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Abstract

With recent advancements in cancer research and other branches of medicine, many cancer patients

can be clinically cured who will never experience disease recurrence or progression, or disease-

specific death. In the presence of a high cure fraction, conventional survival models are not appro-

priate because they do not account for the possibility of cure. The mixture cure models (MCMs)

have been developed with the EM based implementation to simultaneously estimate the cure fraction

and the survival function of uncured patients. However, the available R packages for the EM-based

implementation of the MCMs are lack of robustness, especially when the sample size is small. This

paper investigates the stability of the estimates of the MCMs, and proposes a shrinkage EM algo-

rithm for robust inference of mixture cure models by incorporating existing common knowledge on

predictors as weakly informative priors. Numerical studies are conducted to show the instability

of the ordinary EM-based estimates of MCMs and the advantages of shrinkage EM algorithm for

robust inference of mixture cure models.

Key Words: Mixture cure models, EM algorithm, Bayesian prior, stability, shrinkage EM algo-

rithm

1. Introduction

With the development of modern medicine and effective therapies, the curability of many

cancers and other hard-to-treat diseases is becoming a reality. In early-stage melanoma and

other diseases with good prognosis, frequently, many patients will never experience cancer

recurrence in a long-term follow up. In the presence of cured subjects, the overall patient

population consists of a mixture of cured and uncured subpopulations. In this context, the

commonly used survival models, such as Cox proportional hazards model, are not ideal.

These standard survial models assume all patients will eventually experience the event of

interest given long enough follow up. In contrast, mixture cure models (MCMs) are par-

ticularly suitable for describing patient’s survival and cure status. MCMs jointly model the

latent cure status using logistic regression and model survival time using Cox regression

models (Farewell 1982, Kuk and Chen 1992, Peng and Deer 2000, Sy and Taylor 2000,

Han 2017, Zhang and Shao 2018). Importantly, Peng and Dear (2000) and Sy and Taylor

(2000) applied the expectation–maximization (EM) algorithm to obtain the maximum like-

lihood estimators under the logistic-Cox mixture cure model. Despite extensive literature

on MCMs and the associated conceptual flexibility, the MCMs has been under used. Cox

regression models have been widely used even in the presence of both cured and uncured

patients, partially due to easy-to-use software for the Cox regression models and unfamil-

iarity to the MCMs. Cai et al. (2012) introduced an R package smcure to to compute the

maximum (partial) likelihood estimates of the semiparametric mixture cure models, which

has became the most widely used R package for fitting MCMs.

As is well known, to identify the cure effect, it is important to have long follow up

for some cured (eventually censored) subjects. In the case of limited study follow up and

heavy censoring, there are stability issues for the EM based computation of the MCMs in
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smcure. To overcome this challenge, we suggest a shrinkage EM algorithm where we use

the Bayesian GLM with default prior on the parameters of the logistic regression in the EM

algorithm that can lead to more robust estimates.

In this paper, we develop a shrinkage EM algorithm to address issues associated with

inferential stability due to latent heterogeneity in the form of unobserved cure status in

the patient population. We also demonstrate the MCMs can easily include time-dependent

predictors. Time-dependent predictors are important and frequently more useful than the

baseline values. Numerical studies are used to demonstrate the advantages of the newly

proposed shrinkage-based EM algorithms for robust inference.

2. Models

2.1 The Mixture Cure Models

Let T denote the failure time of interest and Spop(t | X,Z) be the survival function of T
depending on covariates X and Z. The mixture cure model is defind as

Spop(t | X,Z) = π(Z)S(t | X) + 1− π(Z).

where π(Z) is the probability of a patient being uncured depending on Z, refered as “in-

cidence” and S(t|X) is the survival function of the failure time distribution of uncured

patients depending on X , referred as “latency”. Usually, a logit link function is used to

model the effects of covariates Z. Define a binary variable Y as cure indicator, where

Y = 1 indicates an individual will eventually experience the event and Y = 0 indicates an

individual will never experience the event (or long-term survivor). Then the distribution of

Y can be represented as a logistic model

Pr(Y = 1 | Z) = π(Z) =
exp(bZ)

1 + exp(bZ)
,

where b is a vector of unknown parameters, is used to model the effect of Z. Then π(Z) is

the probability of a patient being uncured, 1− π(Z) is the cure probability.

