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Abstract 

Various arithmetically and/or geometrically distributed discrete probability distributions 
viz arithmetically and/or geometrically progressed Binomial, Multinomial, Poisson, 
Geometric, Negative Binomial Distributions have been developed. Several features like 
moments, estimators of the parameters have been unfolded. Some arithmetically and/or 
geometrically distributed Stochastic Processes like arithmetically and/or geometrically 
progressed Poisson Processes, etc have been developed along with their features. The 
arithmetically and/or geometrically progressed generalized linear models like 
arithmetically and/or geometrically progressed Binomial, Multinomial, Poisson, 
Geometric, Negative Binomial Regressions have been developed. Their related properties 
have also been developed. 
 

Key Words: Arithmetically and/or geometrically distributed Binomial; Arithmetically 
and/or geometrically progressed Poisson Processes; Arithmetically and/or geometrically 
progressed generalized linear models, slope of success(es), amplification of success(es). 
 
 
             1. Introduction 

   
During a single trial in a discrete probability distribution, either 0, or 1 or more than one 
successes may occur. If the occurrences of these successes follow a pattern or a 
combination of patterns, new classes of discrete probabilities should be developed. As for 
example, for the study of twins, each of successive trails may give no success or two 
successes, or four successes, etc. 
 
The number of successes of the proposed distributions is represented by a combination of 
arithmetic and geometric progression 𝑎 + b𝑛d, where, 𝑎 is non-negative minimum number 
successes or intercept of success, b is positive integer representing the slope of successes, 
d is the amplification or exponentiation of successes and 𝑛 is a non-negative integer 
indicating the total number of trails.  
 
Adnan et al (2017, 2018) developed a class of discrete probability distributions and called 
it Generalized Discrete Probability Distributions. The current paper demonstrates more 
general form of the discrete probability distributions for both Arithmetically and 
Geometrically Progressed success(es). Based on these Arithmetically and Geometrically 
Progressed success(es) discrete probability distributions, various Stochastic Processes as 
well as Generalized Linear Models can be developed.  
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2. Arithmetically and or Geometrically Progressed Discrete Probability 

Distributions 

 
The discrete distributions are widely used in the diversified field and among them the 
distribution like Binomial, Multinomial, Poisson and Geometric are the most commonly 
used discrete distributions. The binomial distribution was first studied in connection with 
the games of pure chance, but it is not limited within that area only, where the Multinomial 
distribution is considered as the generalization of the binomial distribution. The number of 
mutually exclusive outcomes from a single trial are 𝑘 in multinomial distribution compared 
to two outcomes namely success or failure of Binomial distribution. 
 
2.1 Arithmetically and or Geometrically Progressed Binomial Distribution 

A random variable 𝑋  is said to be an arithmetically and or geometrically progressed 
binomial distribution if it has the following probability mass function 
 

𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑏, 𝑝) =
(𝑎+𝑏𝑛

𝑑

𝑥
)𝑝𝑥𝑞𝑎+𝑏𝑛

𝑑−𝑥

∑ (𝑎+𝑏𝑛
𝑑

𝑥
)𝑝𝑥𝑞𝑎+𝑏𝑛

𝑑−𝑥𝑎+𝑏𝑛𝑑
𝑥=𝑎

;    𝑥 = 𝑎, 𝑎 + 𝑏, 𝑎 + 𝑏2𝑑 , … , 𝑎+𝑏𝑛𝑑 

Moment Generation Function  =
∑ (𝑎+𝑏𝑛

𝑑

𝑥
)(𝑝𝑒𝑡)

𝑥
𝑞𝑎+𝑏𝑛

𝑑−𝑥𝑎+𝑏𝑛𝑑
𝑥=𝑎

∑ (𝑎+𝑏𝑛
𝑑

𝑥
)𝑝𝑥𝑞𝑎+𝑏𝑛

𝑑−𝑥𝑎+𝑏𝑛𝑑
𝑥=𝑎

, 

 
Mean = (𝑎 + 𝑏𝑛𝑑)𝑝, Variance = (𝑎 + 𝑏𝑛𝑑)𝑝𝑞, 

 
 𝜇3 = (𝑎 + 𝑏𝑛𝑑)𝑝𝑞(1 − 2𝑝), 𝜇4 = (𝑎 + 𝑏𝑛𝑑)𝑝𝑞[1 + 3(𝑎 + 𝑏𝑛𝑑 − 2)𝑝𝑞] 
   

For 𝑎 = 0, 𝑏 = 𝑑 = 1 , all the moments are like those of the traditional Binomial 
distribution where 𝑛 is the total number of trials and 𝑝 is the probability of a success. 
 
