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Abstract
Semiparametric mixture cure models have been increasingly used for analyzing time-to-event data in many applica-

tions including cancer research where there are two latent groups of patients, those who could eventually experience
events and those who become immune or cured after certain treatments. For many cancer patients, a large number of
variables are routinely collected in many clinical and medical examinations including those with significant predic-
tive or prognostic importance. The successful implementation and application of mixture cure models highly depend
on the identification of important risk factors that affect the cure probability and/or the survival distributions among
uncured subjects. However, there is a lack of rigorous justification for variable selection in this context due to the
challenges related to unknown cure status and heavy data censoring. The aim of this paper is to establish validity and
asymptotic optimal properties of the penalized likelihood based methods for variable selection in mixture cure models
with adaptive lasso and other penality functions. The finite sample properties of several different types of penalties
and tuning parameter selection criteria are compared in simulation studies. The performance of the variable selection
methods is also illustrated using a cohort of melanoma patients at New York University Cancer Center.
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1. Introduction

With the recent advance of immunotherapies and targetted therapies for melanoma and other cancers, the
curability of a significant portion of advanced as well as early-stage cancers is becoming a reality. The data
of these studies typically have heavy censoring at the end of the follow-up period, and a standard survival
analysis that ignoring the cure fraction would not always be appropriate. In such situations where there is
sufficient evidence of a cured subpopulation, the mixture cure model can be used as a powerful statistical
tool for analyzing such studies (Maller and Zhou, 1996; Yilmaz and others, 2013; Zhang and Shao, 2018).
A binary distribution model, e.g. logistic regression model, can be assumed for the incidence probability
and a failure time model, e.g. Cox’s regression model, can be used to model the latency (Kuk and Chen,
1992). Importantly, Sy and Taylor (2000) and Peng and Dear (2000) proposed some EM algorithms for
numerical computation fo rthe maximum likelihood method for the joint estimation of the incidence and
latency regression parameters in this model.

In many cancer studies, a large set of variables are collected as potential predictors, and how to effi-
ciently select a subset of significant variables becomes an essential task for the successful implementation
of the mixture cure mode in these applcations. Moreover, because of the heavy censoring data and mixture
structures of cure models, how to identify the covariates that affect the cure probability and/or the survival
distribution of those who are not cured respectively is theoretically tricky (Maller and Zhou, 1996; Liu and
Shao, 2003). To the best of our knowledge, no rigorously justified variable selection methods have been
designed for this mixture cure model.

Using the regularized procedures to simultaneously select important variables and estimate unknown pa-
rameters has received great attention in recent years. Tibshirani (1996) proposed Least Absolute Shrinkage
and Selection Operator (LASSO), Fan and Li (2001, 2002) proposed Smoothly Clipped Absolute Deviation
(SCAD) and Zou (2006) and Zhang and Lu (2007) proposed adaptive LASSO. However, it is well known
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that the LASSO shrinkage produces biased estimates for the large coefficients, and thus it could be sub-
optimal in terms of estimation risk, while SCAD and adaptive LASSO have been proved to satisfy oracle
properties (Fan and Li, 2001; Zou, 2006).

The aim of this paper is to account for a cure fraction in the global population by assuming a mixture
cure model, and investigate methods for consistent variable selection based on penalized likelihood among
multiple potential covariates. There has not been a rigorous study systematically investigate whether the
penalized likelihood procedures will work in the mixture cure model. Importantly, Liu and others (2012)
and Scolas and others (2016) provided simulation results in the semiparametric logistic/Cox model and the
parametric logistic/AFT cure models, respectively. However, there is no theoretical justification about the
existence, consistency and oracle properties of the maximum penalized likelihood estimators for semipara-
metric cure models. Therefore, a rigorous study of the asymptotic optimal properties is needed to provide
theoretical foundation for variable selection in semiparametric mixture cure model.

The layout of the remainder of this paper is as follows. In Section 2, we will describe our proposed
penalized likelihood-based variable selection method and a modified EM algorithm for numerical compu-
tation. Asymptotic optimal properties of our proposed methods are given in Section 3. Some simulation
studies are conducted to demonstrate the performance of the proposed method in Section 4. In Section 5, we
apply the proposed method to a cohort of melanoma patients at the Cancer Center at in New York University
Langone Medical Center. Some discussion are given in Section 6. Technical proofs are relegated to the
Supplementary Material.

