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Abstract

The goal of this paper is to show that a single robust estimator of the mean of a multivariate

Gaussian distribution can enjoy five desirable properties. First, it is computationally tractable in

the sense that it can be computed in a time which is at most polynomial in dimension, sample size

and the logarithm of the inverse of the contamination rate. Second, it is equivariant by translations

and orthogonal transformations. Third, it has a high breakdown point equal to 0.5, and a nearly-

minimax-rate-breakdown point approximately equal to 0.28. Fourth, it is minimax rate optimal, up

to a logarithmic factor, when data consist of independent observations corrupted by adversarially

chosen outliers. Fifth, it is asymptotically optimal when the rate of contamination tends to zero. The

estimator is obtained by an iterative reweighting approach. Each sample point is assigned a weight

that is iteratively updated using a convex optimization problem. We also establish a dimension-free

non-asymptotic risk bound for the expected error of the proposed estimator. It is the first of this

kind results in the literature and involves only the effective rank of the covariance matrix.
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1. Introduction

Robust estimation is one of the most fundamental problems in statistics. Its goal is to de-

sign efficient procedures capable of processing data sets contaminated by outliers, so that

these outliers have little influence on the final result. The notion of outlier being hard to de-

fine for a single data point, it is also hard, inefficient and often impossible to clean data by

removing the outliers. Instead, one can build methods that take as input the contaminated

data set and provide as output an estimate which is not very sensitive to the contamina-

tion. Recent advances in data acquisition and computational power provoked a revival of

interest in robust estimation and learning, with a focus on finite sample results and compu-

tationally tractable procedures. This was in contrast with more traditional studies analyzing

asymptotic properties of statistical methods.

This paper builds on recent advances made in robust estimation and suggests a procedure

that has attractive properties both from asymptotic and finite-sample points of view. Fur-

thermore, it is computationally tractable and its statistical complexity depends optimally on

the dimension. As a matter of fact, we even show that what really matters is the intrinsic

dimension, defined in the Gaussian model as the effective rank of the covariance matrix.

Note that in the framework of robust estimation, the high-dimensional setting is qualita-

tively different from the one dimensional setting. This qualitative difference can be seen

at two levels. First, from a computational point of view, the running time of several robust

methods scales poorly with dimension. Second, from a statistical point of view, while a

simple “remove than average” strategy might be successful in low-dimensional setting, it

can easily be seen to fail in the high dimensional case. Indeed, assume that ε ∈ (0, 1/2)
and n ∈ N are two numbers and the data consist of n(1− ε) points (inliers) drawn from a

p-dimensional Gaussian distribution Np(0, Ip) (where Ip is the p × p identity matrix) and
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εn points (outliers) equal to a given vector u. A simple strategy consists in removing all

the points of Euclidean norm larger than 2
√
p and averaging all the remaining points. If the

norm of u is equal to
√
p, one can check that the distance between this estimator and the

true mean µ = 0 is of order
√
p/n + ε‖u‖2 =

√
p/n + ε

√
p. This error rate is provably

optimal in the small dimensional setting p = O(1), but sub-optimal as compared to the op-

timal rate
√
p/n+ε. The reason of sub-optimality is that the individually harmless outliers,

lying close to the point cloud, have a strong joint impact on the quality of estimation.

We postpone a review of the relevant prior work to Section 4 and provide here a summary

of our contributions. In the context of a data set subject to a fully adversarial corruption, we

introduce a new estimator of the Gaussian mean that enjoys the following properties (the

precise meaning of these properties is given in the next section):

• it is computable in polynomial time,

• it is equivariant with respect to translations and orthogonal transformations,

• it has a high (minimax) breakdown point: ε∗ = (5−
√
5)/10 ≈ 0.28,

• it is minimax-rate-optimal, up to a logarithmic factor,

• it is asymptotically efficient when the rate of contamination tends to zero,

• for inhomogeneous covariance matrices, it achieves a better sample complexity than

all the other previously studied methods.