Theorem 2.1.1 

The maximum likelihood estimator of the parameter 𝑝 is 
p̂ =

x

(a+bnd)
, 

where 𝑥 is the total number of success from maximum of (𝑎+𝑏𝑛𝑑) success in n trials. 
 

Theorem 2.1.2  

The MLE estimator of total number of trials n of the distribution is 

n̂ =
√(

∑ xi
n
i=1
p̃ − a)

b

d

 

 

Theorem 2.1.3  

Normal distribution is a limiting form of arithmetically and or geometrically progressed 
binomial distribution. 
 
For 𝑎 = 0, 𝑏 = 𝑑 = 1 , all estimators become like those of the traditional Binomial 
distribution. 
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2.2 Arithmetically and/or Geometrically Progressed Multinomial Distribution 

A random variable 𝑋  is said to be an arithmetically and or geometrically progressed 
multinomial distribution if it has the following probability mass function 
 

𝑃(𝑥1,  𝑥2, … , 𝑥𝑘  ; 𝑎, 𝑛, 𝑑, 𝑏, 𝑝1,  𝑝2, … , 𝑝𝑘  ) =

𝑎+𝑏𝑛𝑑!
𝑥1! 𝑥2!… 𝑥𝑘!

𝑝1
𝑥1𝑝2

𝑥2 …𝑝𝑘
𝑥𝑘

∑
𝑎 + 𝑏𝑛𝑑!

𝑥1! 𝑥2! … 𝑥𝑘!
𝑝1
𝑥1𝑝2

𝑥2 …𝑝𝑘
𝑥𝑘𝑎+𝑏𝑛𝑑

𝑥1, 𝑥2,…,𝑥𝑘=𝑎

; 

 
𝑥𝑖 = 𝑎, 𝑎 + 𝑏, 𝑎 + 𝑏2𝑑 , … , 𝑎+𝑏𝑛𝑑, ∑ 𝑥𝑖

𝑘
𝑖=1 = 𝑎+𝑏𝑛𝑑, 

 

𝑀𝑥1, 𝑥2,…,𝑥𝑘
(𝑡1,  𝑡2, … , 𝑡𝑘) =

∑
𝑎+𝑏𝑛𝑑!

∏ 𝑥𝑖
𝑘
𝑖=1 !

∏ (𝑝𝑖𝑒
𝑡𝑖)

𝑥𝑖𝑘
𝑖=1

𝑎+𝑏𝑛𝑑
𝑥1,𝑥2,…,𝑥𝑘=𝑎

∑
𝑎+𝑏𝑛𝑑!

∏ 𝑥𝑖
𝑘
𝑖=1 !

∏ (𝑝𝑖)
𝑥𝑖𝑘

𝑖=1
𝑎+𝑏𝑛𝑑
𝑥1,𝑥2,…,𝑥𝑘=𝑎

 = (𝑎 + 𝑏𝑛𝑑)𝑝𝑖, 

 
𝐸(𝑋𝑖) = (𝑎 + 𝑏𝑛𝑑)𝑝𝑖, 𝑉(𝑋𝑖) = (𝑎 + 𝑏𝑛𝑑)𝑝𝑖(1 − 𝑝𝑖), 

 
𝜇3 = (𝑎 + 𝑏𝑛𝑑)𝑝𝑖(1 − 𝑝𝑖)(1 − 2𝑝𝑖), 

 
                     𝜇4 = (𝑎 + 𝑏𝑛𝑑)𝑝𝑖(1 − 𝑝𝑖)[1 + 3(𝑎 + 𝑏𝑛𝑑 − 2)𝑝𝑖(1 − 𝑝𝑖)]. 

 
For a = 0, b = d = 1, all the moments are like those of the traditional Multinomial 
distribution where n is the total number of trials and 𝑝𝑖 is the probability of a success from 
category j. 
 