2. Consistent Variable Selection via Penalized Likelihood

Let T ∗ denote the failure time and C denote the censoring time. The observed time is T = min(T ∗, C) and
the censoring indicator is ∆ = I(T ∗ ≤ C). Assume that T ∗ and C are conditionally independent. Let u
be an uncure indicator, u = 1 if the subject is not cured and u = 0 otherwise. The indicator u is partially
missing because if δ = 1, then u = 1, but if δ = 0, u is not observable. Let Su(t|x) be the survival function
of T ∗ for the uncured patients given covariate vector x, and π(z) be the probability of being uncured given
a covariate vector z. The survival function S(t|x, z) of an individual from the entire population is

S(t|x, z) = π(z)Su(t|x) + 1− π(z),

where π(z) = P (u = 1|z) can be modeled by a logistic regression π(z) = exp(γTz)

1+exp(γTz)
, and Su(t|x) can be

modeled by Cox’s proportional hazards (PH) regression Su(t|x) = S0(t)
exp(βTx). S0(t) is an unspecified

baseline survival function, and β = (β1, β2, · · · , βq)T , γ = (γ1, γ2, · · · , γp)T are unknown vectors of
regression coefficients. For simplicity of exposition, we consider the case x is a baseline predictor. Our
proof also applies to the case where x = x(t) is a time-dependent predictor, and the Cox PH model is a Cox
model with time-dependent covariate.

Writing Ψ = {β,γ, S0}, the log observed likelihood function can be written as

`o(Ψ) =
n∑
i=1

{δi log[π(zi)hu(ti|xi)Su(ti|xi)] + (1− δi) log[1− π(zi) + π(zi)Su(ti|xi)]} . (1)

And the corresponding log complete likelihood function is given by

`(Ψ) =
n∑
i=1

log
[
π(zi)

ui{1− π(zi)}1−ui
]

+
n∑
i=1

ui log{hu(ti|xi)δiSu(ti|xi)}. (2)

The penalized log complete likelihood can be formulated as

`p(Ψ) = `(Ψ)− pn(Ψ), (3)
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where pn(Ψ) = n
∑p

j=1 pλ1(|γj |) + n
∑q

k=1 pλ2(|βk|); pλ1(| · |) and pλ2(| · |) are penalty functions for
γ and β; λ1 and λ2 are tuning parameters for regression coefficients γ and β, respectively. The penalty
function can take several forms, such as LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001, 2002), and
Adaptive LASSO (Zou, 2006; Zhang and Lu, 2007).

The EM algorithm is a widely used procedure to estimate the parameters in mixture cure models with-
out regularizations (Taylor, 1995; Sy and Taylor, 2000; Peng and Dear, 2000). Importantly, Cai and others
(2012) has developed an R package smcure which can be implemented if the variables have been properly
selected. Regarding the penalized likelihood methods for variable selection, Liu and others (2012) provided
simulation results in logistic/Cox’s semiparametric cure models and illustrated its usefulness. However,
there is no theoretical justification about the existence, consistency of selection and oracle properties of the
maximum penalized likelihood estimators. Therefore, we will provide theoretical foundation for variable
selection in semiparametric mixture cure model, we will propose a modified EM algorithm as well as an
publicly available R package VSsmcure. The penalized log complete likelihood in equation 3 can be rewrit-
ten into two parts: penalized likelihood for logistic regression and penalized partial likelihood for Cox’s
regression, thus, the parameters can be easily updated at each iteration. The details of our modified EM
algorithm and the selection of tunning parameters can be found in the Section 7 Supplementary Material.

3. Asymptotic Optimal Properties

Note that, if we know or observe the cure status, then we can prove selection consistency for the Cox PH
model part using Zhang and Lu (2007), and selection consistency of the logistic model using Zou (2006)
directly. However, the cure status is only partially observed and the EM algorithm the infer the cure status
involves the baseline hazard which is an infinite dimensional nuisance parameter. That makes the inference
not straightforward. Prior to establish the asymptotic optimal properties, we are going to demonstrate that the
EM algorithm which based on penalized complete likelihood gives the desired estimators from maximizing
the penalized observed likelihood. In ordinary mixture problems, Dempster and others (1977) proved that
the EM algorithm would increase the observed likelihood in each iteration step. Here we introduce Lemma
1 to show that the modified EM algorithm also works in penalized maximum likelihood problems.

