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Abstract
We propose a robust rank based variable selection method for a functional linear regression model

with multiple explanatory functions and a scalar response. The procedure extends rank based group
variable selection to functional variable selection and the proposed estimator is robust in the pres-
ence of outliers in predictor function space as well as response space. The performance of the
proposed robust method is demonstrated with an extensive simulation study and real data examples.
We prove the proposed method with a group-adaptive penalty achieves the oracle property.
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1. Introduction

One of the important topics in statistics is the study of the relationship among variables
via regression models. Linear regression analysis, in particular, is fundamental for the
functional data analysis which is the analysis of infinite-dimensional variables as curves,
images, and time-variant inputs. We consider a functional multiple linear regression model
with p functional predictors and a continuous scalar response. When a basis expansion
with d basis is used for functional predictors and functional parameters, there are d × p
predictors in the multiple grouped linear regression model with p groups. Thus identifying
the subset of significant predictor functions becomes a group variable selection problem
rather than a single variable level selection problem.

There are various variable selection methods regarding a group structure with regular-
ization method. Some elaborated techniques have been devised by Yuan and Lin [18] and
Wang and Leng [16]. Yuan and Lin [18] used the least squared loss with the weighted
group `2 penalty to suggest the group Lasso. Wang and Leng [16] obtained the consistency
and the oracle property of their estimator by proposing the adaptive group Lasso. By using
these least square based group variable selection methods, Gertheiss et al. [2] proposed a
variable selection method for multiple functional linear regression models after converting
a functional model to a grouped discrete linear model.

The aforementioned techniques are based on the least squared loss (LS) minimization.
They are efficient if the true underlying distribution follows the normal distribution. How-
ever, the LS type of objective functions is vulnerable when the data contain outliers or are
heavy-tailed. We develop another version of the group Lasso technique that is applied to a
functional linear model with the shortcoming of LS methods removed.

We borrow a rank-based variable selection method among several trials to overcome
those drawbacks and to achieve robustness in multiple linear regression models. Mi-
akonkana et al. [11] proposed a rank-based group variable selection method with a weighted
rank-based loss function same as the one in Wang and Li [17], with a group adaptive `1
norm penalty. In addition, Miakonkana et al. showed their proposed method achieves the
oracle property.
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Most variable selection techniques for a functional regression model were based on
the regularization method with LS loss. In this point of view, Matsui and Konishi [10]
used group SCAD penalty to select variables for a functional linear model with a scalar
response and functional predictors. Mingotti et al. [12] proposed “Functional Lasso” for
a functional response with scalar predictors by adapting Lasso method to functional linear
model. Hone and Lian [5] applied the Lasso regularization method for a functional response
with functional predictors to solve a linear ordinary differential equation. However, we
consider the functional aspects of coefficient function β(t) rather than applying methods
for group variable selection directly. Gertheiss et al. [2] included the functional smoothness
condition of coefficient functions in the penalty term while penalizing the sum of `2 norm
of the coefficient functions for the generalized linear functional regression model. The LS
loss function has the same drawback under the existence of outliers even though the `2
penalty selects functional variables. To overcome this, some robust loss approach has been
proposed. Pannu and Billor [14] applied the least absolution deviation method to functional
linear model using Gertheiss’ penalty function and showed a robustness of their method.
Also, we consider the smoothness property of functions to define a regularization method
with a robust loss functions.

To this end, we propose a robust variable selection method for a functional linear re-
gression model. The rank-based functional regression model is developed by modifying the
work of Miakonkana et al. [11] with the penalty function in Gertheiss et al. [2]. Since the
model has a weighted rank-based (RB) loss function, it has robustness in both the predictor
space and the response space. The proposed model conserves the smoothness of coefficient
functions while selecting significant functional variables. Also, the adaptive penalty term
implies the oracle property.

In this paper, we discretize a functional linear model as a grouped linear model and
introduce the proposed model in Section 2. In Section 4, we present the simulation results
to examine the properties of proposed method. An application to Japanese weather data is
presented in Section 5. In Appendix, we prove the oracle property of estimators from the
proposed method as well.

