̅̅−𝑥5|

5
+ 2ℎ, 

 
1

5
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|+|𝑥5
̅̅̅̅̅−𝑥5|

5
+ 3ℎ, 

…………………………………………………, 
1

5
∑ 𝑥𝑖

4
𝑖=1 +  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅ ̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|+|𝑥5
̅̅̅̅̅−𝑥5|

5
. 

 
If we assume any of the afore said observations as the 6th observation and the four other 
observations are the given original observations 𝑥1,𝑥2,𝑥3, 𝑥4, 𝑥5 ; then the consecutive 
maximum likelihood function or observed likelihood rate will be  
 

𝐿′ = 𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2)𝑓(𝑥3; �̅�, 𝑆2)𝑓(𝑥4; �̅�, 𝑆2) 𝑓(𝑥5; �̅�, 𝑆2)𝑓(𝑥6; �̅�, 𝑆2) 
 
log (𝐿′) = 𝑙𝑜𝑔[𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2)𝑓(𝑥3; �̅�, 𝑆2)𝑓(𝑥4; �̅�, 𝑆2)𝑓(𝑥5; �̅�, 𝑆2)𝑓(𝑥6; �̅�, 𝑆2)] 

 
log(𝐿′) = 𝑙𝑜𝑔(𝑓(𝑥1; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥2; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥3; �̅�, 𝑆2))

+ 𝑙𝑜𝑔(𝑓(𝑥4; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥5; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥6; �̅�, 𝑆2))) 
 

1

6
log(𝐿′) =1

6
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))6

𝑖=1  
 
We will search the incremented value of the 6th observation for which the expected log 
likelihood rate and the observed log likelihood rate will be same i.e.  
 

1

5
log(𝐿) = 1

5
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))5

𝑖=1 ≅
1

6
log(𝐿′) =1

6
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))6

𝑖=1 . 
 
The incremented value of the 5th observation for which the likelihood functions are same, 
will be the estimated value of the missing or resampled observations. If we get more than 
two estimates of the resampled observation (since we get two values of the 5th observation 
for whom the likelihood rates are same), we can check for which estimate of the resampled 
value the first two moments are close to those of the original 4 observations. Hence, we 
will find the estimate of the resampled observations. 
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3. Real Life Examples 

 
We like to simulate a couple of random observations of size 𝑛  from a probability 
distribution with specified parameters. Later we will treat two observations completely 
missing and pull these out from the original sample. Hence the original sample turns to a 
sample of size 𝑛 − 2. Out of 𝑛 − 2 available observations of the sample, we will draw  
samples each of which is of size 𝑛 − 2. For each of the 𝑛𝐶𝑛−2

 samples of size 𝑛 − 2, we 
will assume the two absent observations as two dummy missing values of the sample. So, 
for each of the 𝑛𝐶𝑛−2

 samples, there are 𝑛 − 2 available observations and two dummy 
missing values. From each of the 𝑛𝐶𝑛−2

 samples, we will have one absolute dispersion 
between the average of 𝑛 − 2 available observations and the average of the two dummy 
missing observations. So, we will have 𝑛𝐶𝑛−2

 absolute between differences for 𝑛𝐶𝑛−2
 pairs 

of averages and dummy missing values. Averaging the 𝑛𝐶𝑛−2
  absolute differences, we will 

calculate average absolute difference. Based on the average absolute difference, we will 
generate a possible range of the original missing value. We will generate several values of 
that range starting from the lower limit and will get several valued for fixed increment upto 
to upper limit of that range. We will check whether the average likelihood of the 𝑛 −
2 original observations is similar for which 𝑛 -1th, 𝑛 th observed missing values or the 
resampled observations from the generating range and the 𝑛 − 2 observations. 
 
