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Abstract
Complex diseases such as cancer usually develop through different stages forming ordinal out-

comes. Understanding the intrinsic mechanism underlying these disease stages is important for
diagnosis, classification and subsequent treatment of these diseases. The etiology and development
of complex diseases often involve the interactions between biomolecules, rather than individual
molecules such as complicated interactions between tumor cells and immune cells in cancer im-
munotherapies. Predictive models are of great importance in precision or personalized medicine
and other applications. In this paper, we developed a non-parametric approach to predict ordi-
nal outcomes incorporating potentially complicated interactions between biomolecules. Simulation
studies demonstrate that our approach performs well in classification, and in identification of truly
informative differential pairs of predictors, when there is non-negligible interaction between predic-
tors.
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1. Introduction

Development and progression of a complex disease typically involve several stages accord-
ing to disease severity, which naturally form ordinal outcomes. For example, melanoma and
other cancers often develop from early to late stages; Alzheimer’s disease typically devel-
ops progressively from cognitively normal, mild cognitive impairment (MCI) to Alzheimers
disease (AD); asthma patients are often diagnosed at various severity from mild to severe
(Liu et al., 2011; Patrawalla et al., 2012; Fontanella et al., 2018), etc. Traditional diag-
nosis, classification, and subsequent treatment often depend heavily on existing medical
knowledge and physicians’ experience. However, existing medical knowledge for complex
diseases has many gaps and uncertainties, consequently, many patients may not be able
to receive the most effective treatments or treatment sequences. As a consequence of the
rapid development of biological technology and medical science, high-throughput ‘omics’
data (such as RNA sequencing data, protein expression data), medical imaging, and other
clinical data arise as high-dimensional predictors. There are complex interactions between
predictors that are important for predicting outcomes such as the interactions between im-
mune cells and tumor cells that determine the success of cancer immunotherapies. In gen-
eral, it is not straightforward for physicians to make medical decision based on all those
high-dimensional data with complex correlations. Therefore, statistical predictive models
utilizing such large amount of data with efficient incorporation of various correlations are
in high demand to help classify patients systematically, so that patients could be effectively
treated with suitable personalized treatment.

The etiology and prognosis of complex diseases involve intricate biological processes.
It is well-known that biological processes involve a series of molecular functions, which
are fulfilled by the interaction between biomolecules (such as genes), rather than individ-
ual biomolecules (Ji et al., 2017). For example, in cancer immunotherapies, we directly
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treat the immune cells which, in turn, inhibit or kill tumor cells. Thus, the interactions
between immune cells and tumor cells determine the success of cancer immunotherapies.
Consequently, effective predictive models have to incorporate these important interactions
between two kinds of cells (Sun et al., 2019). Thus, incorporating the interactions between
predictors in a model is often necessary to improve predictive accuracy. Sometimes, linear
interaction terms, such as x1x2, might not always be adequate to model complicated inter-
actions. For instance, in the development and prognosis of Alzheimer’s disease, age is an
important predictor but it has non-linear effect and has complicated interactions with other
predictors. In melanoma, the thickness of melanoma is a critical covariate determining the
disease stage and survival probability. But “too thin” or “too thick” tumor is often not im-
pacting the outcome linearly. As a result, the interaction between age and APOE, amyloid
beta, etc in AD, and the interaction between tumor thickness and other important risk fac-
tors in melanoma, may not be simply characterized in a simple linear function of x1x2. In
addition, differential interactions of gene pairs between various conditions identified by the
model could help explore the disease mechanism. The mechanism identified by this model
may support to develop new efficient treatments targeting particular biological functions,
such as genetic based interventions (He et al., 2020).

There are important knowledge gaps in existing statistical models for ordinal outcomes
with complicated interactions. The typical multinomial logistic regression model general-
izes binary or ordinary logistic regression to model outcome with more than two levels. But
it ignores the intrinsic ordering between the ordinal levels, which is unique and important
for ordinal outcomes. Ordered logistic regression, also called proportional odds regression,
takes into account the ordering of levels. But very often it can only include interaction in
the form of linear terms in x1x2. Though tree-based methods, such as decision tree and
random forest (Friedman et al. 2001), are nonparametric classification and prediction ap-
proaches, they have certain drawbacks. A single fitted tree might be unstable (e.g. due to
overfitting) especially when there are too many covariates, while random forest is often too
complicated to yield a simple biological explanation.