Consider the complete data Y = (X,Z) and observed data X . Let f(y; θ) be the density function
of complete data Y , f(x; θ) be the density function of observed data X and f(y|x; θ) be the conditional
density function of Y given X . Denote the log likelihood function of observed data x as `(θ, x) and the log
likelihood function of complete data y as `(θ, y). Similarly, denote the penalized log likelihood function of
observed data x as `p(θ, x) = `(θ, x)− pλ(θ), where λ is a tuning parameter and p(θ) is a penalty function.

Lemma 1. Suppose θ(m) and θ(m+1) are the estimates in mth and (m + 1)th step of the modified EM
algorithm under the above settings, then `p(θ(m+1),x) ≥ `p(θ(m),x). The proof of Lemma 1 can be found
in the Section 7 Supplementary Material.

Now we begin to establish the asymptotic optimal properties for our penalized likelihood estimatosr
based on the observed likelihood function. Let

γ0 = (γ10, γ20, · · · , γp0)T = (γT
10,γ

T
20)

T,

β0 = (β10, β20, · · · , βq0)T = (βT
10,β

T
20)

T.

Without loss of generality, we assume β20 and γ20 are zero coefficients, and β10 and γ10 are non-zero
coefficients. For notation simplicity, we denote ΨT = (γT,βT, S0) = (ΨT

1 ,Ψ
T
2), where Ψ1 contains all

non-zero effects and Ψ2 contains all zero effects. In addition, denote ΨT
0 = (ΨT

01,Ψ
T
02) as true parameters.

The log observed likelihood function and the penalized log observed likelihood function are given as

`o(Ψ) =
n∑
i=1

{δi log[π(zi)hu(ti|xi)Su(ti|xi)] + (1− δi) log[1− π(zi) + π(zi)Su(ti|xi)]} ,
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`op(Ψ) = `o(Ψ)− pn(Ψ). (4)

where pn(Ψ) = n
∑p

j=1 pλ1(|γj |) + n
∑q

k=1 pλ2(|βk|). Let

an = max{p′λ1n (|γj0|), p′λ2n (|βj0|) : γj0 6= 0, βj0 6= 0},

bn = max{p′′λ1n (|γj0|), p′′λ2n (|βj0|) : γj0 6= 0, βj0 6= 0}.

Similar to Zhang and Lu (2007), the following conditions are needed on the penalty functions:

(P1): pλ(θ) ≥ 0, pλ(0) = 0. pλ(·) is nondecreasing and twice differentiable with at most a few exceptions.

(P2): As n→∞, bn → 0.

(P3): For Nn =
{
θ : 0 < θ < n−1/2 log n

}
, lim
n→∞

inf
θ∈Nn

√
np′λ(θ) =∞.

Theorem 1. Suppose the observed data Oi, i = 1, 2, · · · , n are independent and identically distributed
and the conditions (P1), (P2) on penalty functions are satisfied. If

∫∞
0 P (C > t)dH0(t) < ∞, then the

maximum penalized likelihood estimator Ψ̂n = arg sup `op(Ψ) satisfied that

||Ψ̂n −Ψ0|| = Op(n
−1/2 + an),

where || · || represents the Euclidean norm.
Proof of Theorem 1. Let αn = n−1/2 + an. First, we demonstrate that with large probability, there

exists a local maximum in the ball {Ψ0 + αnv : ||v|| ≤ C} and this local maximizer, says Ψ̂n, satisfies
||Ψ̂n −Ψ0|| = Op(αn). It suffices that for any given ε > 0, there exists a constant C such that

lim
n→∞

P

{
sup
||v||=C

`op(Ψ0 + αnv) < `op(Ψ0)

}
≥ 1− ε. (A.1)

LetDn(v) = `op(Ψ0 +αnv)− `op(Ψ0) = [`o(Ψ0 +αnv)− `o(Ψ0)]− [pn(Ψ0 +αnv)−pn(Ψ0)]. Since
pλ(θ) ≥ 0, pλ(0) = 0, we have pn(Ψ0) = pn(Ψ01) and pn(Ψ0 + αnv) ≥ pn(Ψ01 + αnv1), where Ψ01

is the parameter vector with non-zero effects and v1 is a subvector of v with corresponding components.
Thus,

Dn(v) ≤ [`o(Ψ0 + αnv)− `o(Ψ0)]− [pn(Ψ01 + αnv1)− pn(Ψ01)]. (A.2)

By Taylor expansion,

`o(Ψ0 + αnv)− `o(Ψ0) = n−1/2(1 + an)S(Ψ0)
Tv − (1 + an)2

2
vTI(Ψ0)v[1 + o(p)], (A.3)

where S(Ψ0) is the score function of observed likelihood and I(Ψ0) is the Fisher information matrix of
observed likelihood. The explicit forms were given in Theorem 2 and Lemma 1 of FANG and others
(2005).

