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Abstract 

Over 250,000 anterior cruciate ligament (ACL) injuries occur every year in the United 
States alone, often during sports and fitness activities. Following an ACL injury and 
reconstruction, 44% of patients fail to return to healthy and functional levels due to 
unresolved neuromuscular impairments. These impairments can cause an individual to 
adopt adverse gait patterns resulting in detrimental compressive knee loading. Tools and 
methods for measuring, tracking, and classifying healthy knee function of an individual are 
needed. This paper proposes the use of time-based and frequency-based techniques to 
extract traditional and non-traditional metrics, such as, stride time variability, fast Fourier 
transform amplitudes, and ground reaction force peaks, to evaluate the restoration of 
healthy limb dynamics. These metrics will be used to develop a logistic regression model 
to aid in the classification of the healthy and ACL injured populations. This model will be 
helpful to clinicians and rehabilitation scientists in monitoring and developing programs 
for successful return to sport for post-ACL reconstruction individuals. 
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1. Introduction 

 
Anterior cruciate ligament (ACL) sprain or tear is encountered by one in 3,000 individuals 
annually (Boden et al. 2000). Despite advancements in research and ACL injury prevention 
programs, ACL injury rates have continued to rise (Donnelly et al. 2012). ACL injury 
results in loss of dynamic knee stability which is vital for movements like running and 
single-leg jump landing (Ardern et al. 2014). Many studies have been conducted to 
understand the causes of ACL injury.  In their research, Morgan et al. (2014) revealed how 
elevated gastrocnemius forces compensate for decreased hamstring forces during the 
weight-acceptance phase of single-leg jump landing and highlighted the implications for 
anterior cruciate ligament injury risk. Most dynamic knee stability data recorded on 
individuals during running and jump landing studies are in a time series (i.e., a sequence 
of data points, typically consisting of successive measurements made over a time interval). 
However, quite often discrete measures are used to evaluate this data but additional 
information, not unveiled in the time domain, could possibly provide valuable insight into 
alterations in knee gait patterns in post-ACL reconstructed (ACLR) individuals. De 
Fontenay et al. (2014) and Gao et al. (2010) have assessed dynamic gait stability via 
methods such as Lyapunov exponents. Also, Morgan et al. (2016) used the Nyquist and 
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Bode stability criteria to assess changes in dynamic knee stability in healthy and anterior 
cruciate ligament reconstructed individuals during walking. 
 
Given the large number of post-ACLR individuals with recurring knee issues, it is 
important to identify new and more advanced tools and methods for quantifying,  
monitoring, and classifying healthy knee function. In this study, strides of data were 
collected for each participant during a running protocol from which  sixteen human 
biometric measurements were captured for each limb. This paper introduces a new, 
dimensionless, time-based metric (i.e., ratio of the active peak to the impact peak) to 
evaluate the restoration of healthy limb dynamics. We will investigate the seventeen 
variables as predictor(s) in a logistic regression model to aid in the classification of the 
healthy and post-ACLR injured limbs. The best model will be used to aid in establishing 
return-to-sport (RTS) decision-criteria.  This model will also be valuable to clinicians and 
rehabilitation scientists in monitoring and making decisions related to successful limb 
dynamics for post-ACL reconstructed individuals. 
  

2. Methods 

 
2.1.1 Instrumented Gait Analysis 
Thirty-one post-ACLR individuals (mean (standard deviation)); age: 20.4 (6.2) yrs; height: 
1.8 (0.1) m; mass: 71.7 (11.1) kg; running speed: 2.7 (0.3) m/s; Tegnar (post-ACLR at 6 
months): 6.4 (1.8); 16 males and 15 females) and 18 healthy controls (age: 20.9 (3.4) yrs; 
height: 1.7  (0.1) m; mass: 65.2 (13.8) kg; running speed: 2.7 (0.4) m/s; Tegnar: 6.9 (1.3); 
10 males and 8 females) performed a running protocol. The age of the participants ranged 
from 18 to 31 years and each participant provided written informed consent as required by 
the institutional review board. All post-ACLR individuals participated in the study 6 
months after surgery and were cleared by their physician. The ACLR surgery was 
performed by surgeons at the same orthopaedic practice with the participants receiving 
either a bone-patellar-bone or hamstring graft. All of the control participants were injury 
free for the six months prior to the study and had no history of knee surgery. 
 