Theorem 2.2.1   
The maximum likelihood estimator of the parameter pi is 

p̂i =
xi

(a+bnd)
, 

where 𝑥 is the total number of success from maximum of (a+bnd) success in n trials. 
 
Theorem 2.2.2 

Arithmetically and/or Geometrically Progressed Binomial Distribution is a special case of 
the Arithmetically and/or Geometrically Progressed Multinomial Distribution. In the 
probability mass function of the Multinomial Distribution, 
 

𝑃(𝑥1,  𝑥2, … , 𝑥𝑘  ; 𝑎, 𝑛, 𝑑, 𝑏, 𝑝1,  𝑝2, … , 𝑝𝑘  ) 
 

=

𝑎 + 𝑏𝑛𝑑!
𝑥1! 𝑥2! … 𝑥𝑘!

∑
𝑎 + 𝑏𝑛𝑑!

𝑥1! 𝑥2! … 𝑥𝑘!
𝑝1
𝑥1𝑝2

𝑥2 …𝑝𝑘
𝑥𝑘𝑎+𝑏𝑛𝑑

𝑥1, 𝑥2,…,𝑥𝑘=𝑎

𝑝1
𝑥1𝑝2

𝑥2 …𝑝𝑘
𝑥𝑘 

 
considering 𝑘 = 2 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥1 + 𝑥2 = 𝑥 + (𝑎 + 𝑏𝑛𝑑 − 𝑥)𝑎𝑛𝑑 𝑝1 + 𝑝2 = 1,  we obtain 
the probability mass function of the arithmetically and or geometrically progressed 
Binomial distribution along with the probability mass function, 
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𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑏, 𝑝) =
(𝑎+𝑏𝑛

𝑑

𝑥
)𝑝𝑥𝑞𝑎+𝑏𝑛

𝑑−𝑥

∑ (𝑎+𝑏𝑛
𝑑

𝑥
)𝑝𝑥𝑞𝑎+𝑏𝑛

𝑑−𝑥𝑎+𝑏𝑛𝑑
𝑥=𝑎

;    𝑥 = 𝑎, 𝑎 + 𝑏, 𝑎 + 𝑏2𝑑 , … , 𝑎+𝑏𝑛𝑑. 

 
For 𝑎 = 0, 𝑏 = 𝑑 = 1, MLE estimator of 𝑝𝑖  become like that of the traditional Multinomial 
distribution. 
 
2.3 Arithmetically and or Geometrically Progressed Poisson Distribution 
A random variable 𝑋  is said to be an arithmetically and or geometrically progressed 
Poisson distribution if it has the following probability mass function 
 

𝑃(𝑥; 𝜆, 𝑎, 𝑛, 𝑏, 𝑑) =
𝜆𝑥−𝑎

𝑥! [
1
𝑎! +

𝜆𝑏

𝑎 + 𝑏!
+

𝜆𝑏2
𝑑

𝑎 + 𝑏2𝑑!
+

𝜆𝑏3
𝑑

𝑎 + 𝑏3𝑑!
+ ⋯∞]

;   

𝑥 = 𝑎, 𝑎 + 𝑏, 𝑎 + 𝑏2𝑑 , … , 𝑎 + 𝑏𝑛𝑑…∞ 
 

MGF =
∑

(𝜆𝑒𝑡)𝑎+𝑏𝑛
𝑑

(𝑎+𝑏𝑛𝑑)!

∞
𝑛=0

[
1

𝑎!
+

𝜆𝑏

𝑎+𝑏!
+

𝜆𝑏2
𝑑

𝑎+𝑏2𝑑!
+

𝜆𝑏3
𝑑

𝑎+𝑏3𝑑!
+⋯∞]

, Mean =
∑

𝜆𝑏𝑛
𝑑
(𝑎+𝑏𝑛𝑑)

(𝑎+𝑏𝑛𝑑)!

∞
𝑛=1

[
1

𝑎!
+

𝜆𝑏

𝑎+𝑏!
+

𝜆𝑏2
𝑑

𝑎+𝑏2𝑑!
+

𝜆𝑏3
𝑑

𝑎+𝑏3𝑑!
+⋯∞]

, 

 

𝜇2
′ = [

∑
𝜆𝑏𝑛

𝑑
(𝑎+𝑏𝑛𝑑)

2

(𝑎+𝑏𝑛𝑑)!