By Taylor expansion and triangular inequality,

|pn(Ψ01 + αnv1)− pn(Ψ01)| ≤
√
dan(1 + an)||v1||+ bn(1 + an)2||v1||2, (A.4)

where d = max{d1, d2} and d1, d2 are the numbers of true non-zero coefficients in γ0,β0 respectively.
The order comparison of A.3 and A.4 implies that the penalty term is negligible when n is large, and the
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negative term− (1+an)2

2 vTI(Ψ0)v[1 +o(p)] is the sole leading term in A.2. Hence, for ∀ε > 0, by choosing
a sufficiently large C, A.1 holds.

Additionally, by Theorem 2 and 3 of FANG and others (2005), when
∫∞
0 P (C > t)dH0(t) < ∞, the

log likelihood function `0(Ψ) is concave, and there exists a unique
√
n-consistent estimator over the whole

parameter space. For adaptive LASSO, the penalty term pn(Ψ) is convex (Zou, 2006; Zhang and Lu, 2007),
thus the log penalized likelihood function `0(Ψ) − pn(Ψ) is concave and thus the maximizer Ψ̂n is the
maximum penalized likelihood estimator. The SCAD penalty is nonconcave, similar procedure can be done
following Fan and Li (2001). This completes the proof of Theorem 1.

From Theorem 1, we know that there exists a
√
n-consistent maximum penalized likelihood estimator.

And in the following part, we will exam the oracle properties (Fan and Li, 2001) which includes sparsity
and asymptotic normality.

Theorem 2. Assume the conditions given in Theorem 1 and (P1) − (P3) on penalty functions are
satisfied, we have the following:

a. Sparsity: P (γ̂20 = 0)→ 1 and P (β̂20 = 0)→ 1 as n→∞.

b. Asymptotic normality: Let I1(Ψ01) be the Fisher information when all zero effects are removed,
√
n
{

[I1(Ψ01)− p′′n(Ψ01)/n](Ψ̂1 −Ψ01) + p′n(Ψ01)/n
}
→d N(0, I1(Ψ01)).

Proof of Theorem 2: By the definition,

`op{(Ψ1,Ψ2)} − `op{(Ψ1,0)} = [`o{(Ψ1,Ψ2)} − `o{(Ψ1,0)}]− [pn{(Ψ1,Ψ2)} − pn{(Ψ1,0)}].

By the mean value theorem, for some ||ξ|| ≤ ||Ψ2|| = O(n−1/2),

`o{(Ψ1,Ψ2)} − `o{(Ψ1,0)} =

[
∂`o{(Ψ1, ξ)}

∂Ψ2

]T

Ψ2. (B.1)

Moreover, by the mean value theorem again,

||∂`
o{(Ψ1, ξ)}
∂Ψ2

− ∂`o{(Ψ01,0)}
∂Ψ2

||

≤||∂`
o{(Ψ1, ξ)}
∂Ψ2

− ∂`o{(Ψ1,0)}
∂Ψ2

||+ ||∂`
o{(Ψ1,0)}
∂Ψ2

− ∂`o{(Ψ01,0)}
∂Ψ2

||

≤[||ξ||+ ||Ψ1 −Ψ01||]Op(n) = Op(n
1/2).

By the order of score function, we know ∂`o{(Ψ01,0)}
∂Ψ2

= Op(n
1/2), so ∂`o{(Ψ1,ξ)}

∂Ψ2
≤ Op(n

1/2) and B.1
becomes

`o{(Ψ1,Ψ2)} − `o{(Ψ1,0)} ≤ Op(n1/2)[
p∑

i=d1+1

|γi|+
q∑

j=d2+1

|βj |].

And

pn{(Ψ1,Ψ2)} − pn{(Ψ1,0)} = n

p∑
i=d1+1

pλ1(|γi|) + n

q∑
j=d2+1

pλ2(|βj |).