When S(t|X) is modeled by Cox PH model, that is S(t | X) = [S0(t)]
exp(βT X), the above

MCM model is called the logistic-Cox PH mixture cure model, where S0(t) is the unknown

baseline survivial function. For brevity, we focus on this semiparametric logistic-Cox mix-

ture cure models, which can be implemented by the smcure function in the smcure R pack-

age. However, smcure algorithm requires a relatively large sample size to give a reliable

estimates. Otherwise, the EM algorithms may not converge or the variance of the estimates

in logistic part may be inflated. Therefore, it is important to develop a robust procedure

to improve stability in the EM-based estimation. In many applications, the sample size in

clinical studies are not large, and even if the sample size is large but the follow up may be

short as many studies or clinical trials have limitted study duration due to funding and other

logistic constraints. Either sample size and/or short follow up can lead to instability of the

implementation of the existing algorithms for MCMs such as Cai et al’s R packge. Also, in

Cai’s smcure algorithm, latency part can only be modeled by fixed-time covariates. How-

ever, as is typical in many survival studies, individuals are monitored during the study, and

some explanatory variables may change over time. Those time-dependent variables may

be instrumental in predicting survival and need to be taken into consideration in evaluating

the survival distribution.
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2.2 Robust Implementation of MCMs

To address these problems of Cai’s method, we develop robust mixture cure models (rcure)

by incorporating Bayesian prior with availability to extend to time-dependent covariates.

Our robust mixture cure model can be expressed as

Spop(t | X(t),Z) = π(Z)S(t | X(t)) + 1− π(Z) (1)

where π(Z) is referred to as uncured probability depending on time-independent covariates

Z which is modeled by a logistic model:

Pr(Y = 1|Z) = π(Z) =
exp(bZ)

1 + exp(bZ)
, (2)

where unknown parameter b stands for the log odds ratio (OR). In real applications, we

rarely have extremely informative predictors with OR larger than 10 or smaller than 0.1 per

standard deviation for continuous predictors. Such predictors can be handled separately.

Typical predictors have moderate ORs. Thus, as argued by Gelman et al (2008) and others,

it is really without loss of generality to assume the ORs are moderate for the predictors in

the above logistic regression. One way to implement this common knowledge is to assume

the Log OR parameters in the above logistic model follow a weak prior distribution in the

Bayesian GLM that can be implemented efficiently using existing R packages developed

by Gelamn and colleagues. When the sample size is small, we suggest to use the default

prior of a Cauchy distribution with zero location parameter and scale parameter 2.5.

S(t | X(t)) denotes the survival probability of the uncured patients, where X(t) is the

time-dependent covariates, whose values change over the duration of the follow-up time.

The time-dependent Cox model is used to model the latency part, which can be expressed

as:

λ(t | X(t)) = λ0(t)exp(β
TX(t)), (3)

where regression coefficient β is constant over time. λ0(t) is the baseline hazard function.

Then, the survival function of uncure patients is given by

S(t | X(t)) =exp(−

∫ t

0
λ0(u)exp(β

TX(u))du). (4)

In order to obtain a robust estimation, we will introduce the shrinkage-based EM algorithm

by incorporating a Bayesian GLM algorithm to implement the robust logistic regression as

discussed in the next section.

3. Methods

3.1 Complete likelihood function of the MCMs

Let O = {O1,O2, . . . ,On} denote the observed data. Oi = (ti, δi,zi,xi(t)) denote the

observed data for the ith individual, i = 1, . . . , n, where ti is the observed survival time,

δi is the censoring indicator with δi = 1 for uncensored time and δi = 0 for censored

time, zi is the possible covariates in the incidence part, and xi(t) is the time-dependent

covariates in the latency part. The censoring is assumed noninformative and independent.

Let Θ = (b,β,λ0(t)) denote the unknown parameters. Assume the latent cure indicator

Y = {y1, y2, · · · , yn} is known, where yi = 1 denotes the ith individual is not cured

and yi = 0 is cured, with probability π(zi) = P (yi = 1 | zi). The complete likelihood

function is
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n∏
i=1

(1− π(zi))
(1−yi)π(zi)

yiλ(ti | yi = 1, xi(t))
δiyiS(ti | yi = 1, xi(t))

yi . (5)

Then the log likelihood function can be expressed as

l(b,β;O,Y ) = l1(b;O,Y ) + l2(β;O,Y ), (6)

where

l1(b;O,Y ) =

n∑
i=1

[yilog(π(zi)) + (1− yi)log(1− π(zi))], (7)

l2(β,λ0(t);O,Y ) =

n∑
i=1

yi[δilog(λ(ti | yi = 1,xi(t))) + log(S(ti | yi = 1,xi(t)))].