2. Methodology

We understand a functional linear model as a grouped multiple linear regression with a fi-
nite basis expansion on a functional space. To express a functional coefficient only with the
sparsity between groups, we need as many nonzero parameter inside the group as possible.
Thus, we use the `2 group penalty rather than `1 group penalty. We propose a robust rank-
based method for functional data after converting a functional linear model to a grouped
multiple linear regression model.

2.1 Functional Linear Model with Group `2 Penalty

Consider a functional multiple linear regression model with p functional predictors and a
continuous scalar response defined by Equation (1).

yi = α+

p∑
j=1

∫
T
Xij(t)βj(t)dt+ εi, i = 1, . . . , n, (1)

where yi is a scalar and Xij(t)’s on T , the support of functional covariates, are L2 inte-
grable and independent with each other, βj(t)’s are functional parameters which are also

L2 integrable, and εi
iid∼ F , where F is some distribution with finite Fisher information.
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We use the reformulation of functional model in Equation (1) as in Gertheiss et. al. [2]. We
express the functional model in Equation (1) as a discretized form over {t1, . . . , tm} ∈ T
with an appropriate basis {φ(t)} and an appropriate finite number of basis d. With the fi-
nite basis φj1, . . . , φjd, the parameter function βj(t) can be written as a finite dimensional
approximation

βj(t) ≈
d∑
`=1

cj`φ`(t). (2)

Then we can approximate the integration in (1) as∫
T
Xij(t)βj(t)dt ≈

m∑
s=1

Xij(ts)βj(ts)(ts − ts−1) (3)

≈
∑
`

(∑
s

Xij(ts)φ`(ts)δs

)
cj` (4)

=
∑
`

Φij`cj` (5)

= ΦT
ijcj (6)

where i = 1, . . . , n, j = 1, . . . , p, δs = ts−ts−1, cj = (cj1, . . . , cjd)
T , Φij = (Φij1, . . . ,Φijd)

T

and Φij` =
∑

sXij(ts)φ`(ts)δs.
The discretized version of our model is written as

yi = α+

p∑
j=1

ΦT
ijcj + εi, i = 1, . . . , n (7)

which is a grouped multiple linear regression model with p groups, d predictors in each
group, and n observations. The functional linear regression model in Equation (1) becomes
a discrete grouped regression model to estimate grouped parameters cj’s for j = 1, . . . , p.
Gertheiss et. al. proposed the objective function with L2 loss and `2 group penalty.

n∑
i=1

(
yi − α−

p∑
j=1

ΦT
ijcj

)2
+

p∑
j=1

Pλ,ϕ(βj) (8)

where
Pλ,ϕ(βj) = λ(||βj ||22 + ϕ||β′′j ||22)1/2, (9)

|| · ||2 is the functional L2, and β′′j (t) = d2βj(t)/dt
2.

With a basis change by considering the second derivative of the coefficient functions,
we can express Equation (1) as

yi = α+

p∑
j=1

Φ̃T
ij c̃ϕ,j + εi for i = 1, . . . , n. (10)

Thus, Gertheiss et al. [2] uses the following objective function to estimate α̂ and ˆ̃cj using
the group Lasso method.

QLS(α, c̃j) =
n∑
i=1

(
yi − α−

p∑
j=1

Φ̃T
ij c̃ϕ,j

)2
+

p∑
j=1

λ||c̃ϕ,j ||2 (11)

where adaptive penalty function is

Pλ,ϕ(βj) = λ(wj ||βj ||22 + ϕvj ||β′′j ||22)1/2 (12)
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The weights wj’s and vj’s are chosen depending on data and the significancy of each coef-
ficient function. The tuning parameter λ controls the entire penalty function and ϕ controls
the concavity of estimated parameter functions βj(t)’s.

2.2 Rank-Based Regression

The goal of the rank-based regression method is to estimate the coefficient vector β in a
linear model. The rank-based method pursues also to estimate the parameter β under the
presence of outliers. We assume that the errors are independent and identically distributed
(iid) with a continuous probability density function (pdf) f(t). Let y = (y1, . . . , yn)T

be the n × 1 vector of responses, X = (x1, . . . ,xn)T the n × p design matrix, and ε =
(ε1, . . . , εn)T the n× 1 error vector. Then we can rewrite Equation (13) as

y = Xβ + ε. (13)

We define a new distance measure to achieve the rank-based estimator for the coefficient
vector β based on Jaeckel’s dispersion function [6]. We follow the notations and terminol-
ogy by Jaeckel [6] and Jurečková [8].