Thus,

`op{(Ψ1,Ψ2)}−`op{(Ψ1,0)} ≤
p∑

i=d1+1

[
Op(n

1/2)|γi| − npλ1(|γi|)
]
+

q∑
j=d2+1

[
Op(n

1/2)|βj | − npλ2(|βj |)
]
.
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By condition P3, in a shrinkage neighborhood of 0, Op(n1/2)|γi| < npλ1(|γi|) and Op(n
1/2)|βj | <

npλ2(|βj |). Thus, we have
`op(Ψ1,Ψ2)− `op(Ψ1,0) < 0.

Let (Ψ̂1,0) be the maximizer of the penalized likelihood function `op{(Ψ1,0)}. We have

`op(Ψ1,Ψ2)− `op(Ψ̂1,0) =
[
`op(Ψ1,Ψ2)− `op(Ψ1,0)

]
+
[
`op(Ψ1,0)− `op(Ψ̂1,0)

]
.

By the property of maximum likelihood estimator, `op(Ψ1,0) − `op(Ψ̂1,0) ≤ 0. Therefore, `op(Ψ1,Ψ2) −
`op(Ψ̂1,0) < 0 and this implies γ̂20 = 0 and β̂20 = 0 with probability 1 as n→∞.

To prove part b, by the property of maximum penalized likelihood estimator, we have

∂`op{(Ψ̂1,0)}
∂Ψ1

=
∂`o{(Ψ̂1,0)}

∂Ψ1
− ∂pn{(Ψ̂1,0)}

∂Ψ1
= 0. (C.1)

By Taylor expansion,

∂`o{(Ψ̂1,0)}
∂Ψ1

=
∂`o(Ψ01)

∂Ψ1
+

[
∂2`o(Ψ01)

∂Ψ1∂ΨT
1

+ op(n)

]
(Ψ̂1 −Ψ01),

and
∂pn{(Ψ̂1,0)}

∂Ψ1
= p′n(Ψ01) + [p′′n(Ψ01) + op(n)](Ψ̂1 −Ψ01).

Then C.1 can be written as[
∂2`o(Ψ01)

∂Ψ1∂ΨT
1

− p′′n(Ψ01) + op(n)

]
(Ψ̂1 −Ψ01) =

∂`o(Ψ01)

∂Ψ1
− p′n(Ψ01).

Furthermore, by the asymptotic properties of score function and Fisher information matrix, we have

1

n

∂2`o(Ψ01)

∂Ψ1∂ΨT
1

= I1(Ψ01) + op(1),

1√
n

∂`o(Ψ01)

∂Ψ1
→d N(0, I1(Ψ01)).

By Slutsky’s theorem, the asymptotic normality in Theorem 2 holds. For simplicity of exposition, we
considered the case x is a baseline predictor. The above proof also applies to the case where x = x(t) is a
time-dependent predictor, and the Cox PH model is a Cox model with time-dependent covariate.

4. Simulation Studies

Let Su(t|x) be the survival function of T ∗ for the uncured patients given covariate vector x, and π(z)
be the probability of being uncured given a covariate vector z. In our simulation study, x and z are two 8-
dimensional random vectors. The first 4 components ofx and z are generated from an independent Bernoulli
distribution with success probability 0.5. The last four components are multivariate normal random variables
with mean 0 and covariance matrix Σ = ρ|i−j|, in which ρ = 0.5. The survival time T ∗ is generated from
a Cox’s PH model with parameters β = (−0.693, 0, 1, 0,−0.5, 0.75, 0, 0) and covariates x. Censoring
time C follows an exponential distribution with mean 10 and independent of the survival time. We observe
T + min(T ∗, C). The partially observed cure indicators are generated from a logistic regression model
with parameters γ = (0.5, 0, 0.25,−0.75, 0, 0,−0.5, 0.3, 0) and covariates z. Under this simulation setting,
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the cure rate is around 44% and the censoring rate is around 49%. 3 types of penalties, LASSO, SCAD
and Adaptive LASSO will be used in the proposed penalized likelihood procedures. Tuning parameters
are searched among {10−2+4k/99; k = 0, 1, · · · , 99} and BIC will be used to select the optimal tuning
parameters. For comparison, we set sample size N = 100, 300 and 500. To evaluate the performance of our
proposed method, we use the commonly used notation: TNV: True Negative Value, FNV: False Negative
Value and F: F measure (Powers, 2011) will be reported with 500 replications.