2. Desirable properties of a robust estimator

We consider the setting in which the sample points are corrupted versions of independent

and identically distributed random vectors drawn from a p-variate Gaussian distribution

with mean µ∗ and covariance matrix Σ. In what follows, we will assume that the rate

of contamination and the covariance matrix are known and, therefore, can be used for

constructing an estimator of µ∗.

Definition 1. We say that the distribution Pn of data X1, . . . ,Xn is Gaussian with ad-

versarial contamination, denoted by Pn ∈ GAC(µ∗,Σ, ε) with ε ∈ (0, 1/2) and Σ � 0,

if there is a set of n independent and identically distributed random vectors Y 1, . . . ,Y n

drawn from Np(µ
∗,Σ) satisfying

∣∣{i : Xi 6= Y i}
∣∣ ≤ εn.

The sample points Xi with indices in the set O = {i : Xi 6= Y i} are called outliers,

while all the other sample points are called inliers. Assumption GAC allows both the set

of outliers O and the outliers themselves to be random and to depend arbitrarily on the

values of Y 1, . . . ,Y n. The Statistician aims at estimating µ∗ as accurately as possible, the

accuracy being measured by the expected estimation error:

RPn
(µ̂n,µ

∗) = ‖µ̂n − µ∗‖L2(Pn) =

( p∑

j=1

EPn
[(µ̂n − µ∗)2j ]

)1/2

.

The goal of the Statistician is to find an estimator µ̂n that minimizes the worst-case risk

Rmax(µ̂n,Σ, ε) = sup
µ∗∈Rp

sup
Pn∈GAC(µ∗,Σ,ε)

RPn
(µ̂n,µ

∗).
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Let rΣ = Tr(Σ)/‖Σ‖op be the effective rank of Σ. Using the theory developed by

[Chen et al., 2016, 2018], one can check that

inf
µ̂n

Rmax(µ̂n,Σ, ε) ≥ c‖Σ‖1/2op

(√
rΣ

n
+ ε

)
(1)

for some constant c > 0, where the infimum is over all measurable functions of (X1, . . . ,Xn).
This naturally leads to the following definition.

Definition 2. We say that the estimator µ̂n is minimax rate optimal (in expectation), if there

are universal constants c1, c2 and C such that

Rmax(µ̂n,Σ, ε) ≤ C‖Σ‖1/2op

(√
rΣ

n
+ ε

)

for every (n,Σ, ε) satisfying rΣ ≤ c1n and ε ≤ c2.

The iteratively reweighted mean estimator, introduced in the next section, is not minimax

rate optimal but is very close to being so. Indeed, it is provably minimax rate optimal up to

a
√
log(1/ε) factor.

Definition 3. We say that µ̂n is an asymptotically efficient estimator of µ∗, if when ε = εn
tends to zero sufficiently fast, as n tends to infinity, we have

Rmax(µ̂n,Σ, ε) ≤ ‖Σ‖1/2op

√
rΣ

n

(
1 + on(1)

)
.

One can infer from (1) that a necessary condition for the existence of asymptotically effi-

cient estimator is ε2n = o(rΣ/n). We show in the next section that this condition is almost

sufficient, by proving that the iteratively reweighted mean estimator is asymptotically effi-

cient provided that ε2n log(1/εn) = o(rΣ/n).

The last notion that we introduce in this section is the breakdown point, the term being

coined by Hampel [1968], see also [Donoho and Huber, 1983]. Roughly speaking, the

breakdown point of a given estimator is the largest proportion of outliers that the estimator

can support without becoming infinitely large.

Definition 4. We say that ε∗n ∈ [0, 1/2] is the (finite-sample) breakdown point of the esti-

mator µ̂n, if

Rmax(µ̂n,Σ, ε) < +∞, ∀ε < ε∗n

and Rmax(µ̂n,Σ, ε) = +∞, for every ε > ε∗n.