Before defining the rank-based method, we introduce the definition of a pseudo-norm
as in Hettmansperger and McKean [4]. An operator || · ||ϕ is called a pseudo-norm if it
satisfies the following four conditions.

1. ||u + v||ϕ ≤ ||u||ϕ + ||v||ϕ for all u,v ∈ Rn

2. ||αu||ϕ = |α|||u||ϕ for all α ∈ R,u ∈ Rn

3. ||u||ϕ ≥ 0 for all u ∈ Rn

4. ||u||ϕ = 0 if and only if u1 = · · · = un

Jaeckel’s dispersion function measuring the distance between two vectors is defined by

D(β) = ||y −Xβ||ϕ, (14)

where

||u||ϕ =
n∑
i=1

a(R(ui))ui, (15)

R denotes the rank, a(t) = ϕ( t
n+1), and ϕ is a nondecreasing and L2-integrable score

function defined on the interval [0, 1] as in Kloke and McKean [9]. Without loss of gener-
ality, we assume

∫
ϕ(s)ds = 0 and

∫
ϕ2(s)ds = 1. Then one can check || · ||ϕ in Equation

(15) is a pseudo-norm. A primal-dual relationship between quantile regression and rank
estimation is given in Gutenbrunner and Jurecková [3].

Let ϕ be Wilcoxon score, that is, ϕ
( t

n+ 1

)
=

t

n+ 1
− 1

2
. Then, Jaeckel’s Wilcoxon-

type dispersion function D(β) can be written as

D(β) = ||y −Xβ||ϕ (16)

=
1

2(n+ 1)

∑
i<j

|εi − εj | (17)

Johnson and Peng [7] used the following objective function similar to Equation (17) for the
linear regression model in Equation (13).∑

i<j

|εi − εj | (18)
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Furthermore, to achieve robustness in the predictor space, Wang and Li [17] proposed the
weighted rank-based loss function ∑

i<j

bij |εi − εj | (19)

where
bij = b(xi,xj) = h(xi)h(xj), (20)

which degrades high leverage points, where

h(xi) = min

[
1,

b

(xi − µ̂)TS−1(xi − µ̂)

]
(21)

with (µ̂, S) being the robust minimum volume ellipsoid estimators of the location and
spread as in Wang and Li [17] and Miakonkana et al. [11].

We call this weighted Wilcoxon-type rank-based method as the rank-based regression
method. The rank-based (RB) method estimates β by minimizing the following weighted
Wilcoxon-type dispersion function as the loss function.

β̂RB = argmin
β∈Rp

∑
i<j

bij |εi − εj | (22)

where bij is defined by Equation (20). We use the rank-based method as the loss function
for the proposed rank-based penalized method for functional linear regression model.

2.3 Rank-Based Functional Variable Selection

We define a rank-based functional regression method with the objective function analogous
to Equation (11)

QRB(α, c̃j) =
∑
i<j

bij |εi − εj |+
p∑
j=1

λ||c̃ϕ,j ||2 (23)

where adaptive penalty function is

Pλ,ϕ(βj) = λ(wj ||βj ||22 + ϕvj ||β′′j ||22)1/2 (24)

with pairwise difference data after a proper basis expansion of functional data. We discuss
the asymptotic properties of the proposed rank-based functional variable selection estimator
in Appendix. We show that the `2 penalized rank-based group variable selection estimator
achieves the oracle property under some regularity conditions as in Wang and Li [17] and
Miakonkana et. al.[11].