Let 𝑛 = 10. So there are 8 non-missing observations and two missing (assumed totally 
missing) observations. The non-missing observations (from Normal with mean 5 and 
standard deviation 2) are 1.729466, 3.547037, 3.6597, 5.814905, 3.817457, 6.333606, 
4.05684, 3.748781, and the missing observations are 3.608116, 2.671239.  The average of 
these eight non-missing observations are 4.09. Now, assuming two non-missing 
observations as two missing ones we can generate 28 samples each of which is consisting 
of 6 non-missing observations assuming the rest two non-missing observations as two 
dummy missing observations.  
 
So, the 28 samples (as addressed in table A3) each consisting of 6 non-missing values are 
as given in the next page (the bold numbers in the last row are representing here the 
assumed missing value for each sample). 
 
The Expected Log Likelihood Rate for 9 observations (8 non-missing and one from the 
generating interval) is -0.743. By using the formula shown above, we get the range as 
(2.1262, 6.1262); where k=2. Let the increment, h=0.1. For each increment we will get 
average likelihood rate for 9 observations. And for the incremented value = 2.726, we get 
the same value for the Expected Average Likelihood and Observed Average Likelihood. 
So, our estimated value of the 1st missing or resampled observation is 2.726. 
 
Now depending on the 1st missing value and the missing value based, or 9 observations 
based mean and variance, the likelihood function and likelihood rate for 10 observations 
have been found. The Expected Log Likelihood Rate is -0.741. By using the formula shown 
above, we get the range as (2.6188619, 5.2688619); where k = 1.2. Let the increment, 
h=0.05. For each increment we will get average likelihood rate for 10 observations (8 non-
missing, one estimate of the 1st missing or resampled and one from the generating interval 
for the 2nd resampled value or resampled observation). And for the incremented value = 
2.62, we get the same value for the Expected Average Likelihood and Observed Average 
Likelihood. So, our estimated value of the 2nd resampled observation is 2.62.  
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So, the estimates of these two missing values or resampled observations are 3.608116, 
2.671239 are 2.726 and 2.62. 
 

Conclusion 

 

The missing technique is a kind of check and balance method in estimating the missing 
value. It can also be termed as Sequential Bootstrap Method. In each step it checks the 
fluctuation due to sample size and balance it by capturing the dispersion of the estimate of 
the known data from the assumed unknown data which is really known. So, this method is 
trying to find the original rate of change of the deviation from the missing value for the 
exact size of the realized sample. So, from two directions, one direction from sample size 
and other direction for the deviation from the missing values, the missing technique has 
been aided to estimate the missing value efficiently maintaining a good performance 
through several goodness of fit tests. This paper demonstrates a resampling method for 
generating 1 or 2 correlated observations from the same distribution from where the 
original sample is drawn. This paper can also be extended to get a resampling method for 
(n > 2) three or more correlated observations. 
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Appendix 

 

Table A1: Sample means and sample variances for several samples. 
 

 Sample Mean 

 

Sample Variance 

 𝑥1̅̅ ̅ =
𝑥1+𝑥2

2
 𝑆1

2 =
(𝑥1 − 𝑥1̅̅ ̅)2 + (𝑥2 − 𝑥1̅̅ ̅)2

2 − 1
 

 𝑥2̅̅ ̅ =
𝑥1+𝑥3

2
 𝑆2

2 =
(𝑥1 − 𝑥2̅̅ ̅)2 + (𝑥3 − 𝑥2̅̅ ̅)2

2 − 1
 

 𝑥3̅̅ ̅ =
𝑥1+𝑥4

2
 𝑆3

2 =
(𝑥1 − 𝑥3̅̅ ̅)2 + (𝑥4 − 𝑥3̅̅ ̅)2

2 − 1
 

 𝑥4̅̅ ̅ =
𝑥2+𝑥3

2
 𝑆4

2 =
(𝑥2 − 𝑥4̅̅ ̅)2 + (𝑥3 − 𝑥4̅̅ ̅)2

2 − 1
 

 𝑥5̅̅ ̅ =
𝑥2+𝑥3

2
 𝑆5

2 =
(𝑥2 − 𝑥5̅̅ ̅)2 + (𝑥3 − 𝑥5̅̅ ̅)2

2 − 1
 

 𝑥6̅̅ ̅ =
𝑥3+𝑥4

2
 𝑆6

2 =
(𝑥3 − 𝑥6̅̅ ̅)2 + (𝑥4 − 𝑥6̅̅ ̅)2

2 − 1
 

Average 
�̅� =

𝑥1̅̅ ̅ + 𝑥2̅̅ ̅ + 𝑥3̅̅ ̅ + 𝑥4 + 𝑥5̅̅ ̅ + 𝑥6̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

