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Abstract
With known cause of death, competing risk survival methods are applicable in estimating disease-specific
survival. Relative survival analysis may be used to estimate disease-specific survival when cause of death is
either unknown or subject to misspecification and not reliable for practical usage. This method is popular for
population-based cancer survival studies using registry data and does not require cause of death information.
The standard estimator is the ratio of all-cause survival in the cancer cohort group to the known expected
survival from a healthy reference population. Disease-specific death competes with other causes of mortality,
potentially creating dependence among the causes of death. The standard ratio estimate is only valid when
death from disease and death from other causes are independent. To relax the independence assumption, we
formulate dependence using a copula-based model. Likelihood based method is used to fit a parametric model
to the distribution of disease-specific death without cause of death information, where the copula is assumed
known and the distribution of other cause of mortality is derived from the reference population. Since the
dependence structure for disease related and other-cause mortality is nonidentifiable and unverifiable from the
observed data, we propose a sensitivity analysis, where the analysis is conducted across a range of assumed
dependence structures. We demonstrate the practical utility of our method through simulation studies and an
application to French breast cancer data.

1 Introduction

Cancer patients including breast, prostate, endometrial and thyroid cancer are at higher risk of dying from
heart disease and stroke than the general population. As the number of cancer survivors increases, so is the
rate of cardiovascular deaths (Sturgeon et al., 2019). Such medical research frequently yields multiple event
times which may consist of a terminal and or a non-terminal event.The practical concern for physicians is
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patient survival, suggesting an analysis based on the distribution of these event times or the disease-specific
hazard and or cumulative incidence function. Yet, the scientific interest in understanding disease-specific
mortality in the absence of failure types other than the disease of interest (net survival), a quantity which is
sometimes controversial but meaningful to many practitioners and or researchers by permitting comparisons
across populations with different background mortality. Other researchers prefer the latter quantity (crude
survival) in understanding disease-specific mortality in the presence of other competing causes.

With improvement in medical treatment and long follow-up in population-based disease registries, there
is a potential for lost to follow-up during which patients may either experience disease-specific death or death
from non-disease related causes (Brinkhof et al., 2010). In such competing risk settings where one death type
precludes the occurrence of other types, standard methodology assumes that cause of death is known Gichangi
and Vach, 2005). In the analysis of competing risks events from registry data, accurate documentation of
death is essential (Percy et al., 1981; Welch and Black, 2002; and Mieno et al., 2016). A challenge is that
documentation either may not be available, or may be incomplete or incorrect for cause of death, resulting in
problems distinguishing disease and non-disease related mortality. The issue is pronounced in Europe, where
comparison of disease-specific survival across countries is of interest. The World Health Organization (World
Health Organization, 1977) defines cause of death as ”the disease or injury which initiated the train of morbid
events leading directly to death”. However, population-based disease registries may not be harmonized across
countries, leading to imprecise cause of death definitions and different levels of documentation of cause of
death information. Often, the underlying cause of death may be unclear as hospital coding of cancer death
may not agree with the death certificate coding. As an example, Welch and Black (2002) reported that 41%

of deaths that occurred (within one month diagnosis and cancer directed surgery) were not attributable to
the coded cancer in the registry. When reliable cause of death information is available, it is often located in
separate databases, which may be costly to obtain and difficult to link with registry data.

Suppose that T = min{Tk : k = 1, 2, 3, · · · , TK} is the potentially observable failure time and
ε = {k : T = Tk} the failure type where T1, · · · ,K, with K ∈ N are the latent failure times associ-
ated with the K failure types. In registry data, K = 2 and ε = 1 implies death from cancer and ε = 2 implies
death from other competing causes. Standard methods for independently right censored survival data without
competing risks cannot generally be used to make inference about disease-specific survival. Under dependent
competing risks, where T1 and T2 are dependent, the Kaplan-Meier (Kaplan and Meier, 1958) curve estimates
a function of the cause-specific hazard function, defined in Section 2. The logrank test (Bland and Altman,
2004) assesses group differences between the cause-specific hazard function, while the standard proportional
hazards model (Cox, 1972) formulates the effects of covariates on the cause-specific hazard function. The
cumulative incidence function, defined in Section 2, gives disease-specific survival in the presence of com-
peting events. This quantity has been widely adopted in applications, with the Aalen-Johanson estimator
(Aalen and Johansen, 1978), Gray’s test Gray’s test (Gray, 1988), and the Fine-Gray model (Fine and Gray,
1999), providing analogs to the Kaplan-Meier curve, the logrank test, and the proportional hazards model for
the cumulative incidence function. Without cause of death information, these methods are not applicable.