∞
𝑛=2

(
1

𝑎!
+

𝜆𝑏

𝑎+𝑏!
+

𝜆𝑏2
𝑑

𝑎+𝑏2𝑑!
+

𝜆𝑏3
𝑑

𝑎+𝑏3𝑑!
+⋯∞)

], 𝜇3′ = [
∑

𝜆𝑏𝑛
𝑑
(𝑎+𝑏𝑛𝑑)

3

(𝑎+𝑏𝑛𝑑)!

∞
𝑛=3

(
1

𝑎!
+

𝜆𝑏

𝑎+𝑏!
+

𝜆𝑏2
𝑑

𝑎+𝑏2𝑑!
+

𝜆𝑏3
𝑑

𝑎+𝑏3𝑑!
+⋯∞)

],  

𝜇4
′  = [

∑
𝜆𝑏𝑛

𝑑
(𝑎+𝑏𝑛𝑑)

4

(𝑎+𝑏𝑛𝑑)!
∞
𝑛=4

(
1

𝑎!
+

𝜆𝑏

𝑎+𝑏!
+

𝜆𝑏2
𝑑

𝑎+𝑏2𝑑!
+

𝜆𝑏3
𝑑

𝑎+𝑏3𝑑!
+⋯∞)

], 

 
For 𝑎 = 0, 𝑏 = 𝑑 = 1, all the moments are like those of the traditional Poisson distribution.  
 

Theorem 2.3.1  
The maximum likelihood estimator of the parameter λ can be obtained by solving the 
following equation by Newton Raphson Method where x̅  is the average number of 
occurrences. 
  

𝜆

𝑑

𝑑𝜆
(
1

𝑎!
+

𝜆𝑏

𝑎+𝑏!
+

𝜆𝑏2
𝑑

𝑎+𝑏2𝑑!
+

𝜆𝑏3
𝑑

𝑎+𝑏3𝑑!
+⋯∞)

(
1

𝑎!
+

𝜆𝑏

𝑎+𝑏!
+

𝜆𝑏2
𝑑

𝑎+𝑏2𝑑!
+

𝜆𝑏3
𝑑

𝑎+𝑏3𝑑!
+⋯∞)

− (�̅� − 𝑎) = 0,           (1) 

 

Theorem 2.3.2  
The AGP Poisson distribution can be derived from AGP Binomial distribution such that 
 

𝑝 =
𝜆

𝑎+𝑏𝑛𝑑
, 𝑞 = 1 −

𝜆

𝑎+𝑏𝑛𝑑
 

 
under the assumptions i) the probability of success in a Bernoulli trail is very small. i.e. 𝑝 
→ 0, ii) the number of trails is very large. i.e. 𝑛 → ∞, iii) (𝑎 + 𝑏𝑛𝑑)𝑝 = 𝜆 is constant, that 
is average number of success is finite.  
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For 𝑎 = 0, 𝑏 = 𝑑 = 1, from equation (1) we get, 𝜆
𝑑

𝑑𝜆
(𝑒𝜆)

𝑒𝜆
− (�̅� − 0) = 0 or, 𝜆 = �̅� which 

is like MLE estimator of the traditional Poisson distribution. 
 
2.4. Arithmetically and or Geometrically Progressed Geometric Distribution 
A random variable 𝑋  is said to be an arithmetically and or geometrically progressed 
geometric distribution if it has the following probability mass function 
 

𝑃(𝑥; 𝑎, 𝑛, 𝑏, 𝑑) =
𝑞𝑥−𝑎

[1 + 𝑞𝑏 + (𝑞𝑏)2
𝑑
+ (𝑞𝑏)3

𝑑
+⋯]

;  𝑥 = 𝑎, 𝑎 + 𝑏,… , 𝑎 + 𝑏𝑛𝑑, … ,∞ 

 

MGF= ∑ (𝑞𝑒𝑡)
𝑥𝑎+𝑏𝑛𝑑

𝑥=𝑎

[1+𝑞𝑏+(𝑞𝑏)
2𝑑

+(𝑞𝑏)
3𝑑
+⋯]𝑞𝑎

, 

 

