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Abstract

With recent advancements in cancer research and other branches of medicine, many cancer patients
can be clinically cured who will never experience disease recurrence or progression, or disease-
specific death. In the presence of a high cure fraction, conventional survival models are not appro-
priate because they do not account for the possibility of cure. The mixture cure models (MCMs)
have been developed with the EM based implementation to simultaneously estimate the cure fraction
and the survival function of uncured patients. However, the available R packages for the EM-based
implementation of the MCMs are lack of robustness, especially when the sample size is small. This
paper investigates the stability of the estimates of the MCMs, and proposes a shrinkage EM algo-
rithm for robust inference of mixture cure models by incorporating existing common knowledge on
predictors as weakly informative priors. Numerical studies are conducted to show the instability
of the ordinary EM-based estimates of MCMs and the advantages of shrinkage EM algorithm for
robust inference of mixture cure models.

Key Words: Mixture cure models, EM algorithm, Bayesian prior, stability, shrinkage EM algo-
rithm

1. Introduction

With the development of modern medicine and effective therapies, the curability of many
cancers and other hard-to-treat diseases is becoming a reality. In early-stage melanoma and
other diseases with good prognosis, frequently, many patients will never experience cancer
recurrence in a long-term follow up. In the presence of cured subjects, the overall patient
population consists of a mixture of cured and uncured subpopulations. In this context, the
commonly used survival models, such as Cox proportional hazards model, are not ideal.
These standard survial models assume all patients will eventually experience the event of
interest given long enough follow up. In contrast, mixture cure models (MCMs) are par-
ticularly suitable for describing patient’s survival and cure status. MCMs jointly model the
latent cure status using logistic regression and model survival time using Cox regression
models (Farewell 1982, Kuk and Chen 1992, Peng and Deer 2000, Sy and Taylor 2000,
Han 2017, Zhang and Shao 2018). Importantly, Peng and Dear (2000) and Sy and Taylor
(2000) applied the expectation—-maximization (EM) algorithm to obtain the maximum like-
lihood estimators under the logistic-Cox mixture cure model. Despite extensive literature
on MCMs and the associated conceptual flexibility, the MCMs has been under used. Cox
regression models have been widely used even in the presence of both cured and uncured
patients, partially due to easy-to-use software for the Cox regression models and unfamil-
iarity to the MCMs. Cai et al. (2012) introduced an R package smcure to to compute the
maximum (partial) likelihood estimates of the semiparametric mixture cure models, which
has became the most widely used R package for fitting MCMs.

As is well known, to identify the cure effect, it is important to have long follow up
for some cured (eventually censored) subjects. In the case of limited study follow up and
heavy censoring, there are stability issues for the EM based computation of the MCMs in
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smcure. To overcome this challenge, we suggest a shrinkage EM algorithm where we use
the Bayesian GLM with default prior on the parameters of the logistic regression in the EM
algorithm that can lead to more robust estimates.

In this paper, we develop a shrinkage EM algorithm to address issues associated with
inferential stability due to latent heterogeneity in the form of unobserved cure status in
the patient population. We also demonstrate the MCMs can easily include time-dependent
predictors. Time-dependent predictors are important and frequently more useful than the
baseline values. Numerical studies are used to demonstrate the advantages of the newly
proposed shrinkage-based EM algorithms for robust inference.

2. Models

2.1 The Mixture Cure Models

Let T" denote the failure time of interest and S, (t | X, Z) be the survival function of 7'
depending on covariates X and Z. The mixture cure model is defind as

Spop(t | X, Z) =7(Z2)S(t | X)+1—n(Z).

where 7(Z) is the probability of a patient being uncured depending on Z, refered as “in-
cidence” and S(t|X) is the survival function of the failure time distribution of uncured
patients depending on X, referred as “latency”. Usually, a logit link function is used to
model the effects of covariates Z. Define a binary variable Y as cure indicator, where
Y = 1 indicates an individual will eventually experience the event and Y = 0 indicates an
individual will never experience the event (or long-term survivor). Then the distribution of
Y can be represented as a logistic model