(8)

Obviously, if δi = 1, then yi = 0, but if δi = 0, yi is not observable and yi can be one

or zero. Since Y is partially missing information, we do not have an exact expression for

equation (8), the expectation maximization (EM) algorithm will be employed (Dempster,

Laird, and Rubin 1977).

3.2 The Shrinkage EM algorithm

A shrinkage EM algorithm is proposed for our robust mixture cure models, to reduce the

variance of the estimate in the logistic regression of mixture cure models. The E-step in

the EM algorithm computes the conditional expectation of the log likelihood with respect

to Yi, given observed data O and current estimates of Θ(m). The conditional probability of

the ith individual remaining uncured at the mth iteration of the algorithm can be written as

w
(m)
i =E(yi | O,Θ(m))

=δi + (1− δi)
π(zi)S(ti | yi = 1,xi(t))

1− π(zi) + π(zi)S(ti | yi = 1,xi(t))
. (9)

It is easy to see that if δi = 1, w
(m)
i = 1; and if δi = 0, w

(m)
i is the uncured probability

of the ith individual. Then we have δiw
(m)
i = δi and δi log(w

(m)
i ) = 0. Since both parts

of log likelihood function (7) and (8) are linear functions of yi, the expectation of l1 and l2
can be written as

E(l1) =

n∑
i=1

[w
(m)
i log(π(zi)) + (1− w

(m)
i ) log(1− π(zi))], (10)

E(l2) =
n∑

i=1

[w
(m)
i δilog(λ(ti | yi = 1,xi(t))) + w

(m)
i log(S(ti | yi = 1,xi(t)))]

=

n∑
i=1

[δilog(λ(ti | yi = 1,xi(t))) + w
(m)
i log(S(ti | yi = 1,xi(t)))]

=

n∑
i=1

[δi log(w
(m)
i ) + δi log(λ(ti | yi = 1,xi(t))) + w

(m)
i log(S(ti | yi = 1,xi(t)))]

=
n∑

i=1

[δi log(w
(m)
i λ(ti | yi = 1,xi(t))) + w

(m)
i log(S(ti | yi = 1,xi(t)))]. (11)
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The M-step in EM algorithm is to maximize the log likelihood function (6). The EM

estimator can be obtained by maximizing equation (10) and (11). Gelman et al. (2008) de-

veloped a function bayesglm (part of the arm R package) by altering the glm function in R,

which allows users to specify independent prior distribution for the coefficients in logistic

regression models. Stable logistic regressions coefficient can be obtained by this Bayesian

inference approach even when there is separation or sparsity in the dataset. Therefore, in

order to get the robust estimate, we incoporate a default prior (Cauchy distribution with

location parameter 0 and scale parameter 2.5) into the cure fraction of the mixture cure

models. If informative prior is available, it is encouraged to be used instead of the default

prior. Therefore, we use the function bayesglm in R to obtain robust estimate parameter b
in equation (10). Peng and Dear (2000) and Sy and Taylor (2000) proposed a method to

estimate β using partial likelihood. Then we can obtain estimate of β in equation (11) by

estimating

log

n∏
i=1

[λ0(ti) exp(βxi(t) + log(wi
(m)))]δiS0(ti)

exp(βxi(t)+log(wi
(m)), (12)

which is similar to the log-likelihood function of the commonly used time-dependent PH

model with the additional offset variable log(w
(m)
i ). Thus, we can obtain the estimates in

(12) by function coxph in R.

In order to proceed the E-step in the EM algorithm, we need to update the estimated

survival function. Let t(1) < t(2) < · · · < t(k) be the distict uncensored failure times, dj
denotes the number of events at time t(j) and Rj denotes the risk set include all individuals

who are still under study at the time prior to t(j). The estimate for the baseline hazard

function is

λ0j = λ̂0(t | Y = 1) =
dj

(t(j−1) − t(j))
∑

i∈Rj
wie

β̂Xi(t(j))
for t ∈ (t(j−1), t(j)]. (13)

The baseline hazard function is assumed to be piecewise constant between failure times.

4. Simulation Studies

We use simulations to demenstrate the stability issue of the mixture cure models and inco-

porating Bayesian prior into logistic regression part can help to gain stability. Samples are

generated from a logistic-Cox mixture cure model:

Spop(t | X,Z) = π(Z)S(t | X) + 1− π(Z).

