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Abstract 
Since the global outbreak of the novel COVID-19, many research groups have studied the 
epidemiology of the virus for short-term forecasts and to formulate the effective disease 
containment and mitigation strategies. The major challenge lies in the proper assessment 
of epidemiological parameters over time and of how they are modulated by the effect of 
any publicly announced interventions. Here we attempt to examine and quantify the 
effects of various (legal) policies/orders in place to mandate social distancing and to 
flatten the curve in each of the U.S. states. Through Bayesian inference on the stochastic 
SIR models of the virus spread, the effectiveness of each policy on reducing the 
magnitude of the growth rate of new infections is investigated statistically. This will 
inform the public and policymakers, and help them understand the most effective actions 
to fight against the current and future pandemics. It will aid the policy-makers to respond 
more rapidly (select, tighten, and/or loosen appropriate measures) to stop/mitigate the 
pandemic early on. 
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1. SIR Model in Epidemiology 
 
The popular Susceptible-Infected-Recovered (SIR) model in epidemiology is a well-
established compartmental model to understand the disease dynamics; see Figure 1 
below. It is based on a series of the ordinary differential equations (ODE) as follows. 
 
 
 
 
 
 
 
where N is the static population size, μ is the stationary recovery rate, and λ(t) is the 
additive spreading rate defined by 
 
 
with λi being the intervention-specific spreading rate in the given time range [tbeg, tend]. 
Other variations of this model are also available, for example, by including the incubation 
period, re-infection, etc. 
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Figure 1: Graphical illustration of the temporal evolution of the SIR model 
 
 

2. Bayesian Inference 
 
The popular but computationally intensive Bayesian inference incorporates the prior 
knowledge and the posterior distribution here is approximated via MCMC sampling. For 
this research, the Markov chains were initialized through the automatic differentiation 
variational inference (ADVI). We have set 1000 burn-in (tuning) for each chain to 
sample from an equilibrium distribution. Also, 4000 steps were used for each chain to 
approximate the posterior (ergodicity), and convergence was checked. We estimated the 
parameters evolving over time, enabling a short-term forecast with the uncertainty 
quantification (UQ). The following table lists various policies and interventions we 
considered in this study. 
 
 
Table 1: List of COVID-19 policies and interventions under examination 

 state of emergency declared 
 stay at home/shelter 
 closed K-12 schools, day cares 
 closed businesses, restaurants, movie theaters, gyms  
 mandated face mask in public spaces 
 religious gatherings exempt without social distance mandate 
 banned visitors to nursing homes 
 stopped personal visitation in state prisons 
 stopped initiation/enforcement of evictions  
 waived waiting period for unemployment insurance 
 ordered freezing utility shutoffs 
 SNAP waiver 
 allowed/expanded Medicaid coverage including telehealth 
 suspended elective medical procedures 
 reopened ACA enrollment 
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Figure 2: Temporal evolutions of the new COVID-19 cases in some selected U.S. states 

along with the dates of policy implementations 
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3. Results and Observations 

 
It was observed that different states do not exhibit the same effects of reducing the spread 
rate λ(t) by each intervention and policy. The trends were observed to be divergent in 
quite a few cases; see Figure 2 above. It is concluded that the case number alone is 
deficient to understand the true disease dynamics, and more covariates/information are 
needed to understand the reasons behind. Furthermore, the inference and forecasts got 
complicated by the potential delay (2 to 4 weeks) of the policy effect since the onset of 
each intervention. This is creating major uncertainties to deal with and thus, it is 
recommended that lifting certain policies should be implemented with extreme 
precautions. 
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