One can check that the breakdown points of the componentwise median and the geometric

median (see the definition of µ̂GM
n in (3) below) are equal to 1/2. Unfortunately, the min-

imax rate of these methods is strongly sub-optimal, see [Chen et al., 2018, Prop. 2.1] and

[Lai et al., 2016, Prop. 2.1]. Among all rate-optimal (up to a polylogarithmic factor) robust

estimators, Tukey’s median is the one with highest known breakdown point equal to 1/3
[Donoho and Gasko, 1992]. This notion of breakdown point, well adapted to estimators

that do not rely on the knowledge of ε, becomes less relevant in the context of known ε. In-

deed, if a given estimator µ̂n(ε) is proved to have a breakdown point equal to 0.1, one can

consider instead the estimator µ̃n(ε) = µ̂n(ε)1(ε < 0.1) + µ̂GM
n 1(ε ≥ 0.1), which will

have a breakdown point equal to 0.5. For this reason, it appears more appealing to consider

a different notion that we call rate-breakdown point, and which is of the same flavor as the

δ-breakdown point defined in [Chen et al., 2016].
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Algorithm 1: Iteratively reweighted mean estimator

Input: data X1, . . . ,Xn ∈ R
p, contamination rate ε and Σ

Output: parameter estimate µ̂
IR
n

Initialize: compute µ0 as a minimizer of
∑n

i=1 ‖Xi − µ‖2
Set K = 0 ∨

⌈
log(4rΣ)−2 log(ε(1−2ε))

2 log(1−2ε)−log ε−log(1−ε)

⌉
.

For k = 1 : K
For i = 1 : n

Set Mi = (Xi − µk−1)(Xi − µk−1)⊤

EndFor

Compute current weights:

w ∈ arg min
(n−nε)‖w‖∞≤1

λmax

( n∑

i=1

wiMi −Σ

)
∨ 0.

Update the estimator: µ̂
k =

∑n

i=1 wiXi.

EndFor

Return µ̂
K

.

Definition 5. We say that ε∗r ∈ [0, 1/2] is the r(n,Σ, ε)-breakdown point of the estimator

µ̂n for a given function r : N× Sp
+ × [0, 1/2), if for every ε < ε∗r ,

sup
n,p

Rmax(µ̂n(ε),Σ, ε)

r(n,Σ, ε)
< +∞.

In the context of Gaussian mean estimation, if the previous definition is applied with

r(n,Σ, ε) = ‖Σ‖op

(√
rΣ/n + ε), we call the corresponding value the minimax-rate-

breakdown point. Similarly, if r(n,Σ, ε) = ‖Σ‖op

(√
rΣ/n + ε

√
log(1/ε)), we call the

corresponding value the nearly-minimax-rate-breakdown point.

3. Iterative reweighting approach

In this section, we define the iterative reweighting estimator that will be later proved to

enjoy all the desirable properties. To this end, we set

X̄w =
n∑

i=1

wiXi, G(w,µ) = λmax,+

( n∑

i=1

wi(Xi − µ)(Xi − µ)⊤ −Σ

)
(2)

for any pair of vectors w ∈ [0, 1]n and µ ∈ R
p. The main idea of the proposed methods is

to find a weight vector ŵn belonging to the probability simplex

∆
n−1 =

{
w ∈ [0, 1]n : w1 + . . .+ wn = 1

}

that mimics the ideal weight vector w∗ defined by w∗
j = 1(j ∈ I)/|I|, so that the weighted

average X̄ŵn
is nearly as close to µ∗ as the average of the inliers.

The precise definition is as follows. We start from an arbitrary initial estimator µ̂0 of µ∗.

To give a concrete example, and also in order to guarantee equivariance by translations and

orthogonal transformations, we assume that µ̂0 is the geometric median:

µ̂0 = µ̂GM
n ∈ arg min

µ∈Rp

n∑

i=1

‖Xi − µ‖2. (3)
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Definition 6. We call iteratively reweighted mean estimator, denoted by µ̂IR
n , the K-th

element of the sequence {µ̂k; k = 0, 1, . . .} starting from µ̂0 in (3) and defined by the

recursion

ŵk ∈ arg min
(n−nε)‖w‖∞≤1

G(w, µ̂k−1), µ̂k = X̄
ŵ

k , (4)

where the minimum is over all weight vectors w ∈ ∆
n−1 satisfying maxj wj ≤ 1/(n−nε)

and the number of iteration is

K = 0
∨⌈

log(4rΣ)− 2 log(ε(1− 2ε))