6
 𝑆2 =

𝑆1
2 + 𝑆2

2 + 𝑆3
2 + 𝑆4

2 + 𝑆5
2 + 𝑆6

2

6
 

 
Table A2: Sample mean difference for several samples. 

 
Sample 

Mean of 

size 3 

Assumed 

Missing 

Values 

Difference |𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆| 

𝑥1̅̅ ̅

=
𝑥1+𝑥2

2
 

𝑥3, 𝑥4 𝑥1̅̅ ̅ −  𝑥3+𝑥4

2
 |𝑥1

̅̅ ̅̅ − 𝑥1′̅̅ ̅̅ | 

𝑥2̅̅ ̅

=
𝑥1+𝑥3

2
 

𝑥2, 𝑥4 𝑥2̅̅ ̅ −
𝑥2+𝑥4

2
 |𝑥2

̅̅ ̅̅ − 𝑥2′̅̅ ̅̅ | 

𝑥3̅̅ ̅

=
𝑥1+𝑥4

2
 

𝑥2, 𝑥3 𝑥3̅̅ ̅ −
𝑥2+𝑥3

2
 |𝑥3

̅̅ ̅̅ − 𝑥3′̅̅ ̅̅ | 

𝑥4̅̅ ̅

=
𝑥2+𝑥3

2
 

𝑥1, 𝑥4 𝑥4̅̅ ̅ −
𝑥1+𝑥4

2
 |𝑥4

̅̅ ̅̅ − 𝑥4′̅̅ ̅̅ | 

𝑥5̅̅ ̅

=
𝑥2+𝑥3

2
 

𝑥1, 𝑥3 𝑥5̅̅ ̅ −
𝑥1+𝑥3

2
 |𝑥5

̅̅ ̅̅ − 𝑥5′̅̅ ̅̅ | 

𝑥6̅̅ ̅

=
𝑥3+𝑥4

2
 

𝑥1, 𝑥2 𝑥6̅̅ ̅ −
𝑥1+𝑥2

2
 |𝑥6

̅̅ ̅̅ − 𝑥6′̅̅ ̅̅ | 

Total   |𝑥1
̅̅ ̅̅ − 𝑥1′̅̅ ̅̅ |+|𝑥2

̅̅ ̅̅ − 𝑥2′̅̅ ̅̅ | + |𝑥3
̅̅ ̅̅ − 𝑥3′̅̅ ̅̅ |+|𝑥4

̅̅ ̅̅ − 𝑥4′̅̅ ̅̅ |

+ |𝑥5
̅̅ ̅̅ − 𝑥5′̅̅ ̅̅ | + |𝑥6

̅̅ ̅̅ − 𝑥6′̅̅ ̅̅ | 
Average   |𝑥1

̅̅ ̅̅ − 𝑥1′̅̅ ̅̅ |+|𝑥2
̅̅ ̅̅ − 𝑥2′̅̅ ̅̅ | + |𝑥3

̅̅ ̅̅ − 𝑥3′̅̅ ̅̅ |+|𝑥4
̅̅ ̅̅ − 𝑥4′̅̅ ̅̅ |

+|𝑥5
̅̅ ̅̅ − 𝑥5′̅̅ ̅̅ | + |𝑥6

̅̅ ̅̅ − 𝑥6′̅̅ ̅̅ |

6
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Table A3: The 28 samples each consisting of 6 non-missing values. 
 