Mean=
[𝑎+(𝑎+𝑏)𝑞𝑏+(𝑎+𝑏2𝑑)𝑞2

𝑑
+(𝑎+𝑏3𝑑)𝑞3

𝑑
+⋯+(𝑎+𝑏𝑛𝑑)𝑞𝑏𝑛

𝑑
]

[1+𝑞𝑏+(𝑞𝑏)
2𝑑
+(𝑞𝑏)

3𝑑
+⋯]

, 

 

𝜇2
′ =

[𝑎2+(𝑎+𝑏)2𝑞𝑏+(𝑎+𝑏2𝑑)
2
𝑞2

𝑑
+(𝑎+𝑏3𝑑)

2
𝑞3

𝑑
+⋯+(𝑎+𝑏𝑛𝑑)

2
𝑞𝑏𝑛

𝑑
]

[1+𝑞𝑏+(𝑞𝑏)
2𝑑

+(𝑞𝑏)
3𝑑
+⋯]

, 

 

𝜇3
′ =

[𝑎3+(𝑎+𝑏)3𝑞𝑏+(𝑎+𝑏2𝑑)
3
𝑞2

𝑑
+(𝑎+𝑏3𝑑)

3
𝑞3

𝑑
+⋯+(𝑎+𝑏𝑛𝑑)

3
𝑞𝑏𝑛

𝑑
]

[1+𝑞𝑏+(𝑞𝑏)
2𝑑

+(𝑞𝑏)
3𝑑
+⋯]

, 

 
𝜇4
′

=
[𝑎4 + (𝑎 + 𝑏)4𝑞𝑏 + (𝑎 + 𝑏2𝑑)

4
𝑞2

𝑑
+ (𝑎 + 𝑏3𝑑)

4
𝑞3

𝑑
+⋯+ (𝑎 + 𝑏𝑛𝑑)

4
𝑞𝑏𝑛

𝑑
]

[1 + 𝑞𝑏 + (𝑞𝑏)2
𝑑
+ (𝑞𝑏)3

𝑑
+⋯]

 

 
For 𝑎 = 0, 𝑏 = 𝑑 = 1, all the raw moments are like those of the traditional Geometric 
distribution (Devore, 2016). 
 
Theorem 2.4.1  
The maximum likelihood estimator of the parameter q can be obtained by solving the 
following equation by Newton Raphson Method where x̅ is the average discrete waiting 
time preceding first success 
 

q

d

dq
[1+qb+(qb)

2d

+(qb)
3d

+⋯]

[1+qb+(qb)
2d
+(qb)

3d
+⋯]

− (x̅ − a) = 0,          (2) 

 

Theorem 2.4.2  
The new Geometric distribution is a special case of AGP Negative Binomial Distribution 
for K=1 or single number of success.  

For 𝑎 = 0, 𝑏 = 𝑑 = 1, we get from equation (2), 𝑞 
𝑑

𝑑𝑞
(1−𝑞)−1

(1−𝑞)−1
 −(�̅� − 𝑎) = 0,  �̂� = �̅�

�̅�+1
 , �̂� = 

1

�̅�+1
 which are similar to the MLE estimators of the traditional Geometric distribution. 
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3. Arithmetically and or Geometrically Progressed Stochastic Processes 

 

During sequences of trials in a discrete Stochastic Process, either 0, or 1 or more than one 
successes may occur at each random trial. If the occurrences of the random sequence of 
these successes follow a class of patterns or a combination of patterns, new classes of 
discrete probabilities of the family of discrete random variables should be developed. As 
for example, for the study of twins, each of successive trails of a random sequence may 
give no success or two successes, or four successes, etc. 
 
The number of successes of each trial of the random sequence is represented by a 
combination of arithmetic and geometric progression 𝑎 + b𝑛d, where, 𝑎 is non-negative 
minimum number successes or intercept of success, b is positive integer representing the 
slope of successes, d is the amplification or exponentiation of successes and 𝑛 is a non-
negative integer indicating the total number of trails.  
 