All participants performed a standard running protocol. They first performed a five-minute 
warm-up period where they jogged on the instrumented treadmill (Bertec Corporation, 
Columbus, Ohio) to get adapted to the equipment. After the participants were acclimated 
to the treadmill, they were then instructed to run at their self-selected speed. All participants 
wore the same type of WR662 sneakers (New Balance, Brighton, MA). This was done to 
minimize the effect that shoe-type variability could have on the results. The 
aforementioned acclimation period allowed individuals to adjust to both the treadmill and 
the shoes. Ground reaction force data were collected at 1200 Hz and a zero-lag, fourth-
order Butterworth filter with a 35-Hz low-pass cutoff frequency was applied to the data.  

 
 

2.1.2 Feature Extraction 
Fifty-six markers were placed on each participant. Sagittal plane knee kinematics time-
domain data were extracted using the fifty-six markers. Using fast Fourier transforms, the 
time-domain data were converted to a frequency-domain representation  yielding a series 
of sinusoids. Power and phase spectrum were generated.  The amplitude, frequency and 
phase data components of the ACLR injured limb, ACLR non-injured limb and both limbs 
of the healthy control individuals were obtained for analysis. The marker trajectories were 
recorded at 200Hz with a 12-camera motion analysis system (Motion Analysis Corp, Santa 
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Rosa, USA). Force data were collected at 1200 Hz and heel strike and toe off were 
determined when the vertical ground reaction force was greater or less than 30N. 
 
Ten strides for each limb were collected during the running protocol.  The peak ground 
reaction force was extracted from the vertical ground reaction force (vGRF) waveform 
data. The active peak was defined as the maximum vGRF peak and the impact peak was 
the peak that occurred during the first 50ms of stance. Sixteen human movement biometric 
variables were captured on each limb of each participant. Seven of the variables were time-
domain metrics, including the active peak  and  the impact peak that were both normalized 
by bodyweight (BW),  six were frequency-domain metrics and three were stability-based.  
For this study, a dimensionless number, AIP (i.e., the ratio of the active peak to the impact 
peak), was created and used in the model.    The metrics were computed  across the ten 
strides for each limb in the control and post-ACLR populations resulting in four limb 
groups - control right, control left, ACLR non-reconstructed and ACLR reconstructed.   
 
 

3. Binary Logistic Regression Model 

 
 
3.1.1 Overview 
At present, diagnosing healthy knee post-ACLR is often based on qualitative observations 
of the patient’s gait, physical examinations of the muscle tone, inspection of gait analysis 
metrics and the expertise of clinical professionals. This paper examines using a binary 
logistic regression model to uncover the best quantitative predictor variable(s) to aid in the 
classification of two population groups - healthy and post-ACLR injured limbs and to 
develop criteria for return to sport.  The null hypothesis for the binary logistic regression 
model is that the probability of an event (e.g., healthy limb) is not associated with the value 
of a predictor variable (i.e., the line describing the relationship between the predictor 
variable and the probability of the response variable has a slope of zero which yields a 
horizontal line). If there is a relationship between the probability of a healthy limb and a 
predictor variable, then the model logistic curve should be a S-shaped curve. 
 
3.1.2 Binary Logistic Regression Model 
For the binary logistic model, Y  is a binary response variable where 
  
Yi = 1 if the trait is present in an observation (e.g., healthy limb) i 
Yi = 0 if the trait is NOT present in an observation (e.g., post-ACLR injured limb) i 

 
X = (X1, X2, ..., Xk) be a set of explanatory variables which can be discrete, 
continuous, or a combination. 
 
 xi  is the observed value of the explanatory variables for observation i. 
 
Yi’s  are independently distributed, i.e., cases are independent and binomially 
distributed. 

 
The homogeneity of variance does not need to be satisfied. 
 