Recently, three nonparametric classification methods have been developed: FANS (Fan
et al., 2016), ordinal FANS (Ferber, 2016), and JDINAC (Ji et al., 2017). FANS is a binary
high-dimensional classification model that generalized naive Bayes and logistic regression.
Ordinary logistic regression is

log
P (Y = 1|X = x)

P (Y = 0|X = x)
= β0 +

p∑
j=1

βjxj ,

which uses simple linear combination of the original covariates to formulate a classifier.
Substituting the original covariate x with log f(x)

g(x) in ordinary logistic regression, FANS is
formed as

log
P (Y = 1|X = x)

P (Y = 0|X = x)
= β0 +

p∑
j=1

βj log
fj(xj)

gj(xj)
, (1)

where fj , gj are the densities of covariate xj in class 1 and class 0, respectively. Both fj , gj
were estimated nonparametrically, thus the classifier formed by FANS is in general not a
linear classifier of the original covariates. As is well-known, the likelihood ratio test is
the most powerful test to distinguish two models according to the Neyman-Pearson lemma.
FANS, using the likelihood ratio log

fj(xj)
gj(xj)

as classifiers, could yield powerful classification
procedure. Specifically, if x is normally distributed, FANS will generally become ordinary
logistic regression. Ordinal FANS (Ferber, 2016) and JDINAC (Ji et al., 2017) are both
extended from FANS. Ordinal FANS extended FANS to ordinal outcomes using powerful
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predictors made from log density ratio as well. However, it only considers individual genes
without their interactions, which might not perform well in prediction if interaction plays
an important role as is often the case in complex diseases. JDINAC built classifiers that
take into account the pairwise interaction between covariates. Motivated from FANS, the
interaction is modeled by the log of bivariate joint density ratio, and its model is

log
P (Y = 1|G, z)

P (Y = 0|G, z)
= α0 +

K∑
k=1

αkzk +

p∑
i=1

p∑
j>i

βij log
fij(Gi, Gj)

gij(Gi, Gj)
,

where z is covariate, Gi, Gj denote two different genes. fij , gij were also estimated non-
parametrically. Such interaction terms could not only potentially capture the non-linear
relationship between genes, but also act as a powerful classifier to improve classification
accuracy. Unfortunately, it only works when the outcome is binary. In addition, there are a
lot of tools to perform differential gene network analysis (Shojaie, 2020), but most of them
assumed linear interaction, which could be restrictive in real applications.

To fill the knowledge gap, in this paper, we present a non-parametric predicting ap-
proach incorporating potentially complicated pairwise interactions between predictors for
the ordinal outcomes. Numerical results demonstrate that our method performs better in
terms of lower misclassification rate and higher Somers’ index than existing approaches
that don’t include interaction. Additionally, our model can also identify important dif-
ferential pairs efficiently, which could be useful for differential network construction and
mechanism investigation.

2. Method

2.1 Model set-up

For each individual i(i = 1, . . . , n), suppose we observed the outcome yi which is a K-
level ordinal outcome taking values from {1, . . . ,K}, p-dimensional gene-level activities
(such as mRNA expression level, protein expression) xi = (xi1, . . . , xip)

T , and q co-
variates zi1, . . . , ziq referring to age, gender, or the original gene-level activities etc. Let
zi = (1, zi1, . . . , ziq)

T . Our approach is structured as the following K − 1 binary logit
models:

log
P (Y = 1|x, z)

P (Y > 1|x, z)
= zTα(1) +

p−1∑
s=1

p∑
t>s

β
(1)
st log

f
(1)
st (xs, xt)

g
(1)
st (xs, xt)

,

log
P (Y ≤ 2|x, z))

P (Y > 2|x, z))
= zTα(2) +

p−1∑
s=1

p∑
t>s

β
(2)
st log

f
(2)
st (xs, xt)

g
(2)
st (xs, xt)

, (2)