2 log(1− 2ε)− log ε− log(1− ε)

⌉
. (5)

The idea of computing a weighted mean, with weights measuring the outlyingness of the

observations goes back at least to [Donoho, 1982, Stahel, 1981]. Perhaps the first idea

similar to that of minimizing the largest eigenvalue of the covariance matrix was that of

minimizing the determinant of the sample covariance matrix over all subsamples of a given

cardinality [Rousseeuw, 1985, 1984]. It was also observed in [Lopuhaä and Rousseeuw,

1991] that one can improve the estimator by iteratively updating the weights. An overview

of these results can be found in [Rousseeuw and Hubert, 2013].

Note that the value of K provided above is tailored to the case where the initial estimator

is the geometric median. Clearly, K depends only logarithmically on the dimension and

K = Kε tends to 2 when ε goes to zero. The rest of this section is devoted to showing

that the iteratively reweighted estimator enjoys all the desirable properties announced in

the introduction.

Fact 1

The estimator µ̂IR
n is computationally tractable.

In order to check computational tractability, it suffices to prove that each iteration of the

algorithm can be performed in polynomial time. Since the number of iterations depends

logarithmically on p, this will suffice. Note now that the optimization problem in (4) is

convex and can be cast into a semi-definite program. Indeed, it is equivalent to minimizing

a real value t ≥ 0 over all the pairs (t,w) satisfying the constraints

w ∈ ∆
n−1, ‖w‖∞ ≤ 1

n(1− ε)
,

n∑

i=1

wi(Xi − µ̂k−1)(Xi − µ̂k−1)⊤ � Σ+ tIp.

The first two constraints can be rewritten as a set of linear inequalities, while the third

constraint is a linear matrix inequality.

Fact 2

The estimator µ̂IR
n is translation and orthogonal transformation equivariant.

The equivariance mentioned in this statement should be understood as follows. If we denote

by µ̂IR
n,X the estimator computed for data X1, . . . ,Xn and by µ̂IR

n,X′ the one computed for
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data X ′
1, . . . ,X

′
n with X ′

i = a+UXi, where a ∈ R
p and U is a p×p orthogonal matrix,

then µ̂IR
n,X′ = a+Uµ̂IR

n,X . To prove this property, we first note that

min
µ∈Rp

n∑

i=1

‖X ′
i − µ‖2 = min

µ∈Rp

n∑

i=1

‖Xi −U
⊤(µ− a)‖2.

This implies that µ̂GM
n,X = U

⊤(µ̂GM
n,X′ − a), which is equivalent to µ̂GM

n,X′ = a + Uµ̂GM
n,X .

Therefore, the initial value of the recursion is equivariant. If we add to this the fact that1

GX(w,µ) = GX′(w,a+Uµ) for every (w,µ), we get the equivariance of µ̂IR
n .

Fact 3

The breakdown point ε∗n and the nearly-minimax-rate-breakdown point ε∗r
of µ̂IR

n satisfy, respectively ε∗n = 0.5 and ε∗r ≥ (5−
√
5)/10 ≈ 0.28.

It can be proved that if X1, . . . ,Xn satisfy GAC(µ∗,Σ, ε), there is a random variable Ξ
depending only on ζi = Y i − µ∗, i = 1, . . . , n, such that

‖X̄w − µ∗‖2 ≤
√

ε(1− ε)

1− 2ε
G(w,µ)1/2 + Ξ, ∀µ ∈ R

p, (6)

for every w ∈ ∆
n−1 such that n(1 − ε)‖w‖∞ ≤ 1. Inequality (6) is one of the main

building blocks of the proof of Facts 3 to 5. This inequality, as well as inequalities (8) and