exp(bZ)
PriY=1|2)=n(Z) = T+ oxp(bZ)’
where b is a vector of unknown parameters, is used to model the effect of Z. Then 7(Z) is
the probability of a patient being uncured, 1 — 7(Z) is the cure probability.
When S(#/X) is modeled by Cox PH model, that is S(t | X) = [So(£)]*P(*" %), the above
MCM model is called the logistic-Cox PH mixture cure model, where Sy(t) is the unknown
baseline survivial function. For brevity, we focus on this semiparametric logistic-Cox mix-
ture cure models, which can be implemented by the smcure function in the smcure R pack-
age. However, smcure algorithm requires a relatively large sample size to give a reliable
estimates. Otherwise, the EM algorithms may not converge or the variance of the estimates
in logistic part may be inflated. Therefore, it is important to develop a robust procedure
to improve stability in the EM-based estimation. In many applications, the sample size in
clinical studies are not large, and even if the sample size is large but the follow up may be
short as many studies or clinical trials have limitted study duration due to funding and other
logistic constraints. Either sample size and/or short follow up can lead to instability of the
implementation of the existing algorithms for MCMs such as Cai et al’s R packge. Also, in
Cai’s smcure algorithm, latency part can only be modeled by fixed-time covariates. How-
ever, as is typical in many survival studies, individuals are monitored during the study, and
some explanatory variables may change over time. Those time-dependent variables may
be instrumental in predicting survival and need to be taken into consideration in evaluating
the survival distribution.
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2.2 Robust Implementation of MCMs

To address these problems of Cai’s method, we develop robust mixture cure models (rcure)
by incorporating Bayesian prior with availability to extend to time-dependent covariates.
Our robust mixture cure model can be expressed as

Spop(t | X(t),Z) = m(Z)S(t | X(t)) +1 = 7(Z) (D

where 7(Z) is referred to as uncured probability depending on time-independent covariates
Z which is modeled by a logistic model:

Pr(Y = 1|2) = n(z) = —22P2)

1+ exp(bZ)’ @

where unknown parameter b stands for the log odds ratio (OR). In real applications, we
rarely have extremely informative predictors with OR larger than 10 or smaller than 0.1 per
standard deviation for continuous predictors. Such predictors can be handled separately.
Typical predictors have moderate ORs. Thus, as argued by Gelman et al (2008) and others,
it is really without loss of generality to assume the ORs are moderate for the predictors in
the above logistic regression. One way to implement this common knowledge is to assume
the Log OR parameters in the above logistic model follow a weak prior distribution in the
Bayesian GLM that can be implemented efficiently using existing R packages developed
by Gelamn and colleagues. When the sample size is small, we suggest to use the default
prior of a Cauchy distribution with zero location parameter and scale parameter 2.5.

S(t | X(t)) denotes the survival probability of the uncured patients, where X (¢) is the
time-dependent covariates, whose values change over the duration of the follow-up time.
The time-dependent Cox model is used to model the latency part, which can be expressed
as:

At | X () = Xo(t)exp(BT X (1)), 3)

where regression coefficient 3 is constant over time. \(¢) is the baseline hazard function.
Then, the survival function of uncure patients is given by

S(t | X(1)) =exp(— /0 No(u)exp(BT X (u))du). @

In order to obtain a robust estimation, we will introduce the shrinkage-based EM algorithm
by incorporating a Bayesian GLM algorithm to implement the robust logistic regression as
discussed in the next section.

3. Methods

3.1 Complete likelihood function of the MCMs

Let O = {04,0s,...,0,} denote the observed data. O; = (t;,;, z;, x;(t)) denote the
observed data for the ith individual, ¢ = 1,...,n, where ¢; is the observed survival time,
d; is the censoring indicator with §; = 1 for uncensored time and J; = 0 for censored
time, z; is the possible covariates in the incidence part, and x;(¢) is the time-dependent
covariates in the latency part. The censoring is assumed noninformative and independent.
Let ® = (b, 8, Ao(t)) denote the unknown parameters. Assume the latent cure indicator
Y = {y1,y2, - ,yn} is known, where y; = 1 denotes the ith individual is not cured
and y; = 0 is cured, with probability 7(2;) = P(y; = 1 | 2;). The complete likelihood
function is
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n

[T = m@) 7@ At | yi = 1xi() S (| yi = Lx@). ()
i=1

Then the log likelihood function can be expressed as

1(b,3,0,Y) =11(b;0,Y) +12(3;0,Y), (6)

where .
h(b;0,Y) = [ylog(m(z:)) + (1 — ys)log(1 — m(2:))], (7)

i=1

(B, X0(t);0,Y) =Y uildilog(A(t; | yi = 1, ai(1)) +log(S(ti | yi = 1,@(1)))].

i=1
®)
Obviously, if §; = 1, then y; = 0, but if §; = 0, y; is not observable and ¥; can be one
or zero. Since Y is partially missing information, we do not have an exact expression for
equation (8), the expectation maximization (EM) algorithm will be employed (Dempster,
Laird, and Rubin 1977).