Use maximum likelihood rather than ordinary least squares to estimate model 
parameters. 
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For a single predictor variable, X, the logistic model is  
 

Probability ( 𝑌𝑖= 1 | 𝑋 =  𝑥𝑖 )   =        
 
                          Probability ( 𝑌𝑖= Healthy Limb | 𝑋 = 𝑥𝑖 )        =     

exp(  𝛽0  +   𝛽1 ∗ 𝑥𝑖)

1+  exp(  𝛽0  +   𝛽1 ∗ 𝑥𝑖  )
 

 
 

 

4. Statistical Analyses 

 
4.1.1 Exploratory Data Analysis (EDA) 
Exploratory data analysis was used to aid in identifying any extraordinary observations and 
exposing any violations of distributional assumptions. For this study, EDA was beneficial 
in identifying a subset of the candidate seventeen variables that would be the best predictor 
variables for the logistic regression model. A review of the boxplot of each of the seventeen 
candidate predictor variables with each category of the four limb groups disclosed that the 
variable that showed strong location shifts with respect to the healthy and post-ACLR limbs 
was the new, dimensionless, variable AIP. In conducting the stepwise logistic regression 
analyses, it was determined that the AIP variable alone was the best predictor variable for 
the logistic regression model. Hence, for this study, the focus is on a single predictor 
variable, X, and the logistic model to be fit is  
 
 
                          Probability (  𝑌𝑖 = Healthy Limb | 𝑋= 𝐴𝐼𝑃𝑖)    =     

exp(  𝛽0  +   𝛽1 ∗ 𝐴𝐼𝑃𝑖)

1+  exp(  𝛽0  +   𝛽1 ∗ 𝐴𝐼𝑃𝑖  )
 

 
 
 
In Figure 1, the boxplots of the AIP variable for each of the four  limb groups  - control 
right (0) , control left (1), post-ACLR non-reconstructed (2) and post-ACLR reconstructed 
(3) -  highlight that the values of AIP for the post-ACLR reconstructed limb (3) are much 
lower in comparison to those of the healthy, control limbs (0 and 1). The values for the 
ACLR non-reconstructed (2) limb are also slightly lower.  This may be due to the non-
reconstructed limb of the post-ACLR individual making gait adjustments and thereby not 
functioning at its normal healthy status.  So, data on the post-ACLR non-reconstructed 
limb was not used in the model.  The control right and control left  limbs were 
defined as the healthy, control population and the post-ACLR reconstructed limbs were 
defined as the injured limb population. The three post-ACLR limb observations ( two males 
and 1 female) circled in the boxplot were removed from the study.  It is clear they are 
outliers since their AIP values exceed those of all of the study participants, including the 
healthy ones. 
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 Figure 1:  Boxplots of AIP for the four limb groups – control right (0), control left (1), 
control left (1), ACLR non-reconstructed (2) and ACLR reconstructed (3) 
 
Hence, the study population in the logistic regression model included the 28 post-
ACLR reconstructed limbs and the 36 healthy, control limbs. The descriptive 
statistics – mean, standard deviation, minimum, maximum, and the 95% confidence 
intervals on the mean - for the AIP variable for the two groups – healthy, control 
(1) and ACLR injured (0)  – are provided in Table 1.  
 
 

Table 1: Descriptive Statistics for AIP for Healthy (1) and post-ACLR Injured (0) 
Groups   

 

Variable Group Total Count Mean StDev Minimum Maximum 95% CI 

  AIP 0 28 1.3552 0.1834 1.0700 1.7839 (1.2878, 

1.4225) 

  1 36 1.7217 0.1744 1.4379 2.0294 (1.6622, 

1.7811) 

         

Pooled StDev = 0.178374 

 
4.1.2 Binary Logistic Regression Model Analysis 
Logistic regression models were fit using each of the seventeen candidate predictor 
variables alone and test of hypotheses were conducted to assess the statistical significance 
of the model coefficients.  In addition, stepwise, forward selection, and backward 
elimination analyses were also conducted using all seventeen candidate predictor variables. 
However, the model with AIP  as the single predictor variable, as shown in Equation 1, 
yielded the most statistically significant findings and the estimated model coefficients are 
shown in Table 2 where 𝛽0 =  −13.73   𝑎𝑛𝑑  𝛽1 = 8.98. 
 
