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Abstract 
Precision medicine allows personalized treatment regime for patients with distinct 
clinical history and characteristics. Dynamic treatment regime implements a 
reinforcement learning algorithm to produce the optimal personalized treatment regime in 
clinical medicine. The reinforcement learning method is applicable when an agent takes 
action in response to the changing environment over time. Q-learning is one of the 
popular methods to develop the optimal dynamic treatment regime by fitting linear 
outcome models in a recursive fashion. Despite its ease of implementation and 
interpretation for domain experts, Q-learning has a certain limitation due to the risk of 
misspecification of the linear outcome model. Recently, more robust algorithms to the 
model misspecification have been developed. For example, the inverse probability 
weighted estimator overcomes the aforementioned problem by using a nonparametric 
model with different weights assigned to the observed outcomes for estimating the mean 
outcome. On the other hand, the augmented inverse probability weighted estimator 
combines information from both the propensity model and the mean outcome model. The 
current statistical methods for producing the optimal dynamic treatment regime however 
allow only a binary action space. In clinical practice, some combinations of treatment 
regime are required, giving rise to a multi-dimensional action space. This study develops 
and demonstrates a practical way to accommodate a multi-level action space, utilizing 
currently available computational methods for the practice of precision medicine. 
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1. Reinforcement Learning 
 
The reinforcement learning (RL) is a machine learning (ML) method that takes action in 
response to the changing environment over time for maximizing rewards, R; see Figure 1 
below. The formulation of RL requires the policy defining a map from state to action, and 
the value function to calculate the total expected reward over time. The application 
domains of RL include 

 dynamic treatment regime (DTR); 
o chronic diseases: cancer, diabetes, anemia, HIV, mental illness such as 

epilepsy, depression, Schizophrenia, opioid addiction 
o critical care: sepsis, anesthesia, ventilation, heparin dosing, and so on 

 automated medical diagnosis with structured data (medical imaging) and 
unstructured data (free text); 

 resource scheduling and task allocation, optimal process control, drug discovery 
(de novo design), healthcare management, etc. 
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2. Dynamic Treatment Regime 
 
The dynamic treatment regime (DTR) is a RL approach in precision medicine to enable 
the optimal personalized treatment regime for patients with distinct genetic, demographic, 
and clinical characteristics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Schematic illustration of the reinforcement learning (RL) 
 
 

3. Why RL-based DTR? 
 
To produce the optimal personalized treatment regime in clinical medicine, RL is an 
effective approach for DTR due to several reasons.  

 incomplete knowledge of the environment, which is usually estimated  
o The dynamic programming is often inappropriate. 

 a limited sample size and costly data collection 
 a causal association of historical conditions with the final outcome (viz., no 

Markov property) 
o The state and action space grow exponentially, compared to the sample 

size. 
 
 

4. Q-Learning 
 
Q-learning is one of the popular methods to develop the optimal dynamic treatment 
regime (DTR). It is a temporal difference control algorithm to search for the optimal 
DTR based on longitudinal datasets. For estimation, it implements the backward 
recursive fitting of linear models based on a dynamic programming algorithm. It is 
mathematically formulated as 
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with . Since the algorithm is based on linear models, it 
provides easy implementation as well as easy interpretation for domain experts. To 
reduce the risk of model misspecification, several robust algorithms to the model 
misspecification have been developed. The inverse probability weighted estimator 
(IPWE) is one of such, and it estimates the mean outcome non-parametrically with 
different weights to the observed outcomes. It is robust but noisy contrast for 
classification. The other method is the augmented inverse probability weighted estimator 
(AIPWE), which combines the information from both propensity score and mean 
outcome models for smoothing. The fundamental limitation of these approaches is that 
the action space is binary, and it is strongly desired to implement a multi-dimensional 
action space for combinations of various treatment regimes.  
 
 

5. Illustrative Example 
 
Let us illustrate the proposed method using a two-stage treatment with multiple (3) 
treatments in each stage. With the sample size of n = 500, the following information is 
available for each stage; see Table 1 for the snapshot of a dataset. 
 

stage 1: 3 covariates (x11, x12, x13) 
3 treatments/actions (a11, a12, a13) 

stage 2: 3 covariates (x21, x22, x23) 
3 treatments/actions (a21, a22, a23) 
 

 
 

The final outcome (reward) is R, which is a continuous variable we need to maximize. 
The higher the value is, the better the outcome is. The empirical treatment decision 
(action) is A, having a multinomial distribution with the probability vector given by 
 
 
 
The optimal treatment decision rule is optA, given for each stage as 
 

stage 1:        treatment 1 if (x11 > -0.54) and (x12 < 0.54) 
else treatment 2 if (x11 > -0.54) and (x13 < 0.54) 
else treatment 3 

stage 2:        treatment 1 if (x21 > 0.3) and (x23 < 0.46) 
else treatment 2 if (x22 > 0.3) and (x23 < 0.46) 
else treatment 3 

 

Based on the proposed methodology, it was found out that the optimal DTR at stage 2 has 
a significantly better accuracy than the empirical treatment decision. The optimal DTR at 
stage 1 also has a significantly better accuracy than the empirical treatment decision. 
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