Table 1: Simulation Results of Variable Selection with Tuning Parameters Selected by BIC

γ (Cure) β (Survival)
N Penalty TNV FNV F TNV FNV F

100 LASSO 2.674 2.566 0.556 2.890 0.536 0.808
SCAD 2.578 2.394 0.577 2.798 0.516 0.802

ALASSO 2.888 2.406 0.593 2.992 0.524 0.819
300 LASSO 2.594 1.540 0.705 2.978 0.012 0.885

SCAD 2.498 1.360 0.718 2.896 0.008 0.900
ALASSO 3.270 1.718 0.728 3.312 0.022 0.918

500 LASSO 2.662 0.870 0.789 3.154 0.004 0.904
SCAD 2.534 0.726 0.796 3.082 0.000 0.897

ALASSO 3.516 1.080 0.834 3.688 0.014 0.961

As shown in Table 1, as the sample size increases, the true negative values increase toward the optimal
number 4, the false negative values decrease toward the optimal number 0 and F measures increase towards
the optimal number 1 for all the 3 types of penalties. Compared with LASSO and SCAD, Adaptive LASSO
tends to have higher TNV, as well as higher FNV with respect to both γ and β. With regard to F as the mea-
sure of overall performance, LASSO and SCAD have similar results, while Adaptive LASSO consistently
outperformed the other two penalties. These simulation results demonstrate the variable selection methods
work well at moderate sample size.

5. Analysis of an NYU Melanoma Dataset

In this section, we analyze a cohort of prospectively-accrued, cutaneous melanoma patients at New York
University Medical Center. The cohort included 1,164 patients prospectively enrolled in the Interdisciplinary
Melanoma Cooperative Group (IMCG) between 2002 and 2009, with follow-up until 2013 (Wich and others,
2009). It is well known that many early-stage melanomas can be cured by surgery and never experience
cancer recurrence. The Kaplan-Meier curves of recurrence for the study cohort is given in Figure 1. It is
clear that the Kaplan-Meier curve for recurrence-free survival levels off at a value substantially greater than
0 after 5 years follow-up, which indicates that some of the patients have been cured and will not experience
a recurrence after the treatments. Thus, mixture cure models are preferred than other commonly used time-
to-event models which do not take the proportion of cured patients into consideration.

The semiparametric logistic-Cox mixture cure model is utilized to analyze this cohort. Demographic and
clinicopathologic information were collected for all melanoma patients including the following 9 variables:
age at pathological diagnosis (in years), gender (1 for male and 2 for female), histopathological features (0
for de novo melanoma and 1 for nevus-associated melanoma), primary tumor thickness (mm), ulceration
status (1 for present and 0 for absent), mitosis (1 for present and 0 for absent), histological subtype (1 for
Nodular and 0 for others), anatomic site (1 for Axial/Head/Neck and 2 for Extremity) and clinical stage (0
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for Stage I and 1 for others).

Figure 1: Kaplan-Meier Curve of Recurrence for NYU IMCG

Mixture cure model is utilized to analyze this cohort and all the 9 covariates are included as candidate
risk factors for both probability of cure and time of recurrence. There are 1110 Patients with complete
observations on all the covariates. The results are listed in Table 2. In each table, MLE are the maximum
likelihood estimates without penalization and ALASSO are the penalized likelihood estimates with Adaptive
LASSO penalty, in which the tuning parameters are selected based on BIC. We list the estimated coefficients
and corresponding P-values in the full model and the final model selected by adaptive LASSO (aLasso).

Table 2: Estimation Result in NYU Interdisciplinary Melanoma Cooperative Group (IMCG)

γ (Cure) β (Survival)
Covariate MLE P-value aLasso P-value MLE P-value aLasso P-value
(Intercept) -0.895 0.147 -0.861 0.002

Age 0.006 0.450 0.003 0.639
Gender -0.390 0.056 0.134 0.503

Histopathology -0.667 0.008 -0.734 0.009 -0.065 0.815
Log Thickness 0.983 < 0.001 1.043 < 0.001 0.174 0.240 0.224 0.047

Ulceration 0.355 0.235 0.282 0.032 0.410 0.105 0.550 < 0.001
Anatomic Site 0.058 0.663 -0.078 0.520
Histo Subtype -0.001 0.996 0.103 0.625

Mitosis 0.087 0.779 0.224 0.502
Clinical Stage 0.659 0.056 0.766 0.018 0.255 0.402

There are several findings in Table 2. After variable selection via penalized likelihood method with
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Adaptive LASSO penalty, all the covariates remaining in the mixture cure models are statistically signifi-
cant, and the results are consistent with the naive maximum likelihood estimates in general. The positive
coefficients of Thickness indicate that the patients with thicker tumors are less likely to be cured, and even
among the patients who have not been cured, the patients with thicker tumors have higher hazards to recur-
rence of melanoma. Furthermore, the patients with ulceration are less likely to be immune from recurrence
and have higher hazards as well. In addition, from the model, we can see that clinical stage is a significant
risk factor to predict cure status. The positive coefficient of clinical stage is consistent with the clinical find-
ings that the patients with stage I melanoma have more than 90% survival rate (Dickson and Gershenwald,
2011) and will never experience recurrence.