 

Equation 1.  
Probability (  𝑌𝑖 = Healthy Limb | 𝑋= 𝐴𝐼𝑃𝑖)    =    

exp(  𝛽0  +   𝛽1 ∗ 𝐴𝐼𝑃𝑖)

1+  exp(  𝛽0  +   𝛽1 ∗ 𝐴𝐼𝑃𝑖  )
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Table 2: Binary logistic regression model estimated coefficients and their 95% confidence 
intervals with the standard error, Z-value and P-value for each of the coefficients 
 
           Coefficients 

Term Coef SE Coef 95% CI Z-Value P-Value  

Constant -13.73 3.96 (-21.49, -5.97) -3.47 0.001   

AIP 8.98 2.57 (3.94, 14.02) 3.49 0.000  

 
 

 

 
Hence, for a given value of AIP = 𝑥𝑖, the binary logistic model prediction of the probability 
of a healthy limb is   
 

 

Probability (Y= Healthy Limb | x =𝑥𝑖 )    =     
exp(−13.73+8.98∗𝑥𝑖 )

1+  exp(−13.73+8.98∗ 𝑥𝑖)
 

 
 
The p-values (< 0.05) for each of the coefficients, 𝛽0  𝑎𝑛𝑑   𝛽1, are statistically significant 
at the significance level 𝛼 = 0.05. The  95% confidence intervals on the estimates of 
𝛽0  𝑎𝑛𝑑   𝛽1 do not include zero. Hence, for each of the coefficients, the test of the null 
hypothesis that the coefficient equals zero is rejected at the significance level 𝛼 = 0.05. 
Thus, you can conclude that the changes in AIP are associated with changes in the 
probability of a healthy limb. As a result, we reject the null hypothesis for the binary 
logistic regression model that the probability of the response event – a healthy limb - is not 
associated with the value of the predictor variable, AIP. The coefficient for AIP is 8.98 
which suggests that the higher levels of the variable are associated with a higher probability 
of a healthy limb. 
 
 
4.1.2 Binary Logistic Regression Goodness of Fit 
Three tools were utilized to assess the overall goodness of fit of the logistic regression 
model. Approximately 70% of the 64 data cases in the study were used for the training set 
and 30% was used for the test set in developing the model. First, the Hosmer-Lemeshow 
Goodness of Fit test statistic was used to determine whether the model performs well in 
predicting the probabilities. If the p-value for this goodness of fit test is lower than the 
significance level, then the model does not perform well. The p-value for the goodness of 
fit statistic (p = 0.273) was greater than the  significance level 𝛼 = 0.05  indicating the 
model performs well. 
 
Next, the receiver operating characteristics (ROC) curve is a graphical plot that illustrates 
the diagnostic ability of a binary classifier and is another tool for assessing whether the 
model fits the data well. The area under the ROC curve values range from 0.5 to 1. When 
the binary model can perfectly separate the classes, then the area under the curve is 1. For 
this model, the area under the ROC curve is 0.90 for the training set and 0.99 for the test 
set. These values indicate that the model classifies much of the data correctly.  
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Figure 2:  Receiver Operating Characteristic (ROC) Curves for the Training and Test Sets 
 
 
Then, the residuals from the training and test sets were plotted on normal probability paper 
in Figure 3. Although two unusual observations were detected in the training set, in general 
the residuals tend to follow a straight line when plotted on Normal probability paper which 
also suggests the logistic model fits the data well. 
 
 

  
Figure 3:  Normal Probability Plots of the Pearson Residuals for the Training and Test Sets 
 
 

5. Discussion of Results 

 
5.1.1 Binary Logistic Regression Fitted Curve 
The plot of the fitted binary logistic regression model is shown as a solid red line in Figure 
4.  Indeed, it is an S-shaped curve with the estimated proportion of the population with a 
healthy limb performance (i.e., probability of a healthy limb) increasing as the AIP value 
increases. The dotted blue lines are the 95% upper and lower confidence interval bands 
about the fitted line.   
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Figure 4:  Binary Fitted Line Plot and 95% Confidence Interval Bands  
 
At an AIP value of 1.53, the estimated proportion of  population with (i.e., the probability 
of having) a healthy limb status is 0.50 with the 95% confidence interval of (0.31, 0.69).  
Thus, it is estimated that 50% of the individuals with an AIP limb value of 1.53 will have 
a healthy limb status. Roughly speaking, one can be 95% sure that the proportion of healthy 
limbs at an AIP value of 1.53 is between 31% and 69%. At an AIP value of 1.64, probability 
of having a healthy limb status is 0.73 with a 95% confidence interval of (0.50, 0.88) and 
it is estimated that 73% of the individuals with an AIP limb value of 1.64 will have a 
healthy limb status.  Roughly speaking, one can be  95% sure that the proportion of healthy 
limbs at an AIP value of 1.64 is between 50% and 88%. 
 