3. Implementation

We borrow the idea of converting the original data (xi, yi) to the pairwise difference obser-
vation data (xij , yij) = (xi − xj , yi − yj) for ij = 1, . . . , n(n− 1)/2 and 1 ≤ i < j ≤ n
which is identical to the one used in Wang and Li [17] and Miakonkana et al. [11]. We use
the R package grplasso by modifying the least squared loss function to the least absolute
deviation loss function. The rank based estimator can be optimized with the least absolute
deviation and the group `2 penalty for the converted data. We use unpenalized estimators
for λ, ϕ, and their group adaptive parameters as well.
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4. Simulation Study

We generate sine-like functional predictors similarly as in Gertheiss [2] and generate the
responses by adding errors from different kinds of distributions to the inner product be-
tween the coefficient functions β(t)’s and the functional predictors. We create the contam-
inated predictors which resembles the data with high leverage observations. We compare
the results between LS, LAD, and RB loss with the group `2 penalties with and without
optimization of smoothness.

4.1 Data Generation

Figure 1: c0: Predictor Functions without Contamination

Consider an example in which four functional covariates are observed at a set of 100
equidistant points in (0, 100) for each sampling unit. Define for i = 1, . . . , n, and k =
1, . . . , 4,

xik(t) =

5∑
r=1

aikr sin
(2π(5− aikr)

150

)
t−mikr, k = 1, . . . , 4 (25)

yi =
4∑

k=1

∫ 100

0
xi,k(t)βk(t)dt+ εi, i = 1, . . . , n (26)

where aikr ∼ U(0, 5), mikr ∼ U(0, 2π), i = 1, . . . , n, k = 1, . . . , 4, r = 1, . . . , 5 and
t ∈ [0, 100]. Figure 1 shows the predictor functions. The true parameter functions β1(t)
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Figure 2: True Parameter β(t) Curves

and β2(t) are γ distribution density curves with different stretches and β3(t) = β4(t) = 0
as shown in Figure 2.

To see the effect of the weights bij , we generate the contaminated data in the predictor
space. We use the contamination criteria in Fraiman and Muniz [1]. We use three types
of 15% contamination for each predictor function with the contamination size constant
M = 5 with asymmetric contamination (c1) in Figure 3 compared to no x contamination
(c0) in Figure 1. They are generated by the following definition.

• No Contamination(c0):
znoi,k(t) = xi,k(t)

• Symmetric Contamination(c1):

zai,k(t) = xi,k(t) + cσM

where c ∼ Bernoulli(0.15), M = 5, and σ is a random variable independent of c which
is 1 or −1 with probability 0.5.

Thus, we consider asymmetric contamination in the x direction and three kinds of y
direction errors, the standard normal (en), t3 (et3) and the mixed normal errors (em). We
compare the results between LS and RB loss functions with different combinations of con-
taminations. Also, we check the oracle property of the proposed method with adaptivity
by simulating for two different sample sizes n = 100 and n = 150. For each case, we
assess the average number of significant predictors (model size or degree of freedom) and
the mean model error or the average of the root mean squared error of β (RMSE(β)) over
the 100 runs.
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Figure 3: c1: Predictor Functions with 15% Asymmetric Contamination

4.2 Robustness and Oracle Property

LS RB
x1 x2 x3 x4 Model.Size Model.Error x1 x2 x3 x4 Model.Size Model.Error

c0 en 1 1 0.34 0.41 2.75 0.0645 1 1 0.33 0.37 2.7 0.067
em 1 0.93 0.48 0.33 2.74 0.109 1 1 0.37 0.39 2.76 0.072
t3 1 1 0.44 0.40 2.84 0.093 1 1 0.37 0.46 2.83 0.079

Oracle 1 1 0 0 2 0 1 1 0 0 2 0

Table 1: Comparison under y Outliers Based on RMSE(β)

Table 1 shows the comparison between LS and RB methods under the presence of the
outliers in the response space. LS performs better than RB method under the standard
normal error since LS has the smaller model error. With the presence of outliers in the
response space, RB estimates better than LS. RB and LS have 0.072 and 0.109 as the model
errors, respectively. LS fails to detect the second variable in 7%, however, RB detects the
second one as significant variable in 100%. The rank-based method also has a smaller
model error for t3 error with a smaller model size. This simulation result says the rank-
based method performs better under the presence of response outliers. Figure 4 shows the
performance difference between LS and RB under Huber mixed normal errors by choosing
λ which minimizesRMSE(β). RB method gives better precision with narrower estimated
clouds than LS. The estimation using the cross-validation in Table 2 gives similar results
with smaller model errors by the rank-based method.