3.2 The Shrinkage EM algorithm

A shrinkage EM algorithm is proposed for our robust mixture cure models, to reduce the
variance of the estimate in the logistic regression of mixture cure models. The E-step in
the EM algorithm computes the conditional expectation of the log likelihood with respect
to Y;, given observed data O and current estimates of © (™). The conditional probability of
the ith individual remaining uncured at the mth iteration of the algorithm can be written as

W™ =E(y; | 0,0™)
m(2zi)S(ti | yi =1, 24(t))
1-— W(zi) + ﬁ(Zi)S(ti | Y = 1, a:l(t)) ’

=0; + (1 — 6;) )]

It is easy to see that if ; = 1, wgm) = 1; and if §; = 0, wgm) is the uncured probability
of the ith individual. Then we have 5iwim) = ¢; and ¢; log(wim)) = 0. Since both parts
of log likelihood function (7) and (8) are linear functions of y;, the expectation of /1 and Iy

can be written as

—

n

E(l) =Y [w™ log(n(2:)) + (1 — w™) log(1 — m(2:))], (10)
i=1
E(ly) =Y [wi™silog(A(t: | i = Lzi(t))) + w™log(S(t; | ys = 1, 24(t)))]
=1
= [ilog(A(ti | yi = 1,:(t))) + w{™log(S(ti | yi = 1,:(1))]
=1
=316 Tog(w(™) + 6 log(A(t: | yi = 1, @i(t))) + wi™ log(S(t: | yi = 1, @i(t)))]
i=1
= [ log(w!™ At | i = 1ai(1)) +wi™ log(S(ti | ys = L)) (1)
=1
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The M-step in EM algorithm is to maximize the log likelihood function (6). The EM
estimator can be obtained by maximizing equation (10) and (11). Gelman et al. (2008) de-
veloped a function bayesglm (part of the arm R package) by altering the glm function in R,
which allows users to specify independent prior distribution for the coefficients in logistic
regression models. Stable logistic regressions coefficient can be obtained by this Bayesian
inference approach even when there is separation or sparsity in the dataset. Therefore, in
order to get the robust estimate, we incoporate a default prior (Cauchy distribution with
location parameter 0 and scale parameter 2.5) into the cure fraction of the mixture cure
models. If informative prior is available, it is encouraged to be used instead of the default
prior. Therefore, we use the function bayesgim in R to obtain robust estimate parameter b
in equation (10). Peng and Dear (2000) and Sy and Taylor (2000) proposed a method to
estimate 3 using partial likelihood. Then we can obtain estimate of 3 in equation (11) by
estimating

log [ [[Mo(t:) exp(Ba:(t) + log(w, ™)) Sy (t;) 2Bt Heste™) (1)
i=1

which is similar to the log-likelihood function of the commonly used time-dependent PH
(m)

model with the additional offset variable log(w;
(12) by function coxph in R.

In order to proceed the E-step in the EM algorithm, we need to update the estimated
survival function. Let ¢(1) < t(g) < --- < () be the distict uncensored failure times, d;
denotes the number of events at time ¢(;) and R; denotes the risk set include all individuals
who are still under study at the time prior to ;). The estimate for the baseline hazard

function is

). Thus, we can obtain the estimates in

dj
(t-1) = 45) Lier, wi

Xoj = Xo(t|Y =1) = fort € (t(j_1),t;))- (13)

ePXilt)
The baseline hazard function is assumed to be piecewise constant between failure times.

4. Simulation Studies

We use simulations to demenstrate the stability issue of the mixture cure models and inco-
porating Bayesian prior into logistic regression part can help to gain stability. Samples are
generated from a logistic-Cox mixture cure model:

Spop(t | X, Z) = m(Z)S(t ]| X) +1— n(2).