3.1 Arithmetically and or Geometrically Progressed Poisson Processes 
A family of random variables or counting process𝑁(𝑡)is said to be an arithmetically and 
or geometrically progressed Poisson process if it has the following probability mass 
function 

𝑃[𝑁(𝑡) = 𝑥; 𝜆, 𝑎, 𝑛, 𝑏, 𝑑] =
(𝜆𝑡)𝑥−𝑎

𝑥! [
1
𝑎! +

(𝜆𝑡)𝑏

𝑎 + 𝑏!
+

(𝜆𝑡)𝑏2
𝑑

𝑎 + 𝑏2𝑑!
+

(𝜆𝑡)𝑏3
𝑑

𝑎 + 𝑏3𝑑!
+ ⋯∞]

 

 
∀ 𝑥 = 𝑎, 𝑎 + 𝑏, 𝑎 + 𝑏2𝑑 , … , 𝑎 + 𝑏𝑛𝑑…∞  

 

MGF =
∑

(𝜆𝑒𝑡)𝑎+𝑏𝑛
𝑑

(𝑎+𝑏𝑛𝑑)!

∞
𝑛=0

[
1

𝑎!
+

𝜆𝑏

𝑎+𝑏!
+

𝜆𝑏2
𝑑

𝑎+𝑏2𝑑!
+

𝜆𝑏3
𝑑

𝑎+𝑏3𝑑!
+⋯∞]

, Mean =
∑

(𝜆𝑡)𝑏𝑛
𝑑
(𝑎+𝑏𝑛𝑑)

(𝑎+𝑏𝑛𝑑)!

∞
𝑛=1

{
1

𝑎!
+
(𝜆𝑡)𝑏

𝑎+𝑏!
+
(𝜆𝑡)𝑏2

𝑑

𝑎+𝑏2𝑑!
+
(𝜆𝑡)𝑏3

𝑑

𝑎+𝑏3𝑑!
+⋯∞}

, 

 

𝜇2
′ = 

∑
(𝜆𝑡)𝑏𝑛

𝑑
(𝑎+𝑏𝑛𝑑)

2

(𝑎+𝑏𝑛𝑑)!

∞
𝑛=2

{
1

𝑎!
+
(𝜆𝑡)𝑏

𝑎+𝑏!
+
(𝜆𝑡)𝑏2

𝑑

𝑎+𝑏2𝑑!
+
(𝜆𝑡)𝑏3

𝑑

𝑎+𝑏3𝑑!
+⋯∞}

, 

 
For t = 1, Arithmetically and Geometrically progressed Poisson Process is the 
Arithmetically and Geometrically progressed Poisson Distribution. For 𝑎 = 0, 𝑏 = 𝑑 =
1, all the moments of the Arithmetically and Geometrically progressed Poisson Process are 
like those of the traditional Poisson Process.  
 

4. Arithmetically and or Geometrically Progressed Regressions 
 
Based on these Arithmetically and Geometrically Progressed success(es) discrete 
probability distributions, various Stochastic Processes as well as Generalized Linear 
Models can be developed. 
 
4.1 Arithmetically and or Geometrically Progressed Binomial Regression 
The Arithmetically and or Geometrically Progressed Binomial Regression Model will be 

𝑙𝑜𝑔 [
𝜋𝑖

𝑎

𝑛𝑖
+𝑏𝑛𝑖

𝑑−1 − 𝜋𝑖
]  = ∑ 𝑥𝑖𝑗

𝑝
𝑗=1 𝛽𝑗,  ∀ 𝑖 = 1,2,… , 𝑛𝑖        (3) 
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where, 𝜋𝑖 = (
𝑎

𝑛𝑖
+ 𝑏𝑛𝑖

𝑑−1)
𝑒
∑ 𝑥𝑖𝑗
𝑝
𝑗=1

𝛽𝑗

1+𝑒
∑ 𝑥𝑖𝑗
𝑝
𝑗=1

𝛽𝑗
 ,           (4) 

 
and 𝑦𝑖  is distributed as an Arithmetically and Geometrically progressed Binomial 
distribution with probability mass function 
 