Table 3 and 4 show the results with outliers in both the predictor space and the response
space. RB performs better and more robust than RB with outliers in the predictor space with
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Figure 4: Estimated β(t) under Huber Mixed Normal Errors by RMSE(β)

LS RB
x1 x2 x3 x4 Model.Size Model.Error x1 x2 x3 x4 Model.Size Model.Error

c0 en 1 1 0.63 0.68 3.31 0.0658 1 1 0.54 0.62 2.674 0.0648
em 1 0.95 0.62 0.52 3.19 0.1102 1 1 0.59 0.51 3.1 0.0765
t3 1 0.98 0.61 0.59 3.18 0.0959 1 1 0.53 0.58 3.11 0.0818

Table 2: Comparison under y Outliers Based on CV

n y ls.df ls.m(β) ls.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 3.98 2.059 0.087 3.92 2.23 0.225

em 3.86 2.395 0.382 3.95 2.383 0.368
150 en 4 2.004 0.09 3.71 2.139 0.268

em 3.95 2.131 0.221 3.66 2.109 0.227

Table 3: c1 Adapt0 by CV
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a smaller average of RMSE(β) and closer to the true model size in Table 3.

n y ls.df ls.m(β) ls.sd(β) rb.df rb.m(β) rb.sd(β)
100 en 2.28 2.105 0.034 2.59 2.255 0.17

em 2.11 2.284 0.261 2.44 2.342 0.227
150 en 2.27 2.095 0.032 2.2 2.23 0.143

em 2.21 2.153 0.1 2.18 2.203 0.104

Table 4: c1 Adapt2 by CV

We can check the oracle property of the proposed method with Adapt2 in Table 4. The
result for RB with n = 150 has the model size closer to the true model size and a smaller
average of RMSE(β) than the one with n = 100.

5. Real Data Application: Weather Data

We apply the proposed rank-based method to analyze weather data in Matsui and Konishi
[10] available in Chronological Scientific Tables 2005. The weather data includes monthly
observed average temperatures (TEMP), average atmospheric pressure (PRESSURE), time
of daylight (DAYLIGHT), average humidity (HUMIDITY), and annual total precipitation
at 79 stations from 1971 to 2000 in Japan. We assume the annual total precipitation is a
response variable depending four predictor functions, TEMP, PRESSURE, DAYLIGHT,
and HUMIDITY in Figure 5 since these four predictors are trajectories over time. Sawant

Figure 5: The Predictors of Weather Data

[15] shows the curves of TEMP and PRESSURE for the 78th and 79th observations and
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Figure 6: Boxplot of the Response, Annual Average Precipitation

the curves for the 1st, 2nd, and 3rd observations for the HUMIDITY are outliers. We see
an outlier in the response on the box plot in Figure 6. The weather data set has outliers in
both the predictor space and the response space. We approach to find the relation between
predictor functions and the continuous discrete response using the multiple functional linear
model. First, we find the λ and ϕ which minimize the objective functions with LS and RB
loss functions by 10 fold cross-validation. We estimate the coefficient parameter functions
for predictor functions using the optimal λ and ϕ. In Adapt0, LS detects all predictors as
significant and RB chooses three predictors except PRESSUE in Table 5.

In Figure 7, TEMP and HUMIDITY have a positive effect to the response value since
their estimated coefficient functions are positive over the range. In TEMP, LS estimate
gives increasing weight over time, but RB estimate has a constant weight over time. Un-
der RB method, Daylight is negative from January to August and positive after August.
The estimates of PRESSURE are close or identical to zero compared to other estimated

TEMP PRESSURE HUMIDITY DAYLIGHT
Adapt0 LS X X X X

RB X X X

Adapt1 LS X
RB X X X

Adapt2 LS X
RB X X X

Table 5: Relevant Predictors for Weather Data
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Figure 7: Estimated Weather Coefficients with Adapt0

coefficient functions in both methods. Adapt1 and Adapt2 choose only one coefficient for
PRESSURE for LS. However, RB chooses the same three predictors as significant. We can
check the oracle property of RB method with the adaptivity in the objective function. The
mean values of prediction error over 10-folds with Adapt1 is 160.91 compared to 214.52
with Adapt0 (without adaptivity).