(9) below will be formally stated and proved in subsequent sections. To check Fact 3, we

set αε =
√
ε(1− ε)/(1− 2ε) and note that

‖µ̂k − µ∗‖2 = ‖X̄
ŵ

k − µ∗‖2 ≤ αεG(ŵk, µ̂k−1)1/2 + Ξ

≤ αεG(w∗, µ̂k−1)1/2 + Ξ

≤ αε

(
G(w∗, X̄w∗) + ‖X̄w∗ − µ̂k−1‖22

)1/2
+ Ξ

≤ αε

(
G(w∗,µ∗) + ‖X̄w∗ − µ̂k−1‖22

)1/2
+ Ξ

≤ αε ‖µ̂k−1 − µ∗‖2 + Ξ̃,

where Ξ̃ = αε

(
G(w∗,µ∗)1/2 + ‖ξ̄w∗‖2

)
+ Ξ. Unfolding this recursion, we get 2

‖µ̂IR
n − µ∗‖2 = ‖µ̂K − µ∗‖2 ≤ αK

ε ‖µ̂0 − µ∗‖2 +
Ξ̃

1− αε
. (7)

The geometric median µ̂0 = µ̂GM
n having a breakdown point equal to 1/2, we infer from

the last display that the error of the iteratively reweighted estimator remains bounded after

altering ε-fraction of data points provided that αε < 1. This implies that the breakdown

point is at least equal to the solution of the equation
√

ε(1− ε) = 1 − 2ε, which yields

ε∗ ≥ (5 −
√
5)/10. Moreover, if ε ∈ [(5 −

√
5)/10, 1/2], then the number of iterations

K equals zero and the iteratively reweighted mean coincides with the geometric median.

Therefore, its breakdown point is 1/2.

1We use here the notation GX(w,µ) to make clear the dependence of G in (2) on Xis. We also stress that

when the estimator is computed for the transformed data X ′
i, the matrix Σ is naturally replaced by UΣU

⊤.
2Here and in the sequel αK

ε stands for K-th power of αε.
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Fact 4

The estimator µ̂IR
n is nearly minimax rate optimal, in the sense that its

worst-case risk is of order ‖Σ‖1/2op

(√
rΣ/n+ ε

√
log(1/ε)

)
.

Without loss of generality, we assume that ‖Σ‖op = 1 so that rΣ = Tr(Σ). We can always

reduce ourselves to this case by considering scaled data points Xi/‖Σ‖1/2op instead of Xi.

Combining (7) and the triangle inequality, we get

‖µ̂IR
n − µ∗‖L2

≤ αK
ε ‖µ̂GM

n − µ∗‖L2
+

‖Ξ̃‖L2

1− αε
.

It is not hard to check that ‖µ̂GM
n − µ∗‖L2

≤ 2
√

rΣ/(1 − 2ε). Furthermore, the choice of

K in (5) is made in such a way that 2αK
ε

√
rΣ ≤ ε(1− 2ε). This implies that

‖µ̂IR
n − µ∗‖L2

≤ ε+
‖Ξ̃‖L2

1− αε
.

The last two building blocs of the proof are the following3 inequalities:

E[G(w∗,µ∗)] ≤ C
(
1 +

√
rΣ/n

)√
rΣ/n, (8)

‖Ξ‖L2
≤

√
rΣ/n(1 + C

√
ε) + C

√
ε(rΣ/n)

1/4 + Cε
√
log(1/ε), (9)

where C > 0 is a universal constant. In what follows, the value of C may change from one

line to the other. We have

‖Ξ̃‖L2
≤ αε

(
‖G(w∗,µ∗)1/2‖L2

+ ‖ξ̄w∗‖L2

)
+ ‖Ξ‖L2

≤ C
√
ε
(
E

1/2[G(w∗,µ∗)] +
√

rΣ/n
)
+ ‖Ξ‖2L2

≤ Cε
(
(rΣ/n)

1/4 +
√

rΣ/n
)
+ ‖Ξ‖L2

≤
√

rΣ/n(1 + C
√
ε) + C

√
ε(rΣ/n)

1/4 + Cε
√

log(1/ε)

≤ C
√

rΣ/n+ Cε
√

log(1/ε). (10)

Returning to (7) and combining it with (10), we get the claim of Fact 4 for every ε ≤ ε0,

where ε0 is any positive number strictly smaller than (5 −
√
5)/10. This also proves the

second claim of Fact 3.

Fact 5

In the setting ε = εn → 0 so that ε2 log(1/ε) = o(rΣ/n) when n → ∞,

the estimator µ̂IR
n is asymptotically efficient.