To address disease-specific survival without reliable cause of death information, relative survival methods
have been proposed. Relative survival, SR(t) is the ratio of the observed survival rate in a group of cancer
patients, during a specified period, to the expected survival rate in a healthy reference population, (Ederer,
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1961). Mathematically,

SR(t) =
SO(t)

SP (t)
(1)

where at time t, SO(t) is the observed survival probability from the registry and SP (t) is the expected
survival from mortality tables. Existing literature has focused exclusively on the estimation of SR(t) under
the independence assumption, T1 ⊥ T2. Under independence, SO(t) = ST1

(t) · ST2
(t), SP (t) = ST2

(t)

which implies SR(t) = ST1
(t) where ST1

(t) and ST2
(t) are the survival probabilities corresponding to T1 and

T2 respectively. The relationship (1) can be rewritten in terms of hazard functions as λO(t) = λE(t)+λP (t)

(Cronin and Feuer, 2000), where λO(t) is the hazard in the disease registry, λE(t) is the so called excess
hazard among the cancer cohort, and λP (t) is the hazard from mortality tables. Under independence, λE(t) =

λT1(t) and λP (t) = λT2(t), where λTj (t) =
−dlogSTj (t)

dt , j = 1, 2, are the net hazard functions for cancer
and other cause mortality respectively. The disease-specific survival probability ST1(t) (net survival) under
the independence assumption is the target of relative survival analysis and corresponds to a hypothetical
population in which death from competing causes does not exist. It differs from the cumulative incidence
function which is commonly used to quantify disease-specific survival in analyses with known cause of death
information. SR(t) has an excess hazard (Suissa, 1999) interpretation and is no longer a survival probability
when formulated as in (1).

Relative survival based on independence methods was pioneered by Berkson and Gage (1950) and Ederer
et al. (1961) for nonparametric estimation of ST1

(t). A variant of this method was proposed by Hakuli-
nen (1982) to address the bias due to heterogeneity of patient withdrawal within subgroups. Pohar Perme
et al., (2012) demonstrated that these classical methods may be biased under certain censoring patterns. For
example, in population comparisons, such bias may arise from unmeasured covariates affecting the cancer
cohort group and the reference population from which rates of expected mortality are drawn. Rebolj Kodre
and Pohar Perme, (2013) studied biases associated with censoring and age distribution (at the time of can-
cer diagnosis) and proposed weighting corrections. Nixon et al. (1994) documented that event times and
censoring times are dependent on the age of the patients in a cancer study. Stratified methods (Sasieni and
Brentnall, 2017) based on age standardization of relative survival ratios may reduce such biases. Hakulinen
et al., (2011) developed alternative estimators valid under weaker assumption. However, the above estimation
methods for SR(t) all require independence of death from cancer and death from competing causes.

To relax the independence assumption de Lacerda et al. (2019), we formulate the dependence between the
latent failure times distributions for death from disease and death from competing causes using copula models
(Deheuvels, 1978). The copula function generates a joint distribution for the two event times, taking as input
their marginal distributions. Copulas allow a broad range of dependence structures and have been employed
widely in survival analysis, including bivariate event times (Oakes, 1982), competing risks with known cause
of failure (Heckman and Honoré, 1989), and semi-competing risks where one event time censors the other but
not vice versa (Fine et al., 2001). We employ such models with competing risks data from disease registries
where cause of death information is either not reliable or not available. Because the joint distribution of
the latent failure times is nonparametrically nonidentifiable (Tsiatis, 1975), we treat the copula function as
known. The marginal distribution of the time to disease-specific death is modelled parametrically with the
distribution of death from other causes drawn from the reference population. Likelihood-based inference
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is proposed. Because the joint distribution is unidentifiable nonparametrically and unverifiable from the
observed registry data, a sensitivity analysis is suggested in which disease-specific survival is estimated across
a range of rich dependence structures, specified via the copula function. To our knowledge, this is the first
attempt in accommodating dependence in relative survival analysis.