5.1.2 Odds Ratio 
The odds ratio is an effect size statistic used to describe how changes in magnitude and 
direction of the predictor impact the probability of the event. In this study, it renders a 
comparison of the healthy limb group of the study relative to the post-ACLR group. Our 
study is evaluating the effect of the predictor variable on the probability of a healthy limb. 
If the effect of the predictor variable is the same in both groups, the odds ratio will be 1. 
For us, the odds ratio equals 2.45 and is greater than 1 which indicates  that the probability 
of healthy limb is more likely to occur as the predictor increases as shown in the plot in 
Figure 4.   
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Binary Logistic Regression Model Odds Ratio 
 

For 0.1 increase in AIP       Odds Ratio = 2.4548 
95% Confidence Interval on Odds Ratio (1.4833, 4.0628) 

 

 

 

AIP 

Logistic Model 

Predicted  

 

Probability 

(Healthy Limb) 

Logistic Model 

Predicted  

 

Probability (post-

ACLR Injured 

Limb) 

Odds Ratio =  

 

 

Prob(Healthy Limb) / 

Prob(post-ACLR Injured 

Limb) 

 

 

1.54 0.52 0.48 0.52/0.48 = 1.08 
1.64 0.73 0.27 0.73/0.27 = 2.70  ≅ 2.45*1.08 
1.74 0.87 0.13 0.87/0.13 = 6.69  ≅ 2.45*2.70 

Table 3: Binary Logistic Regression Model Odds Ratio and 95% Confidence Interval 
The odds ratio and the 95% confidence  interval for a given value of AIP are given in Table 
3. Hence, likelihood of healthy limb performance to ACL Injured limb increased by a factor 
of approximately 2.45 for a 0.1 increase in AIP. Note, the 95% confidence interval  does 
not include 1, which further supports the findings that the predictor variable has a positive 
effect on the probability of healthy limb. As highlighted in Table 3, for  a 0.1 increase in 
AIP,  the odds ratio increased by a factor of  approximately 2.45. Hence, likelihood of 
healthy limb performance to post-ACLR injured limb performance increased by a factor of 
approximately 2.45.  
  
5.1.3 Return-to-Sport (RTS) Decision Criteria 
In reviewing the binary fitted line plot in Figure 4, it is important to note that for values of 
AIP less than 1.53, the estimated probability of a healthy limb is less than 0.50 and for 
values of AIP greater than 1.64, the estimated probability of a healthy limb is greater than 
0.73. Based on the model estimates and summary information presented above, the 
following recommendations for return to sport outlined in Table 5 were developed. 
 
Table 5: Return-to-Sport Decision Recommendation 
 

 

AIP 
(Active 
peak/ 
Impact 
Peak)  

Probability of Healthy Limb       
(Probability ACL Injured limb) 

Return-to-
Sport 

Decision 

 1.10 to 1.53 0.02  (0.98)     to   0.50 (0.50) No 

 1.54 to 1.63 0.52  (0.48)      to   0.72 (0.23) Caution 

1.64  to 2.0 0.73  (0.27)      to   0.99 (0.01) Yes 
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6. Conclusion 

 
The primary objective of this study was to develop a logistic regression model to aid in the 
classification of the healthy and post-ACLR populations. We were successful in identifying 
a new, non-invasive, easy to capture time-based metric - the ratio of the active peak to the 
impact peak - that could be used in a binary logistic regression model to predict the 
probability of healthy limb performance.  Furthermore, we uncovered that, as this predictor 
variable increased, the probability of healthy limb performance increases.  In summary, 
this predictor also served as a good metric to assign return-to-sport categories of poor, 
cautionary and good limb performance. We anticipate that these findings will be beneficial 
to clinicians and rehabilitation professionals in monitoring and developing programs for 
the successful return-to-healthy status for a post-ACL reconstruction individual, especially 
athletes. 
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