6. Discussion

The classic survival analysis model is not appropriate for analyzing the failure time data in which there
is a proportion of patients who could never experience the event of interest and mixture cure models are
useful when there is sufficient evidence of a non-susceptible population (Maller and Zhou, 1996; Yilmaz
and others, 2013; Sy and Taylor, 2000; Peng and Dear, 2000; Zhang and Shao, 2018). In this paper, we
studied the variable selection method for semiparametric mixture cure models through different penalized
likelihood approaches and provided theoretical justifications of these methods. This paper has met the
demand of identification significant predictors in mixture cure models for many cancer studies and has filled
the vacancy of theoretical supports for the proposed method including existence, sparsity and asymptotic
normality. The proof provided here can also be used in the context when the Cox PH model in the mixture
cure models is replaced by a stratified Cox PH model or by Cox models with time-dependent covariates.
Time-dependent covariates are useful for predicting survival outcomes. Finally, we will write an R package
to perform variable selection insemiparametric mixture cure models.

7. Supplementary Material

A modified EM algorithm. Let Oi = {Ti,∆i,xi, zi}, i = 1, 2, · · · , n be the observed data for ith patient.
Denote Ψ = {β,γ, S0} as the unknown parameters. The log complete likelihood function in can be written
as `(β,γ, S0|O,u) = `1(γ|O,u) + `2(β, S0|O,u), where

`1(γ|O,u) =
n∑
i=1

{ui log[π(zi)] + (1− ui) log[1− π(zi)]} ,

`2(β, S0|O,u) =
n∑
i=1

{uiδi log[hu(ti|xi)] + ui log[Su(ti|xi)]} .

The penalized log complete likelihood function in can be expressed as `p(β,γ, S0|O,u) = `p1(γ|O,u) +
`p2(β, S0|O,u), where

`p1(γ|O,u) =

n∑
i=1

{ui log[π(zi)] + (1− ui) log[1− π(zi)]} − n
p∑
j=1

pλ1(|γj |), (5)

`p2(β, S0|O,u) =

n∑
i=1

{uiδi log[hu(ti|xi)] + ui log[Su(ti|xi)]} − n
q∑

k=1

pλ2(|βk|). (6)
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The E-step computes the conditional expectation of penalized log complete likelihood with respect to u
given the observed data O and the current estimate of parameters Ψ(m) = {β(m),γ(m), S

(m)
0 }. Since both

(5) and (6) are linear functions of u. The expectation wi = E(ui|O,Ψ(m)) can be written as

wi = E(ui|O,Ψ) = P (ui = 1|O,Ψ) = δi + (1− δi)
π(zi)Su(ti|xi)

1− π(zi) + π(zi)Su(ti|xi)
.

Therefore the E-step in the (m+ 1)th iteration is

E(`p1) =

n∑
i=1

w
(m)
i log[π(zi)] + (1− w(m)

i ) log[1− π(zi)]− n
p∑
j=1

pλ1(|γj |), (7)

E(`p2) =

n∑
i=1

{
δi log[w

(m)
i hu(ti|xi)] + w

(m)
i log[Su(ti|xi)]

}
− n

q∑
k=1

pλ2(|βk|)

=

n∑
i=1

{
δi log[h0(ti) exp(βTxi + logw

(m)
i )] + log[S0(ti)

exp(βTxi+logw
(m)
i )]

}
− n

q∑
k=1

pλ2(|βk|).