The main purpose of this method is in two folds. First, to provide an alternative estimator for net survival
(survival in a hypothetical world where other competing causes of death do not exist), and second to provide
a new estimator (crude survival) which is the survival in the real world where competing mortality exists
simultaneously with the disease of interest. The rest of this paper proceeds as follows. In section 2, we
present the data and copula model formulation for competing risks data. Section 3 describes the likelihood
estimation and inference procedure without cause of death information, as well as the proposed sensitivity
analysis. In section 4, we present the numerical illustrations including simulation results and application to
French breast cancer data. Section 5 discusses and concludes the paper.

2 Data and Model

We begin by defining traditional endpoints for competing risk data with known cause of death. The cause-
specific hazard, λk(t) is the instantaneous failure rate for occurrence of event ε = k at time t (Prentice et al.,
1978),

λk(t) = lim
δt→0

P (t ≤ T < t+ δt,K = k|T > t)

δt
(2)

and the cumulative incidence function Ck(t) is the proportion of patients who died from cause k by time t in
the presence of patients who might die from other causes. The Ck(t) can be expressed as Ck(t) = P (T ≤ t :

ε = k) =
∫ t

0
λk(s) · S(s)ds where S(t) = P (T > t) is the overall survival probability. Standard competing

risks methods with known cause of failure focus on estimation of λk(t) and Ck(t).
Without cause of death information, the registry data is simply time to death from any cause, T, which

may be right censored by lost to follow up. Let C be the time to right censoring, with the common assumption
being that T and C are independent. The observed data consist of Xi = min(Ti, Ci) and δi = I(Ti ≤ Ci),
where Ti and Ci are the failure and censoring times on individual i = 1, 2, 3, · · · , n. Relative survival
methods employing such data do not focus on the traditional competing risks endpoints λk(t) and Ck(t) but
rather on the latent failure time distributions with the corresponding survival functions ST1(t) and ST2(t).

To capture the dependence between T1 and T2, we employ copula models, which completely describe
the dependence structure and provide scale invariant measures of association (Venter, 2002; Müller, 1996;
Bäuerle and Müller, 1998; and Denuit et al., 1999). Suppose ψ is a function defined such that ψ : [0, 1] →
[0,+∞] with independent marginal distributions, uj = P (Tj ≤ tj) = FTj (tj) = 1 − STj (tj) ∀j ∈ (1, 2).
Then, the copula model for the distributions of T1 and T2

C(u1, u2) = P (T1 ≤ t1, T2 ≤ t2) = ψ
(
ψ−1(u1) + ψ−1(u2)

)
= FT1,T2

(t1, t2)

where ψ−1 is the inverse of ψ and ψ satisfies the Laplace-Stiltjes transform and Bernstein (1929) theorem.
McNeil and Nešlehová (2009) showed that the generator function ψ is completely monotone for non-negative
random variables with ψ(0) = 1, ψ′(·) < 0 and ψ′′(·) < 0.
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The most widely used scale invariant measures of association to characterize dependence are Spearman’s
rho (ρS) and Kendall’s tau (τk) correlation coefficients. The connection between the latter and the copula
generator function was shown by Genest and MacKay, (1986) as:

τk = 1 + 4

∫ 1

0

ψ−1(u)

ψ−1(u)′
du = 1− 4

∫ ∞
0

u(ψ(u))2du

with ψ−1′ being the derivative of ψ−1. While in theory, any copula may be used to link the marginal dis-
tributions of T1 and T2, in this paper, we focus on two popular Archimedean copulas, indexed by a single
dependence parameter θ having simple interpretations. The Gumbel copula:

C(u1, u2) = exp
[
−{(−log(u1))θ + (−log(u2))θ} 1

θ

]
(3)

with θ ∈ (1,+∞) and the Clayton copula:

C(u1, u2) = (u−θ1 + u−θ2 − 1)−
1
θ (4)

with θ ∈ (0,+∞). A special case of product copula model: C(u1, u2) = u1 · u2 is obtained when θ = 1 and
when θ → 0 for Gumbel and Clayton copulas respectively, which gives independence of T1 and T2. When
θ > 0, the Clayton copula is bounded by: C(u1, u2) ≤ θ(1 − u1 − u2) + (1 + θ)u1u2. As dependence
increases, that is θ → +∞, the Clayton copula approximates the Frećhet-Hoeffding upper bound, (Fréchet,
1951; and Hoeffding, 1940) giving perfect positive dependence.