𝑃(𝑦𝑖; 𝜋𝑖, 𝑎, 𝑛, 𝑏, 𝑑) =

(𝑎 + 𝑏𝑛𝑖
𝑑

𝑛𝑖𝑦𝑖
)𝜋𝑖

𝑛𝑖𝑦𝑖(1 − 𝜋𝑖)
𝑎+𝑏𝑛𝑖

𝑑−𝑛𝑖𝑦𝑖

∑ (
𝑎 + 𝑏𝑛𝑖

𝑑

𝑛𝑖𝑦𝑖
)𝜋𝑖

𝑛𝑖𝑦𝑖(1 − 𝜋𝑖)
𝑎+𝑏𝑛𝑖

𝑑−𝑛𝑖𝑦𝑖
𝑎+𝑏𝑛𝑖

𝑑

𝑥=𝑎

; ∀𝑛𝑖𝑦𝑖

= 𝑎, 𝑎 + 𝑏, 𝑎 + 𝑏2𝑑 , … , 𝑎 + 𝑏𝑛𝑖
𝑑 

 
For 𝑎 = 0, 𝑏 = 𝑑 = 1, equations (3) and (4) give similar results for traditional Binomial 
Regression since 

𝑙𝑜𝑔 [
𝜋𝑖

𝑎

𝑛𝑖
+𝑏𝑛𝑖

𝑑−1 − 𝜋𝑖
] = 𝑙𝑜𝑔 [ 𝜋𝑖

1 − 𝜋𝑖
]= ∑ 𝑥𝑖𝑗

𝑝
𝑗=1 𝛽𝑗 

 

and 𝜋𝑖 = (0 + 1)
𝑒
∑ 𝑥𝑖𝑗
𝑝
𝑗=1

𝛽𝑗

1+𝑒
∑ 𝑥𝑖𝑗
𝑝
𝑗=1

𝛽𝑗
 = 𝑒

∑ 𝑥𝑖𝑗
𝑝
𝑗=1

𝛽𝑗

1+𝑒
∑ 𝑥𝑖𝑗
𝑝
𝑗=1

𝛽𝑗
. 

 
4.2 Arithmetically and or Geometrically Progressed Multinomial Regression 
The Arithmetically and or Geometrically Progressed Multinomial Regression Model will 
be 

        𝜋𝑖𝑘 = (
𝑎

𝑛𝑖
+ 𝑏𝑛𝑖

𝑑−1)
𝑒
∑ 𝑥𝑖𝑗
𝑝
𝑗=1

𝛽𝑘𝑗

1+∑ 𝑒
∑ 𝑥𝑖𝑗
𝑝
𝑗=1

𝛽ℎ𝑗𝑐−1
ℎ=1

 ,  ∀ 𝑘 = 1,2,… , 𝑐 − 1              (5) 

 
where c is the baseline category and 𝑦𝑖  is distributed as an Arithmetically and or 
Geometrically Progressed Multinomial with probability mass function 
 

 𝑃(𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑐; 𝜋𝑖1, 𝜋𝑖2, … , 𝜋𝑖𝑐 , 𝑎, 𝑛𝑖, 𝑏, 𝑑) =
𝑎+𝑏𝑛𝑖

𝑑!

𝑦𝑖1!𝑦𝑖2!…𝑦𝑖𝑐!
𝜋𝑖1

𝑦𝑖1𝜋𝑖2
𝑦𝑖2 …𝜋𝑖𝑐

𝑦𝑖𝑐; 
 

 ∀𝑛𝑖𝑦𝑖 = 𝑎, 𝑎 + 𝑏, 𝑎 + 𝑏2𝑑 , … , 𝑎 + 𝑏𝑛𝑖
𝑑 

 
For 𝑎 = 0, 𝑏 = 𝑑 = 1, equation (5) gives the traditional Multinomial Regression Model 
since 

𝜋𝑖𝑘 = (0 + 1)
𝑒
∑ 𝑥𝑖𝑗
𝑝
𝑗=1

𝛽𝑘𝑗

1+∑ 𝑒
∑ 𝑥𝑖𝑗
𝑝
𝑗=1

𝛽ℎ𝑗𝑐−1
ℎ=1

 = 𝑒
∑ 𝑥𝑖𝑗
𝑝
𝑗=1

𝛽𝑘𝑗

1+∑ 𝑒
∑ 𝑥𝑖𝑗
𝑝
𝑗=1

𝛽ℎ𝑗𝑐−1
ℎ=1

. 