Following Kuk and Chen (1992) and Peng and Dear (2000), we generate a control group
of 30 observations and a treatment group of the same size, simple size n=60 in total. The
indicator of the treatment group is the only covariate, denote as X. The probability of

uncure is generated from a logistic model, where 7(Z) = %, with Z = X. The
logistic parameters are set at by = 2, by = —1, so that the probability of uncured individuals

Pr(Y =1|Z = 0) = 0.881 for the control group, and Pr(Y =1 | Z = 1) = 0.731 for
the treatment group, which means cure rate of 11.9% in the control group and 26.9% in the
treatment group. The survival times are generated from a Cox model, where

SE|Y =1,X) =80t |Y =1)=PBX),

The parameter is set at § = log(1/2) = —0.693. The standard exponential distribution
is used for baseline survival funcution Sp(¢ | Y = 1) for uncured patients in the control
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group. The censoring times are generated from a exponetial distribution exp(\¢), where
Ac = 0.28. This choice of \¢ gives an expected censoring proportion 31% for the control
group, 53% for the treatment group, and overall is 42%. Under this setting, 500 samples
are generated. Cai’s smcure models and our proposed rcure models with default Cauchy (0,
2.5) prior are applied to the samples. As estimation results shown in Table 1, by incorpo-
rating the default prior, the estimated coefficients of the logistic regression part has much
smaller bias, variance and MSE of our rcure algorithm compared to smcure algorithm. The
bias for by by our method is around 10%, while the the bias for bo by smcure is larger than
150%. The bias for by by our method is less than 5%, while the the bias for by by smcure is
larger than 200%. In addition, our rcure methods give both the MSE of b and by less than
1, while the MSE of l;o and 51 by smcure are both around 50. On the other hand, in survival
part, smcure algorithm and rcure algorithm both give stable and less biased ﬁ By our rcure
algorithm, the bias of A is 3% and the MSE of 5 is 0.198; while by smcure algorithm, the
bias of B is 2% and the MSE of B is 0.207.

Table 1: Comparison of smcure and rcure estimates

sample size n=60

bo b1 B

Model 2 -1 -0.693

Average smcure 5.068 -3.269 -0.681
rcure 2.224  -0958 -0.715

Bias smcure  3.068 -2.269 0.012
rcure 0.224  0.042 -0.022

Variance smcure 37.596 46.288 0.207
rcure 0.802 0.953 0.198

MSE smcure 47.009 51436 0.207
rcure 0.852 0.955 0.198

The instability of by by smcure can also be observed in the distribution plot of esti-
mated b; in Figure 1. The blue bars represent the probability of estimated by obtained by
smcure algorithm; the red bars represent the probability of estimated by obtained by rcure
algorithm; the red vertical line represents the true value of b, by = —1. As we can see
from the upper plot, smcure gives quite wide and unstable estimates. The range of by by
smcure algorithm can reach -20 and 20, while by by rcure algorithm is much more stable
with range (-4.2, 1.9). The true value of b1 is -1. However, by smcure algorithm, there are
only 52.8% b1 fall in (-2,0), and 18.2% b1 even fall outside of( 10,10). We can even see a
high frequency of by near -20 by smcure. There are 54 times by fall in (-20, -17) within 500
replications.

Then we conduct additional simulations for the same PH mixture cure model set up
with larger sample size n=200 and same paramater setting as in Kuk and Chen (1992) and
Peng and Dear (2000). Under this setting, 500 samples are generated. The smcure model
and rcure model with default Cauchy (0, 2.5) prior are applied to the samples. Table 2
summarizes the average, biases and variances of the estimates of regression parameters
from the smcure model and rcure model with defualt prior in the simulation study. When
the sample size goes up to 200, the estimated by and b, still have smaller bias and MSE by
our rcure algorithm compared to Cai’s smcure algorithm. The bias for bo by our method
is 4%, while the the bias for bo by smcure is 20%. The bias for by by our method is less
than 2%, while the the bias for bl by smcure is 30%. In addition, the MSE of bo and b1 by
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Histgram of estimated b1l
smcure vs. rcure Cauchy prior (0,2.5), n=60

0.3
M — bi1=-1

0.2

Probability

|—|_|‘|.—._r|—|—|—.—n—.—._l_|_—._.—._l‘|

Probability
o
N
l

0.3 O smcure
- O rcure

0.4 - N
[ I I I |

-20 -10 0 10 20

Estimated b1
Figure 1: Histgram of 51, n=60

our method are both less than 0.5, while the MSE of by and b, by smcure are both are over
3. For the survival part, stable and less biased ﬁ can be obtained by either Cai’s smcure
algorithm or our rcure algorithm. The two methods both give that the bias of B is less than
0.01 and the MSE of 3 is less than 0.1. Compared to the estimation results of sample size
60, both smcure algorithm and rcure algorithm get less bias and more stable estimates for
all three parameters when the sample size goes up to 200.