             Sample    |Non-Missing Part                                                 |Missing Part 

         
1 1.73 3.55 3.66 5.81 3.82 6.33 4.06 3.75 

2 1.73 3.55 3.66 5.81 3.82 4.06 6.33 3.75 

3 1.73 3.55 3.66 5.81 4.06 6.33 3.82 3.75 

4 1.73 3.55 3.66 4.06 3.82 6.33 5.81 3.75 

5 1.73 3.55 4.06 5.81 3.82 6.33 3.66 3.75 

6 1.73 4.06 3.66 5.81 3.82 6.33 3.55 3.75 

7 4.06 3.55 3.66 5.81 3.82 6.33 1.73 3.75 

8 1.73 3.55 3.66 5.81 3.82 3.75 4.06 6.33 
9 1.73 3.55 3.66 5.81 3.75 6.33 4.06 3.82 
10 1.73 3.55 3.66 3.75 3.82 6.33 4.06 5.81 
11 1.73 3.55 3.75 5.81 3.82 6.33 4.06 3.66 
12 1.73 3.75 3.66 5.81 3.82 6.33 4.06 3.55 
13 3.75 3.55 3.66 5.81 3.82 6.33 4.06 1.73 
14 1.73 3.55 3.66 5.81 4.06 3.75 3.82 6.33 
15 1.73 3.55 3.66 4.06 3.82 3.75 5.81 6.33 
16 1.73 3.55 4.06 5.81 3.82 3.75 3.66 6.33 
17 1.73 4.06 3.66 5.81 3.82 3.75 3.55 6.33 
18 4.06 3.55 3.66 5.81 3.82 3.75 1.73 6.33 
19 1.73 3.55 3.66 4.06 3.75 6.33 5.81 3.82 
20 1.73 3.55 4.06 5.81 3.75 6.33 3.66 3.82 
21 1.73 4.06 3.66 5.81 3.75 6.33 3.55 3.82 
22 4.06 3.55 3.66 5.81 3.75 6.33 1.73 3.82 
23 1.73 3.55 4.06 3.75 3.82 6.33 3.66 5.81 
24 1.73 4.06 3.66 3.75 3.82 6.33 3.55 5.81 
25 4.06 3.55 3.66 3.75 3.82 6.33 1.73 5.81 
26 1.73 4.06 3.75 5.81 3.82 6.33 3.55 3.66 
27 4.06 3.55 3.75 5.81 3.82 6.33 1.73 3.66 
28 4.06 3.75 3.66 5.81 3.82 6.33 1.73 3.55 
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Table A4: The Bandwidth for each of the 28 samples. 
 

Sample # Sample Mean First Missing 

Value 

Second 

Missing 

Value 

Absolute 

Difference 

or 

Bandwidth 

1 4.15 4.06 3.75 0.247551 
2 3.77 6.33 3.75 1.270293 
3 4.19 3.82 3.75 0.40714 
4 3.86 5.81 3.75 0.924492 
5 4.22 3.66 3.75 0.512311 
6 4.24 3.55 3.75 0.58742 
7 4.54 1.73 3.75 1.799134 
8 3.72 4.06 6.33 1.475665 
9 4.14 4.06 3.82 0.201767 

10 3.81 4.06 5.81 1.129865 
11 4.17 4.06 3.66 0.306939 
12 4.18 4.06 3.55 0.382047 
13 4.49 4.06 1.73 1.593761 
14 3.76 3.82 6.33 1.316077 
15 3.43 5.81 6.33 2.647709 
16 3.79 3.66 6.33 1.210905 
17 3.80 3.55 6.33 1.135797 
18 4.11 1.73 6.33 0.075917 
19 3.85 5.81 3.82 0.970276 
20 4.21 3.66 3.82 0.466527 
21 4.22 3.55 3.82 0.541636 
22 4.53 1.73 3.82 1.75335 
23 3.87 3.66 5.81 0.865105 
24 3.89 3.55 5.81 0.789996 
25 4.19 1.73 5.81 0.421718 
26 4.25 3.55 3.66 0.646807 
27 4.55 1.73 3.66 1.858521 
28 4.57 1.73 3.55 1.93363 

 

Average 

4.09 

   
0.981156 
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