 
4.3 Arithmetically and or Geometrically Progressed Poisson Regression 
The Arithmetically and or Geometrically Progressed Poisson Regression Model will be 
 

𝑙𝑜𝑔 [𝑎𝑙𝑜𝑔𝜆𝑖 + 𝑙𝑜𝑔 {
1

𝑎!
+

𝜆𝑖
𝑏

𝑎+𝑏!
+

𝜆𝑖
𝑏2𝑑

𝑎+𝑏2𝑑!
+

𝜆𝑖
𝑏3𝑑

𝑎+𝑏3𝑑!
+⋯∞}]  = ∑ 𝑥𝑖𝑗

𝑝
𝑗=1 𝛽𝑗,                (6)  

         ∀ 𝑖 = 1,2,… , 𝑛 
 

 
2395



where, 𝑦𝑖  is distributed as a Arithmetically and or Geometrically Progressed Poisson 
distribution with mass function 
 

 𝑃(𝑦𝑖; 𝜆𝑖, 𝑎, 𝑛, 𝑏, 𝑑) =
𝜆𝑖

𝑦−𝑎

𝑦![
1

𝑎!
+

𝜆𝑖
𝑏

𝑎+𝑏!
+

𝜆𝑖
𝑏2𝑑

𝑎+𝑏2𝑑!
+

𝜆𝑖
𝑏3𝑑

𝑎+𝑏3𝑑!
+⋯∞]

; 𝑦𝑖 = 𝑎, 𝑎 + 𝑏, 𝑎 + 𝑏2𝑑 , … , 𝑎 +

𝑏𝑛𝑑…∞ 
 
For 𝑎 = 0, 𝑏 = 𝑑 = 1, equation (6) gives traditional Poisson Regression model since 
 

𝑙𝑜𝑔 [0 + 𝑙𝑜𝑔 {1 +
𝜆𝑖

1

1!
+

𝜆𝑖
2

2!
+

𝜆𝑖
3

3!
+⋯∞}]=𝑙𝑜𝑔[𝜆𝑖]= ∑ 𝑥𝑖𝑗

𝑝
𝑗=1 𝛽𝑗.  

 
4.4 Arithmetically and or Geometrically Progressed Geometric Regression 
The Arithmetically and or Geometrically Progressed Geometric Regression Model will be 
 

     𝑙𝑜𝑔 [𝑎𝑙𝑜𝑔𝑞𝑖 + 𝑙𝑜𝑔 {1 + 𝑞𝑏 + (𝑞𝑏)
2𝑑

+ (𝑞𝑏)
3𝑑

+⋯}]  = ∑ 𝑥𝑖𝑗
𝑝
𝑗=1 𝛽𝑗,          (7)  

 
        ∀ 𝑖 = 1,2,… , 𝑛 

 
where, q is the probability of obtaining a failure and 𝑦𝑖 is distributed as an Arithmetically 
and or Geometrically Progressed Geometric Distribution with mass function 
 
 𝑃(𝑦𝑖; 𝑞𝑖, 𝑎, 𝑛, 𝑏, 𝑑) =

𝑞𝑖
𝑦−𝑎

[1+𝑞𝑏+(𝑞𝑏)
2𝑑
+(𝑞𝑏)

3𝑑
+⋯]

; 𝑦𝑖 = 𝑎, 𝑎 + 𝑏, 𝑎 + 𝑏2𝑑 , … , 𝑎 + 𝑏𝑛𝑑…∞. 

 
For 𝑎 = 0, 𝑏 = 𝑑 = 1, equation (7) gives traditional Geometric Regression model since 
 

𝑙𝑜𝑔[0 + 𝑙𝑜𝑔{1 + 𝑞 + 𝑞2 + 𝑞3 +⋯}] = 𝑙𝑜𝑔 [𝑙𝑜𝑔 1

1−𝑞
] = ∑ 𝑥𝑖𝑗

𝑝
𝑗=1 𝛽𝑗. 

 
              Conclusion 

 
If sampling is done in the usual manner, the new Arithmetically and or Geometrically 
Progressed Discrete Probability Distributions reduce to the traditional discrete probability 
distributions and thus Arithmetically and or Geometrically Progressed Stochastic 
Processes and Arithmetically and or Geometrically Progressed Generalized Linear Models 
also convert to traditional stochastic processes and generalized regression models 
respectively. 
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