...

log
P (Y ≤ K − 1|x, z))

P (Y = K|x, z))
= zTα(K−1) +

p−1∑
s=1

p∑
t>s

β
(K−1)
st log

f
(K−1)
st (xs, xt)

g
(K−1)
st (xs, xt)

,

where α(k) = (α
(k)
0 , α

(k)
1 , . . . , α

(k)
q )T is the coefficient of zi in the k-th equation, α(k)

0 is
the intercept, β(k)st is the coefficient of the (s, t)-th log density ratio in the k-th equation.
zTα(k) represents the main effect of covariates including original gene-activities, while

log
f
(k)
st (xs,xt)

g
(k)
st (xs,xt)

models the interaction in a more general way, which could handle linear or

non-linear interactions. The k-th logit model regresses a new binary outcome, obtained by
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partitioning the original samples into Y ≤ k and Y > k, on corresponding covariates and
log density ratios. The log density ratio in (2) is defined as

log
f
(k)
st (xs, xt)

g
(k)
st (xs, xt)

= log
P (Xs = xs, Xt = xt|Y ≤ k)

P (Xs = xs, Xt = xt|Y > k)
, (3)

for k = 1, . . . ,K − 1. f (k)st , g
(k)
st are the class-specific joint density of Xs and Xt, showing

the strength of interaction between the s-th and t-th genes(or mRNA, protein, etc.), for
Y ≤ k and Y > k, respectively. The density ratio implies the differential association of the
two genes between Y ≤ k and Y > k. Combining the main effect zTα(k) and interactions∑p−1

s=1

∑p
t>s β

(k)
st log

f
(k)
st (xs,xt)

g
(k)
st (xs,xt)

should formulate a powerful multivariate classifier. One

benefit of designing the approach in this way is that the whole training set contributes to
each logit model, so that the estimation of each logit model are in the same precision.

Model (2) contains a lot of existing models. When Xs, Xt are independent, the joint
density breaks down into the product of marginal densities, i.e.,

f
(k)
st (xs, xt) = f (k)s (xs)f

(k)
t (xt), g

(k)
st (xs, xt) = g(k)s (xs)g

(k)
t (xt).

Thus model (2) will become ordinal FANS, or FANS if K = 2. When (Xs, Xt) follows
bivariate normal distribution that shares the same variance Σ in both Y ≤ k and Y > k,
the interaction term in model (2) will be the ordinary linear interaction xsxt. Model (2)
include JDINAC as a special case when K = 2.

2.2 Estimation

Parameters will be estimated through maximum likelihood. Since K − 1 equations in (2)
involve different parameters, the estimation would be conducted individually. In the k-th
equation, denote all log of bivariate density ratios by a p(p−1)

2 vector w(k),

w(k) =

(
log

f
(k)
12 (x1, x2)

g
(k)
12 (x1, x2)

, . . . , log
f
(k)
p−1,p(xp−1, xp)

g
(k)
p−1,p(xp−1, xp)

)
,

and denote the corresponding coefficient by β(k) = (β
(k)
12 , . . . , β

(k)
p−1,p)

T , k = 1, . . . ,K−1.
Then the log-likelihood of the k-th logit model is

l(α(k),β(k)) =
n∑

i=1

[I(Yi ≤ k) log(p
(k)
i ) + I(Yi > k) log(1− p(k)i )], (4)

where

p
(k)
i = P (Yi ≤ k|wi, zi) =

exp(zTi α
(k) + w

(k)
i β(k))

1 + exp(zTi α
(k) + w

(k)
i β(k))

, (5)

1− p(k)i = P (Yi > k|wi, zi) =
1

1 + exp(zTi α
(k) + w

(k)
i β(k))

. (6)

Note that both α(k),β(k) and densities f (k)st , g
(k)
st are unknown, so a two-stage estimation

strategy is used: splitting the training data into two parts, first we use one part to fit f (k)st

and g(k)st by kernel density estimation, next we evaluate the densities on the other part to
fit the model and get the estimation of α(k),β(k). Because the number of gene pairs can
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be much larger than the sample size in high-dimensional settings, L1-penalty (Tibshirani,
1996) is adopted in the estimation. Therefore, the solution of unknown parameters is

(α̂(k), β̂
(k)

) = argmax
α(k),β(k)

(l(α(k),β(k))− λ
∑
s,t

|β(k)st |). (7)

Tuning parameter λ could be selected by minimizing AIC, BIC, or cross-validation error,
etc. Parameter β(k)st 6= 0 indicates Xs, Xt have differential dependency patterns between
Y ≤ k and Y > k.