Following Kuk and Chen (1992) and Peng and Dear (2000), we generate a control group

of 30 observations and a treatment group of the same size, simple size n=60 in total. The

indicator of the treatment group is the only covariate, denote as X. The probability of

uncure is generated from a logistic model, where π(Z) = exp(b0+b1Z)
1+exp(b0+b1Z) , with Z = X. The

logistic parameters are set at b0 = 2, b1 = −1, so that the probability of uncured individuals

Pr(Y = 1 | Z = 0) = 0.881 for the control group, and Pr(Y = 1 | Z = 1) = 0.731 for

the treatment group, which means cure rate of 11.9% in the control group and 26.9% in the

treatment group. The survival times are generated from a Cox model, where

S(t | Y = 1,X) = S0(t | Y = 1)exp(βX).

The parameter is set at β = log(1/2) = −0.693. The standard exponential distribution

is used for baseline survival funcution S0(t | Y = 1) for uncured patients in the control

 
2493



group. The censoring times are generated from a exponetial distribution exp(λC), where

λC = 0.28. This choice of λC gives an expected censoring proportion 31% for the control

group, 53% for the treatment group, and overall is 42%. Under this setting, 500 samples

are generated. Cai’s smcure models and our proposed rcure models with default Cauchy (0,

2.5) prior are applied to the samples. As estimation results shown in Table 1, by incorpo-

rating the default prior, the estimated coefficients of the logistic regression part has much

smaller bias, variance and MSE of our rcure algorithm compared to smcure algorithm. The

bias for b̂0 by our method is around 10%, while the the bias for b̂0 by smcure is larger than

150%. The bias for b̂1 by our method is less than 5%, while the the bias for b̂1 by smcure is

larger than 200%. In addition, our rcure methods give both the MSE of b̂0 and b̂1 less than

1, while the MSE of b̂0 and b̂1 by smcure are both around 50. On the other hand, in survival

part, smcure algorithm and rcure algorithm both give stable and less biased β̂. By our rcure

algorithm, the bias of β̂ is 3% and the MSE of β̂ is 0.198; while by smcure algorithm, the

bias of β̂ is 2% and the MSE of β̂ is 0.207.

Table 1: Comparison of smcure and rcure estimates

sample size n=60

b̂0 b̂1 β̂
Model 2 -1 -0.693

Average smcure 5.068 -3.269 -0.681

rcure 2.224 -0.958 -0.715

Bias smcure 3.068 -2.269 0.012

rcure 0.224 0.042 -0.022

Variance smcure 37.596 46.288 0.207

rcure 0.802 0.953 0.198

MSE smcure 47.009 51.436 0.207

rcure 0.852 0.955 0.198

The instability of b̂1 by smcure can also be observed in the distribution plot of esti-

mated b1 in Figure 1. The blue bars represent the probability of estimated b̂1 obtained by

smcure algorithm; the red bars represent the probability of estimated b̂1 obtained by rcure

algorithm; the red vertical line represents the true value of b1, b1 = −1. As we can see

from the upper plot, smcure gives quite wide and unstable estimates. The range of b̂1 by

smcure algorithm can reach -20 and 20, while b̂1 by rcure algorithm is much more stable

with range (-4.2, 1.9). The true value of b1 is -1. However, by smcure algorithm, there are

only 52.8% b̂1 fall in (-2,0), and 18.2% b̂1 even fall outside of (-10,10). We can even see a

high frequency of b̂1 near -20 by smcure. There are 54 times b̂1 fall in (-20, -17) within 500

replications.

Then we conduct additional simulations for the same PH mixture cure model set up

with larger sample size n=200 and same paramater setting as in Kuk and Chen (1992) and

Peng and Dear (2000). Under this setting, 500 samples are generated. The smcure model

and rcure model with default Cauchy (0, 2.5) prior are applied to the samples. Table 2

summarizes the average, biases and variances of the estimates of regression parameters

from the smcure model and rcure model with defualt prior in the simulation study. When

the sample size goes up to 200, the estimated b0 and b1 still have smaller bias and MSE by

our rcure algorithm compared to Cai’s smcure algorithm. The bias for b̂0 by our method

is 4%, while the the bias for b̂0 by smcure is 20%. The bias for b̂1 by our method is less

than 2%, while the the bias for b̂1 by smcure is 30%. In addition, the MSE of b̂0 and b̂1 by
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Histgram of estimated b1 

 smcure vs. rcure Cauchy prior (0,2.5), n=60
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Figure 1: Histgram of b̂1, n=60

our method are both less than 0.5, while the MSE of b̂0 and b̂1 by smcure are both are over

3. For the survival part, stable and less biased β̂ can be obtained by either Cai’s smcure

algorithm or our rcure algorithm. The two methods both give that the bias of β̂ is less than

0.01 and the MSE of β̂ is less than 0.1. Compared to the estimation results of sample size

60, both smcure algorithm and rcure algorithm get less bias and more stable estimates for

all three parameters when the sample size goes up to 200.