When sample size is 200, the distribution of estimated b; by two mtheods can be com-
pared in Figure 2. The blue bars represent the probability of estimated b, obtained by
smcure algorithm; the red bars represent the probability of estimated by obtained by rcure
algorithm; the red vertical line represents the true value of b, b; = —1. The range of by by
smcure is still wide, it is from -17.45 to 3.68. 83.4% 131 falls in (-2,0), while the true value
of b is -1. However, our rcure algorithm gives shrinkage range (-3.3, 1,2), and nearly 90%
by falls in (-2,0). Therefore, by incorporating the default prior, the mixture cure models
can obtain a more stable and less biased slope estimate, especially when the sample size is
small.

5. Discussion

The patient population often contains both cured and uncured patients in cancer research.
Mixture cure models as an alternative to the conventional survival models, are useful to
study survival of a patient population with a latent cure fraction. The smcure R package
developed by Cai et al. (2012) is the main publicly available peer reviewed R package for
fitting cure models. The smcure package adopts the conventional EM algorithm proposed
by Peng and Dear (2000) and Taylor and Sy (2000) for mixture cure models. Compared
to the conventional survival models, cure models have more parameters to be estimated.
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Table 2: Comparison of smcure and rcure estimates

sample size n=200

bo by B

Model 2 -1 -0.693

Average smcure 2.379 -1.300 -0.688
rcure  2.082 -0.984 -0.703

Bias smcure 0.379 -0.300 0.005
rcure  0.082 0.016 -0.010

Variance smcure 3.005 3.256  0.080
rcure  0.270 0.4367 0.078

MSE smcure 3.149 3.346  0.080
rcure  0.277 0436 0.078

Therefore, it requires a relatively large sample size and long follow-up to achieve stable
estimation. In addition, in order to proceed with the E-step in EM algorithm, baseline
hazard function need to be estimated. However, baseline hazard function generally has in-
finite dimensions, which is sometimes difficult to be estimated with a small sample size.
A poorly estimated baseline hazard function may lead to unstable EM algorithm, and thus
unstable parameter estimates in the logistic regression which describes cure status. Addi-
tionally, when sample size is small, the number of cured patients might be sparse causing
the instability of logistic regression.

In this paper, we propose a shrinkage EM algorithm by incoporating Bayesian prior
to obtain more stable estimate. The asymptotic validity of the Bayesian inference can be
justified by the von Mise theorem (Le Cam 2012). As is well known, when the sample
size is large, the maximum likelihood estimates are generally consistent under very general
regularity conditions and asymptotically normal with minimal asymptotic variance as de-
termined by the inverse of the Fisher information of the model. The von Mise theorem (Le
Cam 2012) asserts that, under some general regularity conditions, the selection of prior dis-
tribution does not damage the efficiency of the posterior estimate which is asymptotically
equivalent to the maximum likelihood estimates. Thus, formulating common-sense knowl-
edge as prior in Bayesian GLM to implement the logistic regression will be justified if the
sample size is large. Using good prior to gain stability and efficiency can also be justified
from finite-sample consideration of the type of arguments similar to the von Mise theorem
arguments. Assuming locally asymptotically normal (LAN) for the likelihood function,
which is equivalent to say the likelihood is from an asymptotically normal model (Le Cam
2012), and assuming normal prior distribution, then the variance of the estimate using the
posterior distribution is smaller than using either the observed data only or the prior only.
Smaller variance in normal distribution means larger Fisher information, and easier esti-
mation problems, and actually faster convergence of the MLEs and computing algorithms
including the shrinkage EM algorithms. Indeed, the posterior likelihood is more spiky and
more concave, and the original likelihood without using the common sense prior is more
flat. Thus, the shrinkage EM algorithms leads to more robust estimates for mixture cure
models as demonstrated by our simulation studies.

The same pattern also holds when we consider more general expamples including time-
dependent covariates.
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Histgram of estimated b1l
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