2.3 Prediction

Given the estimated joint densities f̂ (k)st , ĝ(k)st and parameters α̂(k), β̂
(k)

for the k-th logit
model, the predicted probability of the i-th subject that belongs to Y ≤ k, i.e., P̂ (Yi ≤
k|xi, zi), could be calculated by equation (5). And correspondingly, P̂ (Yi > k|xi, zi) =
1− P̂ (Yi ≤ k|xi, zi). Define

p
(k)
i1 = · · · = p

(k)
ik = P̂ (Yi ≤ k|xi, zi),

p
(k)
i(k+1) = · · · = p

(k)
iK = 1− P̂ (Yi ≤ k|xi, zi).

p
(k)
im is the score representing how likely Yi is predicted to be m in the k-th logit model. For

subject i, we can calculate p(k)im from all K − 1 logit models and aggregate the scores in
each class, as illustrated below:

Class 1 2 . . . K

Model1 p
(1)
i1 p

(1)
i2 . . . p

(1)
iK

Model2 p
(2)
i1 p

(2)
i2 . . . p

(2)
iK

...
...

... . . .
...

ModelK − 1 p
(K−1)
i1 p

(K−1)
i2 . . . p

(K−1)
iK

Add up
∑K−1

k=1 p
(k)
i1

∑K−1
k=1 p

(k)
i2 . . .

∑K−1
k=1 p

(k)
iK .

(8)

Thus the predicted outcome ŷi is determined by the one maximizing aggregated scores, i.e.,

ŷi = argmax
m

K−1∑
k=1

p
(k)
im .

2.4 Selection of differential pairs

A pair of covariates (such as genes) is selected if any of its coefficients in theK−1 models
is non-zero. Specifically, define the differential dependency weight by

wst =

L∑
l=1

I

(
K−1∑
k=1

|β̂(k)st,l| 6= 0

)
, (9)

where β̂(k)st,l is the estimated regression coefficient from the k-th logit model on the l-th

repetition, L is the number of splitting, l = 1, . . . , L. I(
∑K−1

k=1 |β̂
(k)
st,l| 6= 0) indicates

whether the log density ratio of (Xs, Xt) has any non-zero coefficient in one of K−1 logit
models. If there exists a k such that β̂(k)st,l 6= 0, then I(

∑K−1
k=1 |β̂

(k)
st,l| 6= 0) = 1, otherwise
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I(
∑K−1

k=1 |β̂
(k)
st,l| 6= 0) = 0. A set of highly discriminative gene pairs would be selected by

specifying a cutoff for differential dependency weights.
The following algorithm summarizes the whole procedure for estimation, prediction

and selection of differential pairs:

Step 1 Randomly split the training set into two parts: (Dl, D
c
l );

Step 2 In partDl, estimate f (k)st , g
(k)
st by bivariate kernel density estimation, s = 1, . . . , p−

1, t = s+ 1, . . . , p, k = 1, . . . ,K − 1;

Step 3 In part Dc
l , evaluate bivariate densities at observed values in Dc

l using f̂ (k)st , ĝ
(k)
st

fitted in Step 2, then fit each logit model in (2) with the fitted densities and observed

covariates to get coefficients’ estimate α̂(k), β̂
(k)

. Each logit model could be fit in
R with packages glmnet (Freidman et al., 2010) or glmpath (Park and Hastie,
2018);

Step 4 In testing set, evaluate bivariate densities using f̂ (k)st , ĝ
(k)
st fitted in Step 2. Plug

the estimated densities and other observed covariates into the corresponding logit
models fitted in Step 3, and calculate P̂ (Yi ≤ k|xi, zi). Subsequently, calculate
p
(k)
im,l for each subject i in the testing set on the l-th repetition, as shown in (8);

Step 5 Repeat Step 1-Step 4 for L times. For subject i in the testing set, the predicted
class label(outcome) is ŷi = argmaxm

∑L
l=1

∑K−1
k=1 p

(k)
im,l. Also, a set of highly

discriminative gene pairs can then be selected with differential dependency weights
wst as defined in equation (9).