3 Likelihood Estimation and Inference

We first formulate our model without covariates for the potentially dependent latent failure times T1 and T2.
The survival function for all-cause mortality time, T = min(T1, T2) at time t, is:

ST (t) = ST1
(t) + ST2

(t)− 1 + FT1,T2
(t, t)

= 1− FT1(t)− FT2(t) + FT1,T2(t, t) (5)

with the corresponding density function of T equalling

fT (t) = fT1
(t) + fT2

(t)− fT1,T2
(t, t) (6)

where fTj (t) =
dFTj (t)

dt , and fT1,T2(t) =
dFT1,T2 (t,t)

dt .
If censoring of T by C is noninformative, then the likelihood contribution for individual i is:

Li = fXi,∆i(Xi, δi) = [fT (Xi)]
δi [ST (Xi)]

1−δi (7)
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From equation (7), the full log-likelihood function based on independent observations is:

l(X,∆) =
n∑
i=1

(δi ∗ log fT (Xi) + (1− δi) ∗ logST (Xi))

=
n∑
i=1

δi ∗ log [fT1
(Xi) + fT2

(Xi)− fT1,T2
(Xi, Xi)]

+
n∑
i=1

(1− δi) ∗ log [ST1
(Xi) + ST2

(Xi)− 1 + FT1,T2
(Xi, Xi)] (8)

where (X,∆) = (Xi,∆i, i = 1, 2, 3, · · · , n). We specify a parametric model for FT1(t), with parameter of
interest η.

The general form of the probability density function of T1 at time t is fT1(t|η) with survival probabil-
ity ST1(t|η) = 1 − FT1(t|η) =

∫∞
t
fT1(s|η)ds. The distribution of T2 is assumed known and extracted

from the reference population with the usual assumption that disease-specific death is negligible in this ref-
erence population (Ederer, et al. 1961). This is illustrated in the French breast cancer data analysis in section
4.2. The copula distribution linking FT1(t) and FT2(t) may be specified using simple parametric copula
models such as the Archemedean copulas. The parameters in the copula model may be chosen for a pre-
specified dependence between T1 and T2, for example, Kendall’s tau (τk). In the numerical illustrations,
T1 was assumed to follow a Weibull distribution with parameter η = (λ, α) and probability density func-
tion fT1(t|η) = α

λ

(
t
λ

)α−1
exp

{
−
(
t
λ

)α}
because of its versatility to accommodate a wide range of hazard

shapes. We consider the Gumbel and the Clayton copulas in sections 2.3 and 2.4 for the joint distribution
of T1 and T2 as both copulas exhibit tail behaviours that mimic the mortality trend observed in the cancer
registry data. The bivariate joint distribution and density functions for the Gumbel copula are:

FT1,T2
(t, t|η) = exp

{
−
(

(−log (u1))
θ

+ (−log(u2))
θ
) 1
θ

}
fT1,T2(t, t|η) = FT1,T2(t, t|η) ·

((
− log (u1)

θ
)

+
(
−log (u2)

θ
)) 1

θ−1

×
((
− log(u1)θ−1 · fT1(t|η)

u1

)
+

(
−log (u2)

θ−1 · fT2(t|η)

u2

))
, (9)

while under the Clayton copula, the bivariate joint distribution and density functions are:

FT1,T2
(t, t|η) =

(
u−θ1 + u−θ2 − 1

)− 1
θ

fT1,T2
(t, t|η) =

FT1,T2(t, t|η)(
u−θ1 + u−θ2 − 1

) · (fT1(t|η)

uθ+1
1

+
fT2(t|η)

uθ+1
2

)
(10)

where u1 = FT1(t|η), u2 = FT2(t).
The maximum likelihood estimator (MLE) of η can be obtained by maximizing the log-likelihood func-

tion in (8) using Nelder-Mead algorithm (Nelder and Mead, 1965). Parameter estimation was sensitive to the
choice of initial parameter values when τk ∈ (0.6, 0.9) for small sample sizes with larger (> 50%) censoring
proportions. Because the model is highly nonlinear, computing may be unstable, particularly with small sam-
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ple sizes and high censoring proportions. We suggest using multiple starting values wherever possible and
taking the MLE to be the maximizer giving the largest value of the log likelihood across all starting values.
The usual regularity conditions for the MLE hold, given that the estimator converges in probability, that is
η̂