(8)

In order to proceed the E-step in the EM algorithm, the baseline survival can be updated by the Breslow-type
estimator. Let t(1) < t(2) < · · · < t(N)be the distinct uncensored failure times, and dt(j) be the number of
events and R(t(j)) denote the risk set at time t(j). Then the baseline survival function S0(t) in mth iteration
is given by

Ŝ
(m)
0 (t) = exp

− ∑
t(j)≤t

dt(j)∑
i∈R(t(j))

w
(m)
i exp(β(m)Tx)

 . (9)

The M-step in the (m + 1)th iteration is to maximize (7) and (8) to obtain Ψ(m+1). The attractive feature
of the EM algorithm for this problem is that the two components can be maximized separately. Note that
(7) is the penalized log likelihood function for ordinal logistic regression model and (8) is the penalized log
likelihood for Cox proportional hazards model with the additional offset variable log(w

(m)
i ). In addition,

the Breslow-type estimator for the baseline hazard h0 will be updated at each iteration by given w(m)
i .

In practice, we suggest that the estimates obtained from the mixture cure model without penalizations
would be good initial values of parameters Ψ(0) = {β(0),γ(0), S

(0)
0 } for EM algorithm. Furthermore, β(0)

and γ(0) can be used as initial estimates in adaptive LASSO penalty as well.
The methods and algorithms to maximize the penalized likelihood function of logistic and Cox’s PH

models with different penalties (e.g. LASSO, SCAD, Adaptive LASSO) already existed (Fan and Li,
2001,Fan and Li, 2002,Zou, 2006,Zhang and Lu, 2007). Several R packages glmnet (Friedman and oth-
ers, 2010), Coxnet (Simon and others, 2011) and ncvreg (Breheny and Huang, 2011) are available to solve
these problems.

Tuning Parameter Selection. As is well known, the penalized likelihood procedures highly rely on tuning
parameters, and the oracle properties will not be obtained if λs are not selected appropriately. Zhang and
others (2010) found that the resulting model selected by Generalized Cross-Validation (GCV) has potential
to lose efficiency, while Bayesian information criterion (BIC) is able to identify the finite-dimensional true
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models consistently. In this paper, the tuning parameters λ1 and λ2 are selected respectively via a grid search
among possible values and we take the combination with the smallest BIC.

λ̂ = (λ̂1, λ̂2) = arg minBIC(λ),

where BIC(λ) = −`op(Ψ̂n) + log(n)dfλ, and dfλ is the number of non-zero coefficients in Ψ̂n. This pro-
cedure allows λ1 to be different from λ2. Therefore, different sets of variables in the cure probability part
and in the survival distribution part can be reached.

Proof of Lemma 1. The conditional density function of y given X can be written as

f(y|x; θ) =
f(y; θ)

f(x; θ)
.

Then we have
log f(y|x; θ) = `(θ, y)− `(θ, x).

Taking conditional expectation given X = x under current estimates θ(m), we get

Eθ(m) [log f(y|x; θ)|X = x] = Eθ(m) [`(θ, y|X = x)]− Eθ(m) [`(θ, x|X = x)]

= Eθ(m) [`(θ, y|X = x)]− `(θ, x).

Thus
`p(θ, x) = Eθ(m) [`(θ, y|X = x)]− pλ(θ)− Eθ(m) [log f(y|x; θ)|X = x].

Denote Q(θ; θ(m)) = Eθ(m) [`(θ, y|X = x)]− pλ(θ) and H(θ; θ(m)) = Eθ(m) [log f(y|x; θ)|X = x], then

`p(θ, x) = Q(θ; θ(m))−H(θ; θ(m)).

In the M-step of EM algorithm, we are looking for a θ(m+1) which maximizes Q(θ; θ(m)), so it is obvious
that

Q(θ(m+1); θ(m)) ≥ Q(θ(m); θ(m)).

Furthermore,

H(θ(m+1); θ(m))−H(θ(m); θ(m)) = Eθ(m)

[
log

f(y|x; θ(m+1))

f(y|x; θ(m))
|X = x

]

≤ logEθ(m)

[
f(y|x; θ(m+1))

f(y|x; θ(m))
|X = x

]
By Jensen’s Inequality

= log

∫
f(y|x; θ(m+1))

f(y|x; θ(m))
f(y|x; θ(m))dy

= log

∫
f(y|x; θ(m+1))dy

= log 1 = 0.

`p(θ
(m+1), x)− `p(θ(m), x) = [`(θ(m+1), x)− pλ(θ(m+1))]− [`(θ(m), x)− pλ(θ(m))]

= [Q(θ(m+1); θ(m))−Q(θ(m); θ(m))]− [H(θ(m+1); θ(m))−H(θ(m); θ(m))]

≥ 0.
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