3. Numerical studies

The proposed method has two aims: predicting class labels for new observations and identi-
fying important differentially correlated gene pairs. Therefore, in this section, we examine
our method’s performance through the accuracy of classification and differential pair selec-
tion. Besides, our approach will be compared with ordinal FANS, which doesn’t take into
account possible interactions.

In each replication, generated data is randomly divided into training set (with sample
size ntrain) and testing set (with sample size ntest). Model fitting and differential pair
selection are conducted in the training set, while the prediction of class labels is evaluated
in the testing set. Two simulation scenarios are considered:

Scenario 1: Set K = 3, p = 20, q = 3, generate

• y from {1, 2, 3};

• x ∼ Np(µ
(k)
x ,Σ(k)), where µ(1)

x = 0×120,µ
(2)
x = (0×114, 0.05×16),µ

(3)
x =

(0×114, 0.1×16). Let Σ(k) = diag(Σ1,Σ
(k)
2 ,Σ

(k)
3 ), where Σ1 = (σij)14×14, σii =

1, σij = 0.5 for i 6= j, i, j = 1, . . . , 14. Σ
(k)
2 = Σ

(k)
3 , and

Σ
(1)
2 =

 1 −0.9 0.9
−0.9 1 −0.9
0.9 −0.9 1

 ,Σ
(2)
2 =

 1 −0.5 −0.5
−0.5 1 −0.5
−0.5 −0.5 1

 ,

Σ
(3)
2 =

 1 0.9 0.9
0.9 1 0.9
0.9 0.9 1

 ;
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• z ∼ Nq(µ
(k)
z , Iq), where µ

(1)
z = 0.5× 13,µ

(2)
z = 13,µ

(3)
z = 1.5× 13;

• ntrain = 450, ntest = 150, random splits L = 20, replicate 100 times.

Scenario 2: Set K = 4, p = 10, q = 3, generate

• y from {1, 2, 3, 4};

• x ∼ Np(µ
(k)
x ,Σ(k)), where µ(1)

x = 0×110,µ
(2)
x = (0×14, 0.15×16),µ

(3)
x =

(0×14, 0.3×16),µ
(4)
x = (0×14, 0.45×16). Let Σ(k) = diag(Σ1,Σ

(k)
2 ,Σ

(k)
3 ),

where Σ1 = (σij)4×4, σii = 1, σij = 0.5 for i 6= j, i, j = 1, . . . , 4. Σ
(k)
2 =

Σ
(k)
3 , and

Σ
(1)
2 =

 1 −0.9 0.9
−0.9 1 −0.9
0.9 −0.9 1

 ,Σ
(2)
2 =

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

 ,

Σ
(3)
2 =

1 0 0
0 1 0
0 0 1

 ,Σ
(4)
2 =

 1 0.9 0.9
0.9 1 0.9
0.9 0.9 1

 ;

• z ∼ Nq(µ
(k)
z , Iq), where µ(1)

z = 0.5× 13,µ
(2)
z = 13,µ

(3)
z = 1.5× 13,µ

(4)
z =

2× 13;

• ntrain = 600, ntest = 200, random splits L = 20, replicate 100 times.

Classification is assessed via misclassification rate, class-specific misclassification rate,
Somers’ index. Misclassification rate is define as

#{ŷi 6= yi}
ntest

,

and class-specific misclassification rate is

1− #{ŷi = k and yi = k}
#{yi = k}

.