P−→ η and is asymptotically normal, η̂ ∼ N
(
η, IO(η)−1

)
with variance estimated using the inverse of the

observed information matrix (IO(η)−1) evaluated at the MLE, η̂. The observed information matrix is:

IO(η) =
∂2l(η|X,∆)

∂η∂ηT

=
n∑
i=1


δi · [fT (Xi)] ·

{
∂
∂ηfT (Xi)

}T {
∂
∂η [fT (Xi)]

}
[fT (Xi)]T [fT (Xi)]

+

n∑
i=1


(1− δi) · [ST (Xi)] ·

{
∂
∂η [ST (Xi)]

}T {
∂
∂η [ST (Xi)]

}
[ST (Xi)]T [ST (Xi)]


(11)

3.1 Sensitivity Analysis

Since the dependence structure for time to disease mortality (T1) and time to other competing mortality
(T2) is nonidentifiable and unverifiable from the observed registry data, we propose a sensitivity analysis,
where the analysis is conducted across a range of assumed dependence structures. The levels of dependence
represent the varying levels of dependent competing mortality possible in the observed registry data. For each
copula dependence structure, we estimate η with η̂ and compute FT1(t|η̂) to estimate relative survival. The
corresponding standard errors are obtained as the square root of the Delta method variance: V ar( ̂ST1(X)) =

g( ̂ST1(X)) · IO(η̂)−1 · gT ( ̂ST1(X)) where g(η) is the derivative of ST1(t|η) with respect to η. Due to the
complex nature of the likelihood, numerical approximation is used to estimate the information matrix in the
numerical illustrations in Section 4.

In the presence of informative censorship where T and C are dependent, we propose conditioning on
additional covariates Z in FT2

, (Sasieni and Brentnall, 2017; and Pohar Perme et al., 2012), where FT2
(t|Z)

is the conditional distribution of T2 given Z. Such covariates might include age, sex, period, as well as other
relevant demographic variables. Let Zi be the covariate observed on individual i = 1, · · · , n. The log-
likelihood function (8) is easily modified, where the likelihood contribution for individual i (= 1, · · · , n) is
(7) with FT2

(t|Zi) replacing FT2
(t) in fT (Xi) and ST (Xi). Here, we estimate η in FT1

(t|η) unconditionally
on Z to mitigate against the bias associated with these covariates Pohar Perme et al, 2012; and Sasieni and
Brentnall, 2017). The usual likelihood regularity conditions continue to hold, with the resulting estimator η̂
being consistent and asymptotically normal with variance which may be estimated using the inverse of the
observed information matrix evaluated at η̂.
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4 Numerical Illustrations

4.1 Simulation Studies

To evaluate the performance of our proposed method, we simulated data to mimic the French breast cancer
data set for sample sizes; 1000, 2500 and 5000 with 500 replications. The latent failure times for Tj ∼
Weibull(αj , λj) with probability density function defined above in section 3. The parameters for the Weibull
distribution for T1 were λ1 = 0.182 and α1 = 1.609, while those for T2 were λ2 = 0.742 and α2 = 0.693. In
the estimation of λ1, α1 for T1, λ2, α2 are assumed known for T2 and vice versa for estimation of λ2 and α2.
Noninformative censoring times were generated from a uniform distribution (0, γ), where γ was chosen for
10, 30 and 50% censoring. We consider the Gumbel copula with Kendall’s tau, τk = 1− 1

θ = 0, 0.25, 0.50,
and 0.75. Initial parameter values were randomly chosen from uniform distributions, with multiple starting
values wherever possible as described in section 3. We also simulated data from the Clayton copula. The
results are similar to those for the Gumbel copula and are described in the appendix.

Table 1 show the results for estimation of the model for T1 treating T2 as a competing event and for T2

treating T1 as a competing event. The bias is small decreasing to zero as the sample size increases for each
of the censoring levels. The empirical variance and the model based variance tend to agree and the coverage
is close to the nominal 0.95 level, particularly at larger sample sizes. The empirical variance decreases as the
sample size increases at roughly the expected root n rate.