The proof of this fact follows from (7) and (9). Indeed, if ε2 log(1/ε) = o(rΣ/n), (9)

implies that

‖Ξ̃‖2L2
≤ rΣ

n

(
1 + o(1)

)
.

Injecting this bound in (7) and using the fact that ε tends to zero, we get the claim of Fact 5.

3Inequality (8) is [Koltchinskii and Lounici, 2017, Theorem 4].
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4. Relation to prior work and discussion

Robust estimation of a mean is a statistical problem studied by many authors since at least

sixty years. It is impossible to give an overview of all existing results and we will not

try to do it here. The interested reader may refer to the books [Maronna et al., 2006] and

[Huber and Ronchetti, 2009]. We will rather focus here on some recent results that are the

most closely related to the present work. Let us just recall that Huber and Ronchetti [2009]

enumerates three desirable properties of a statistical procedure: efficiency, stability and

breakdown. We showed here that iteratively reweighted mean estimator possesses these

features and, in addition, is equivariant and computationally tractable.

To the best of our knowledge, the form
√
p/n+ε of the minimax risk in the Gaussian mean

estimation problem has been first obtained by Chen et al. [2018]. They proved that this rate

holds with high probability for the Tukey median, which is known to be computationally

intractable in the high-dimensional setting. The first nearly-rate-optimal and computation-

ally tractable estimators have been proposed by Lai et al. [2016] and Diakonikolas et al.

[2016]4. The methods analyzed in these papers are different, but they share the same idea:

If for a subsample of points the empirical covariance matrix is sufficiently close to the theo-

retical one, then the arithmetic mean of this subsample is a good estimator of the theoretical

mean. Our method is based on this idea as well, which is mathematically formalized in (6).

Further improvements in running times—up to obtaining a linear in np computational

complexity in the case of a constant ε—are presented in [Cheng et al., 2019]. Some lower

bounds suggesting that the log-factor in the term ε
√

log(1/ε) cannot be removed from the

rate of computationally tractable estimators are established in [Diakonikolas et al., 2017].

In a slightly weaker model of corruption, [Diakonikolas et al., 2018] propose an iterative

filtering algorithm that achieves the optimal rate ε without the extra factor
√
log(1/ε). On

a related note [Collier and Dalalyan, 2019] shows that in a weaker contamination model

termed as parametric contamination, the carefully trimmed mean can achieve a better rate

than that of the coordinatewise/geometric median.

An overview of the recent advances on robust estimation with a focus on computational

aspects can be found in [Diakonikolas and Kane, 2019]. Extensions of these methods to

the sparse mean estimation are developed in [Balakrishnan et al., 2017, Diakonikolas et al.,

2019b]. All these results are proved to hold on an event with a prescribed probability, see

[Bateni and Dalalyan, 2019] for a relation between results in expectation and those with

high probability, as well as for the definitions of various types of contamination.
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H. P. Lopuhaä and P. J. Rousseeuw. Breakdown points of affine equivariant estimators
of multivariate location and covariance matrices. Ann. Statist., 19(1):229–248, 1991.

R. Maronna, D. Martin, and V. Yohai. Robust Statistics: Theory and Methods. Wiley
Series in Probability and Statistics. Wiley, 2006.

P. Rousseeuw. Multivariate estimation with high breakdown point. In Mathematical
statistics and applications, Vol. B (Bad Tatzmannsdorf, 1983), pages 283–297. Rei-
del, Dordrecht, 1985.

P. Rousseeuw and M. Hubert. High-breakdown estimators of multivariate location and
scatter. In Robustness and complex data structures, pages 49–66. Springer, Heidel-
berg, 2013.

P. J. Rousseeuw. Least median of squares regression. J. Amer. Statist. Assoc., 79(388):
871–880, 1984.

W. Stahel. Robuste schätzungen: infinitesimale optimalität und schätzungen von ko-
varianzmatrizen, 1981.

 
2550


	Introduction
	Desirable properties of a robust estimator
	Iterative reweighting approach
	Relation to prior work and discussion