The higher the misclassification rate, the worse the classification accuracy. Somers’ index
D (range from -1 to 1) measures the concordance between two ordinal variables, which
in our case are Y and Ŷ (Somers, 1962). ‘-1’ means disagreement, ‘1’ means perfect
agreement. The closerDY Ŷ is to 1, the better the prediction is. Differential pair selection is
examined by true discovery rate(TDR), true positive rate(TPR) and true negative rate(TNR)
that are defined as

TDR =

∑
i6=j I(δij δ̂ij 6= 0)∑
i6=j I(δ̂ij 6= 0)

,

TPR =

∑
i6=j I(δij δ̂ij 6= 0)∑
i6=j I(δij 6= 0)

,

TNR =

∑
i6=j I(δij = 0)I(δ̂ij = 0)∑

i6=j I(δij = 0)
.

(δij)p×p is the differential adjacency matrix, δij 6= 0 indicate the pair (Xi, Xj) are def-
erentially dependent between at least two groups; (δ̂ij)p×p is the estimated differential
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adjacency matrix. The closer TDR, TPR, TNR are to 1, the better the performance of
identifying differential pairs is.

Table 1 shows the performance of our approach compared with ordinal FANS under
two scenarios. Generally, our method has lower misclassification rate than ordinal FANS.
Specifically, in scenario 1, ordinal FANS predicted all observations to Y = 2; in scenario
2, ordinal FANS almost classified all observations to Y = 2 and Y = 3. Our approach has
Somers’ index DY Ŷ closer to 1 than ordinal FANS, which suggests that our approach has
considerably higher classification accuracy than ordinal FANS. These results indicate that
ordinal FANS failed to classify observations in these scenarios since it didn’t capture the
interaction between covariates. Our method is demonstrated to perform better in prediction
when interaction plays an important role. In addition, our approach has TDR, TPR and
TNR close to 1, which shows that truly differential gene pairs could be efficiently selected
by our approach.

Table 1: Performance of our approach and ordinal FANS under two scenarios on average

Our approach Ordinal FANS
Scenario 1 Misclassification rate 0.23 0.64

Class-specific (0.24, 0.20, 0.25) (1.00, 0.00, 1.00)
misclassification rate

Somer’s DY Ŷ 0.74 0.00
TDR 1.00 -
TPR 1.00 -
TNR 1.00 -

Scenario 2 Misclassification rate 0.37 0.73
Class-specific (0.13, 0.43, 0.48, 0.43) (1.00, 0.49, 0.46, 0.99)

misclassification rate
Somer’s DY Ŷ 0.68 0.19

TDR 1.00 -
TPR 0.97 -
TNR 1.00 -

4. Discussion

Many complex diseases are actually categorized into several stages, which can be consid-
ered as ordinal outcomes. Existing prediction models for ordinal outcomes generally only
consider the effect of each individual predictor and simple multiplicative interactions, i.e.,
linear terms of form x1x2. But the intrinsic mechanism of these diseases always involves
intricate interactions between biomolecules, instead of individual biomolecules. In this pa-
per, we presented a predictive modeling approach incorporating nonparametric interactions
as predictors for ordinal outcomes. Interactions are evaluated by logarithms of bivariate
density ratios, which are fitted without imposing any assumption of the densities of origi-
nal covariates. Lasso penalty is used so that highly differential pairs could be selected. The
splitting procedure makes the result more stable, and maximizes the utility of limited data.
Numerical studies indicate that our approach has higher prediction accuracy than ordinal
FANS which didn’t consider interaction. The ignorance of interactions could reduce pre-
diction accuracy substantially. Also, our approach shows great performance in selecting
important differential pairs.
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Our proposed approach has two primary applications. First, after fitting model to the
observed data, our approach can predict group labels or determine disease stages on new
data. For example, new patients can be classified into a disease category using our model
with genetic, genomics and clinical information. Our approach might be used to segment
patients into subgroups. Efficient treatment may be developed based on the mechanism sug-
gested by the fitted model and assigned to each subgroup of patients. Also, our approach
identifies important differentially expressed gene pairs, which may assist and facilitate the
investigation of the etiology of a complex disease, from the perspective of how genes func-
tion with each other in the development of a disease. However, one potential concern is the
high computational cost in real applications in the presence of a large number of candidate
genes. Pre-screening of genes might be needed, such as focusing on one specific disease-
relevant pathway first. By splitting the optimization problem into subproblems, parallel
computation might be employed in real applications.
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