4.2 Application to French Breast Cancer Data

In this section we analyze data from women between the ages of 18 and 96 years surviving breast cancer
in France from 1980 to 2011. The data were obtained from the Institut Curie breast cancer database. This
database contains records from 24, 458 nonmetastatic breast cancer patients treated at the Institut Curie. Out
of the 24, 458 breast cancer patients, 9, 885 (40.4%) died while 14, 573 were alive and administratively
censored on December 31st 2011. Five age group categories were considered for the estimation of relative
survival. 3, 970 were between the ages of 15 − 44, 6, 895 between the ages of 45 − 54, 6, 420 between the
ages of 55− 64, 4, 675 between the ages of 65− 74 and 2, 498 were in the 75− 99 age group category. We
individually matched the observed death or censoring time in the disease cohort group with a corresponding
time in the healthy reference population on age, sex, and year (date of diagnosis and the date of death or
censored) for each participant and for each follow-up period. The background mortality data from the Human
Mortality Database (https://www.mortality.org) was last modified on June 28, 2018. Within each follow-up
year, we assumed that λP (t) is piecewise constant (Dickman et al., 2004) for each period up to time X. The
cumulative hazard for each period based on λP (t) is calculated from the background survival function at the
beginning and end of the period. The cumulative hazard is then used to obtain λP (t) under the piecewise
constant assumption. The goal of matching in determining λT2 = λP is to mitigate the impact of age and
calendar year on potentially dependent censoring by C (Pohar Perme et al., 2012). We estimate 2, 5, 10, and
15−year relative survival assuming a Weibull distribution for T1 and a Gumbel copula model with differing
levels of dependence to specify the joint distribution for the distributions of T1 and T2. We compared the
estimates from our estimator with estimates from Pohar-Perme Pohar Perme et al. (2012), which require
independence of T1 and T2 with ST2

(t) derived from the background reference population.
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Tables 2 and 3 show the estimates of ST1(t) for cancer mortality both overall and stratified by age. The
parametric estimates under independence are similar to those from the Pohar-Perme method. This suggests
that the Weibull assumption is a reasonable fit to the data. One observes that as dependence increases, cancer
survival generally decreases. For a fixed dependence level, younger women tend to have higher cancer
survival rates than do older women, with marked reductions for the 65-74 and 75-99 age groups. There is
some instability in survival estimates at 15 years, especially for the older age groups, as evidenced by the
large standard errors. Perhaps, this may be due to small numbers of patients at risk at longer follow-up times.

The relative survival function under the independence assumption corresponds to an ideal world where
the only cause of death is breast cancer. This quantity can only be estimated under unverifiable dependence
assumptions between T1 and T2 using disease registry data. To account for uncertainty in dependence, we
recommend reporting a range of probabilities corresponding to differing levels of dependence. For exam-
ple, using results from table 2, the overall 5 year breast cancer survival from 1980 − 2011 is estimated to
be between 84.0-87.4% under dependence ranging from Kendall’s tau equal to 0 (independence) to 0.75

(strong dependence). These cancer survival probabilities may be meaningfully compared with those in other
populations having different background mortality rates and different dependence levels between T1 and T2.

Table 2: 2, 5, 10 and 15-yr overall relative survival for French women diagnosed with breast cancer between
1980 and 2011.

Independence Dependence: Levels of Competing Mortality
τk 0.00 0.25 0.50 0.75

Year PP a ST1(t)a SEb ST1(t)a SEb ST1(t)a SEb ST1(t)a SEb

2 95.6 96.0 6.99 95.8 6.96 95.4 7.23 94.7 7.74
5 84.8 87.4 9.01 86.6 9.10 85.5 9.31 84.0 9.53

10 71.0 72.8 11.01 71.4 10.99 69.8 10.91 68.0 10.67
15 59.5 59.5 12.22 57.9 12.08 56.3 11.74 54.9 11.19

a : ×10−2 , b : ×10−3 , τk : dependence, PP: Pohar-Perme,ST1
(t)a : parametric relative survival estimate at year t, SE: standard error for the relative survival estimate.

The results of a sensitivity analysis was conducted across different levels of dependence structures each
representing different competing mortality observed in the registry data. Figure 1 shows the 2, 5, 10 and
15-yr overall breast survival plots across a spectrum of dependence structures for women between the ages
of 18 and 96-yr living in France during 2008 and 2011.