6. Conclusion

We established the rank-based method for functional linear model with a weighted Wilcoxon
objective function penalized by `2 group penalty. By using the group `2 penalty, we can
obtain only between-group sparsity to express a functional coefficient precisely by taking
as many nonzero coefficients as possible for all basis functions. The resulting estimator has
the oracle property with robustness in both the predictor and the response space. It selects
variables and estimate the parameter functions simultaneously. However, it is challenging
to find the optimal tuning parameter with CV and other criteria, SIC, BIC, GACV, or GCV
depend on the combination of the number basis for function, the sample size, and errors in
the response. One extension of the proposed method is to establish a proper relation be-
tween the number of basis, the sample size, and errors to find the optimal tuning parameters
for rank-based loss function with SIC, BIC, GACV, or GCV.
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A. Oracle Property in RB Loss with Adaptive Group `2 Penalty

A.1 Oracle Property on Discrete Multiple Linear Model

We consider the estimation consistency, the variable selection consistency and the oracle
property for the rank-based group variable selection with `2 penalty.

We show that the group `2 penalized rank-based variable selection estimator has the
oracle property under some regularity conditions. In this section, we follow the definition
and notation as Miakonkana et al.[11] and Wang and Li [17]. We assume that only the
first k0 ≤ K groups are significant, that is, ||βk||2 6= 0 for k ≤ k0 and ||βk||2 = 0 for
k > k0. Denote β0 the true parameter, βa the vector containing all relevant groups and
βb the vector of all irrelevant groups. Let β̂a and β̂b be their corresponding penalized
rank-based estimator.

The following regularity conditions will be assumed.

C1. The errors εi are iid with a density function f that is absolute continuous and has a
finite fisher informations. That is,

I(f) =

∫ ∞
−∞

[f ′(e)
f(e)

]2
f(e)de <∞

C2. The matrices X and WX satisfy the Huber’s condition.

C3. n−1X′WX
P−→ C, and n−1X′X P−→ Σ are positive definite matrices.

given by

C =
1

2

∫ ∫
(x2 − x1)(x2 − x1)

′b(x1,x2)dM(x2)dM(x1)

V =

∫
{
∫

(x2 − x1)b(x1,x2)dM(x2)}{
∫

(x2 − x1)b(x1,x2)dM(x2)}′dM(x1)

Σ =
1

2

∫ ∫
(x2 − x1)(x2 − x1)

′dM(x2)dM(x1)

and M(x) denotes the CDF of x, X is a matrix whose rows are xi, and the entries ωij of
the matrix W are defined like in Naranjo and Hettmansperger (1994)[13], defined by

ωij =

{
n−1bij if i 6= j

n−1
∑

k 6=i bij if i = j
(27)

We derive conditions for model selection and estimation consistency when when the sample
size n increases.

Following the notation in Wang and Leng (2008)[16] define

an = max{λkj : 1 ≤ j ≤ k; k ≤ k0} and bn = min{λkj : 1 ≤ j ≤ k; k > k0},

and H(x, y) be the joint distribution between the covariate x and the response variable y.
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Theorem 1. Let (y1,x1), · · · , (yn,xn) be independent and identically distributed from
H(x, y). Assume the regularity conditions C1–C3.

a. If
√
nan

P−→ 0 then ||β̂n − β0||2 = Op(n
−1/2)

b. If
√
nan

P−→ 0 and
√
nbn

P−→∞ then β̂b
P−→ 0

c. Under local shrinking contamination, H∗n(x, y),
√
n(β̂a − βa)

D−→ N(η, τ2C−111 V11C
−1
11 )

To prove Theorem 1, we define the following expressions defined in Wang and Li [17]
with the group `2 penalty.