When sample size is 200, the distribution of estimated b1 by two mtheods can be com-

pared in Figure 2. The blue bars represent the probability of estimated b̂1 obtained by

smcure algorithm; the red bars represent the probability of estimated b̂1 obtained by rcure

algorithm; the red vertical line represents the true value of b1, b1 = −1. The range of b̂1 by

smcure is still wide, it is from -17.45 to 3.68. 83.4% b̂1 falls in (-2,0), while the true value

of b is -1. However, our rcure algorithm gives shrinkage range (-3.3, 1,2), and nearly 90%

b̂1 falls in (-2,0). Therefore, by incorporating the default prior, the mixture cure models

can obtain a more stable and less biased slope estimate, especially when the sample size is

small.

5. Discussion

The patient population often contains both cured and uncured patients in cancer research.

Mixture cure models as an alternative to the conventional survival models, are useful to

study survival of a patient population with a latent cure fraction. The smcure R package

developed by Cai et al. (2012) is the main publicly available peer reviewed R package for

fitting cure models. The smcure package adopts the conventional EM algorithm proposed

by Peng and Dear (2000) and Taylor and Sy (2000) for mixture cure models. Compared

to the conventional survival models, cure models have more parameters to be estimated.

 
2495



Table 2: Comparison of smcure and rcure estimates

sample size n=200

b̂0 b̂1 β̂
Model 2 -1 -0.693

Average smcure 2.379 -1.300 -0.688

rcure 2.082 -0.984 -0.703

Bias smcure 0.379 -0.300 0.005

rcure 0.082 0.016 -0.010

Variance smcure 3.005 3.256 0.080

rcure 0.270 0.4367 0.078

MSE smcure 3.149 3.346 0.080

rcure 0.277 0.436 0.078

Therefore, it requires a relatively large sample size and long follow-up to achieve stable

estimation. In addition, in order to proceed with the E-step in EM algorithm, baseline

hazard function need to be estimated. However, baseline hazard function generally has in-

finite dimensions, which is sometimes difficult to be estimated with a small sample size.

A poorly estimated baseline hazard function may lead to unstable EM algorithm, and thus

unstable parameter estimates in the logistic regression which describes cure status. Addi-

tionally, when sample size is small, the number of cured patients might be sparse causing

the instability of logistic regression.

In this paper, we propose a shrinkage EM algorithm by incoporating Bayesian prior

to obtain more stable estimate. The asymptotic validity of the Bayesian inference can be

justified by the von Mise theorem (Le Cam 2012). As is well known, when the sample

size is large, the maximum likelihood estimates are generally consistent under very general

regularity conditions and asymptotically normal with minimal asymptotic variance as de-

termined by the inverse of the Fisher information of the model. The von Mise theorem (Le

Cam 2012) asserts that, under some general regularity conditions, the selection of prior dis-

tribution does not damage the efficiency of the posterior estimate which is asymptotically

equivalent to the maximum likelihood estimates. Thus, formulating common-sense knowl-

edge as prior in Bayesian GLM to implement the logistic regression will be justified if the

sample size is large. Using good prior to gain stability and efficiency can also be justified

from finite-sample consideration of the type of arguments similar to the von Mise theorem

arguments. Assuming locally asymptotically normal (LAN) for the likelihood function,

which is equivalent to say the likelihood is from an asymptotically normal model (Le Cam

2012), and assuming normal prior distribution, then the variance of the estimate using the

posterior distribution is smaller than using either the observed data only or the prior only.

Smaller variance in normal distribution means larger Fisher information, and easier esti-

mation problems, and actually faster convergence of the MLEs and computing algorithms

including the shrinkage EM algorithms. Indeed, the posterior likelihood is more spiky and

more concave, and the original likelihood without using the common sense prior is more

flat. Thus, the shrinkage EM algorithms leads to more robust estimates for mixture cure

models as demonstrated by our simulation studies.

The same pattern also holds when we consider more general expamples including time-

dependent covariates.
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