5 Discussion and Conclusion

Our model formulation for competing risk data without cause of failure information is general, permitting
arbitrary but known copula functions. The distribution of other cause mortality is obtained from external ref-
erence data (Sarfati et al., 2010; Pohar Perme et al., 2012; Sasieni and Brentnall, 2017). We have undertaken
preliminary investigations of simultaneous estimation of the dependence parameter and the parameter in the
disease-specific survival distribution. There is evidence of instability, with care needed in the model speci-
fication to aid identifiability. This is expected, as there are similar identifability issues even when the cause
of failure is known. The proposed sensitivity analysis is a practical solution to this issue, providing a range
of estimates across different dependence levels not requiring simultaneous estimation of the dependence pa-
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Figure 1: Although the graphics looks like a straight line, these are actually survival curves spanning the
spectrum of dependence structures (0-0.9) each representing the levels of competing mortality.

rameter. The parametric model for disease-specific mortality is restrictive but may be flexible enough for
applications where the hazard is smooth over time, which is the case in cancer registry data. To relax the
parametric assumption, nonparametric techniques are currently being developed which should be valuable in
settings with more complex failure patterns.

The focus of relative survival analysis is the distribution of the latent event time for death from disease.
This endpoint has been advocated by many practitioners (Slud et al., 1988; Reason, 1990; and Louzada et al.,
2015), as it removes the impact of other cause mortality on the risk of disease-specific mortality, permitting
comparisons across populations with different background mortality. As an alternative, other work has con-
sidered estimation of the crude disease-specific survival, Ck(t), using the relative survival estimates and the
known reference hazard for other cause mortality (Cronin and Feuer, 2000). An analogous procedure could
be implemented using our copula based estimate of the distribution of T1 and would provide an assessment of
the sensitivity of the estimator of Ck under independence of T1 and T2. Such procedure would be of interest
to individuals who prefer crude disease-specific mortality to net disease-specific mortality. This is a topic for
future research.

In conclusion, our proposed methodology provides estimates for not only net survival but also crude
survival probabilities regardless of the dependence structure for competing mortality. On the contrary, Pohar-
Perme et al., (2012) estimator (with excess hazard that can become negative thereby increasing the survival
function which sometimes can exceed 1. Additionally, Schaffar et al., (2017) showed that this estimator can
produce erratic results when cancer patients had longer follow-up periods), and Cronin and Feuer (2000)
estimator focused exclusively on net survival and crude survival of death measures respectively under the
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Table 3: 2, 5, 10 and 15-yr age group specific breast cancer survival among French women diagnosed
between 1980 and 2011.

Independence Dependence: Levels of Competing Mortality
τk 0.00 0.25 0.50 0.75

Year Agegp PP a ST1(t)a SEb ST1(t)a SEb ST1(t)a SEb ST1(t)a SEb

2 15-44 95.8 94.9 20.90 94.9 20.73 94.8 20.73 94.8 20.68
45-54 97.1 96.6 16.44 96.5 16.13 96.3 16.27 96.2 16.40
55-64 95.7 96.1 13.72 96.0 13.49 95.7 13.70 95.3 14.12
65-74 95.1 97.0 08.50 96.8 08.54 96.2 09.61 95.1 11.60
75-99 91.5 96.5 07.94 95.6 08.93 93.4 12.44 89.9 17.16

5 15-44 85.1 86.9 23.70 86.8 23.64 86.7 23.62 86.7 23.35
45-54 88.6 90.4 19.39 90.1 19.36 89.8 19.45 89.7 19.28
55-64 85.8 88.1 17.72 87.6 17.71 86.9 17.87 86.6 17.66
65-74 84.1 86.9 16.71 85.8 17.01 84.2 17.71 82.5 18.09
75-99 72.3 77.1 24.21 72.7 24.85 67.1 25.08 61.7 24.00

10 15-44 71.9 74.4 26.88 74.2 26.84 74.0 26.75 74.1 26.62
45-54 78.3 80.1 22.83 79.6 22.80 79.2 22.73 79.2 22.34
55-64 73.4 74.5 22.03 73.5 21.97 72.7 21.74 72.7 21.08
65-74 68.4 67.2 25.38 65.0 25.32 63.0 24.72 62.3 23.20
75-99 44.6 43.1 34.83 37.0 32.55 33.0 28.61 31.1 24.35