Qn(θ) =
1

n

∑
i<j

bij |εi − εj |+ n

K∑
k=1

( pk∑
j=1

(λkjθkj)
2
)1/2

Dn(θ) =
1

n

∑
i<j

bij |εi − εj |

Sn(θ) =
1

n

∑
i<j

bij(xi − xj)sgn((yi − yj)− (xi − xj)
′θ)

An(θ) = (2
√

3τ)−1(θ − θ0)
′X′WX(θ − θ0)− (θ − θ0)

′Sn(θ0) +Dn(θ0)

Every above expression is identical to the one in Wang and Li [17] except the group `2
penalty. We can borrow the result of the following lemma.

Lemma 1. Under assumptions C1–C3,

i. for all ε > 0 and c > 0,

[ sup√
n||θ−θ0||≤c

|Dn(θ)−An(θ)| ≥ ε] P−→ 0

under either H or H∗n,

ii. n−1/2Sn(θ0)
D−→ N(0,V/3) under H ,

iii. n−1/2Sn(θ0)
D−→ N(η,V/3) under H∗n.

We follow the same logic to Miakonkana et al. for the proof of Theorem 1 with the
group adaptive `2 penalty instead of the group and element-wise adaptive `1 penalty.

Proof. To prove part (a), it is sufficient to show that ∀ε > 0, there exists a large constant C
such that

P
(

inf
||u||=C

Qn(θ0 + n−1/2u) > Qn(θ0)
)
≥ 1− ε

where u is a vector of dimension p. Since Qn(θ) is convex in θ, this implies that with
probability at least 1 − ε the penalized estimator lies in the ball {θ0 + n−1/2u : ||u|| ≤
C}. Let Gn(u) = Qn(θ0 + n−1/2u) − Qn(θ0). Denote by ukj the component of u
corresponding to θkj .
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By Lemma 1,

Gn(u) = (2
√

3)−1u′[n−1X′WX]u− u′n−1/2Sn(θ0)

+ n
K∑

k=1

[( pk∑
j=1

(λkj(θkj + n−1/2ukj))
2
)1/2

−
( pk∑

j=1

(λkjθkj)
2
)1/2]

+ op(1)

≥ (2
√

3)−1u′[n−1X′WX]u− u′n−1/2Sn(θ0)−
√
n

k0∑
k=1

( pk∑
j=1

(λkjukj)
2
)1/2

+ op(1)

= (2
√

3)−1u′[n−1X′WX]u− u′Op(1)−
√
n

k0∑
k=1

( pk∑
j=1

(λkjukj)
2
)1/2

+ op(1)

≥ (2
√

3)−1u′[n−1X′WX]u− u′Op(1)− k0
√
nan(||u||2) + op(1).

Note that n−1X′WX
P−→ C, a positive definite matrix, and

√
nan

P−→ 0. Therefire, for
n sufficiently large, the first term on the right hand side of the ineuqality above dominates.
Gn(u) can be made positive when the size of ball C is chosen to be sufficiently large. We
now prove part (b). Suppose that θ̂b 6= 0, ∀n ∈ N. Let k be such that k0 < k < K and
θ̂kj 6= 0 for some j such that 1 ≤ j ≤ pk. SinceQn(θ) is differentiable at any point, except
the origin, θ̂kj must be solution of the equation

0 = n−3/2
∑
i<j

bij(xik − xjk)sgn(yi − yj)− (xi − xj)
′θ) +

√
nλkjsgn(θkj).

Now, by the consistency of θ̂n and part (ii.) of lemma 1, the first term of the right hand
side of the equation above is Op(1). In addition,

√
nbn

P−→ ∞ implies that
√
nλkj

P−→ ∞.
So the equation does not hold for large values of n, as we assume that θ̂kj 6= 0. Therefore,

θ̂b
P−→ 0.
The proof of part (c) is identical to the proof of Theorem 2 given in the Web Appendix

of Wang and Li (2009)[17], and will therefore be omitted here.

A.2 Oracle Property on Functional Linear Model

We convert the functional linear model in Equation (1) to the discretized model in Equation
(23) considering the functional group adaptive penalty. Similarly, we can see the oracle
property of the rank-based estimates with the adaptive group `2 penalty for functional linear
model.
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