15 15-44 62.5 63.2 29.03 63.0 28.96 62.9 28.83 63.0 28.72
45-54 70.8 70.5 25.31 69.8 25.24 69.4 25.00 69.6 24.51
55-64 63.5 61.9 24.81 60.7 24.62 59.9 24.11 60.3 23.20
65-74 50.3 48.7 30.06 46.2 29.46 44.7 27.92 45.3 25.47
75-99 19.9 20.27 35.56 15.9 32.33 14.5 27.98 15.4 23.33

a : ×10−2 , b : ×10−3 , τk : dependence, PP: Pohar-Perme,ST1
(t)a : parametric relative survival estimate at year t, SE: standard error for the relative survival estimate.

independence of competing mortality.
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Appendix

Parameter estimates for the Clayton copula

We simulated data to mimic the French breast cancer data set for sample sizes; 1000, 2500 and 5000 with
500 replications. The latent failure times for Tj ∼Weibull(αj , λj) with probability density function defined
in section 3. The parameters for the Weibull distribution for T1 were λ1 = 0.182 and α1 = 1.609, while
those for T2 were λ2 = 0.742 and α2 = 0.693. In the estimation of λ1, α1 for T1, λ2, α2 are assumed
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known for T2. Noninformative censoring times were generated from a uniform distribution (0, γ), where
γ was chosen for 10, 30 and 50% censoring. We consider the Clayton copula with Kendall’s tau, τk =
θ
θ+2 = 0, 0.25, 0.50, 0.75. Initial parameter values were randomly chosen from uniform distributions, with
multiple starting values wherever possible as described in section 3. The simulation results based on the
Clayton copula is presented in the table below:
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[36] Perme, M. P., Stare, J., & Estève, J. (2012). On estimation in relative survival. Biometrics, 68(1), 113-
120.

[37] Prentice, R. L., Kalbfleisch, J. D., Peterson Jr, A. V., Flournoy, N., Farewell, V. T., & Breslow, N. E.
(1978). The analysis of failure times in the presence of competing risks. Biometrics, 541-554.

[38] Reason, J. (1990). The contribution of latent human failures to the breakdown of complex systems.
Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 327(1241), 475-
484.

[39] Rebolj Kodre, A., & Pohar Perme, M. (2013). Informative censoring in relative survival. Statistics in

medicine, 32(27), 4791-4802.

[40] Sarfati, D., Blakely, T., & Pearce, N. (2010). Measuring cancer survival in populations: relative survival
vs cancer-specific survival. International journal of epidemiology, 39(2), 598-610.

[41] Sasieni, P., & Brentnall, A. R. (2017). On standardized relative survival. Biometrics, 73(2), 473-482.

[42] chaffar, R., Rachet, B., Belot, A., & Woods, L. M. (2017). Estimation of net survival for cancer pa-
tients: relative survival setting more robust to some assumption violations than cause-specific setting, a
sensitivity analysis on empirical data. European Journal of Cancer, 72, 78-83.

[43] Slud, E. V., Byar, D. P., Schatzkin, A., Prentice, R., & Kalbfleisch, J. (1988). Dependent competing
risks and the latent-failure model, Biometrics, Vol. 44, No. 4 (Dec., 1988), pp. 1203-1205.

[44] Sturgeon, K. M., Deng, L., Bluethmann, S. M., Zhou, S., Trifiletti, D. M., Jiang, C., ... & Zaorsky,
N. G. (2019). A population-based study of cardiovascular disease mortality risk in US cancer patients.
European heart journal, 40(48), 3889-3897.

[45] Suissa, S. (1999). Relative excess risk: an alternative measure of comparative risk. American journal of

epidemiology, 150(3), 279-282.

[46] Tsiatis, A. (1975). A nonidentifiability aspect of the problem of competing risks. Proceedings of the

National Academy of Sciences, 72(1), 20-22.

 
2567



[47] Venter, G. G. (2002, March). Tails of copulas. In Proceedings of the Casualty Actuarial Society (Vol.
89, No. 171, pp. 68-113).

[48] Welch, H. G., & Black, W. C. (2002). Are deaths within 1 month of cancer-directed surgery attributed
to cancer?. Journal of the National Cancer Institute, 94(14), 1066-1070.

[49] World Health Organization. Dissemination of Statistical Information, (1977). Manual of Mortality Anal-
ysis: a manual on methods of analysis of national mortality statistics for public health purposes. World
Health Organization.

 
2568




