
Sampling Methods for the Concentration Parameter of the Dirichlet Process

Lyric Yang Liu∗ Balgobin Nandram†

Abstract
There are many methods in current statistical literature for making inferences based on samples se-
lected from a finite population. Parametric models may be problematic because statistical inference
is sensitive to parametric assumptions. The Dirichlet process (DP) is very flexible and determines
the complexity of the model. It is indexed by two hyper-parameters: the baseline distribution and
concentration parameter. Current sampling methods for the concentration parameter only consider
the continuous baseline distribution. We compare three different methods: Adaptive Reject Algo-
rithm, Mixture of Gammas Method and Grid Method. We also propose a new method based on
the ratio of uniforms. In practice, some survey responses are known to be discrete; if a continuous
distribution is adopted as the baseline distribution, the model is misspecified and standard estima-
tion/inference may be invalid. We propose a discrete baseline approach to the DP and conclude
that the unobserved responses from the finite population can be sampled from a multinomial distri-
bution if all possible outcomes are observed. We also applied our discrete baseline approach to a
Phytophthora data set.

Key Words: Concentration Parameter, Discrete Baseline, Empirical Study, Grid Method, Non-
parametric Bayesian Statistics

1. Introduction

We often know very little about the specific parametric forms of the distributions, and it
is also difficult to validate the parametric assumptions. The parametric Bayesian models
based on distributional assumptions may be problematic because inferences are sensitive
to such assumptions. It may be more appealing to use a nonparametric Bayesian approach.
The existence of the DP was established by Ferguson (1973). It is a distribution over
distributions, that is, each draw from a DP itself is a distribution (i.e., we are working on
functional spaces).

It is an open topic to sample the concentration parameter (α) of the DP. One can use
Gilks’ (1992) Adaptive Reject Sampling method which relies on the logconcavity of the
logarithm transformation of α. Nandram and Yin (2016 a, b) used a grid method to sample
α from the posterior density of ρ = 1/(1 + α); they have used a noninformative prior
for α, different from the proper (informative) prior suggested by Escobar and West (1995).
Antonelli, Trippa and Haneuse (2016) reviewed several methods and suggested a more
complex method. The problem of sampling the posterior density of α is a difficult one, and
in this paper we will propose a new method called ratio of uniforms.

Another concern will be addressed is regarding the discreteness of the baseline distribu-
tion G0. It is well-known that inference is sensitive to the specification of baseline measure
(e.g., McAuliffe, Blei and Jordan 2006 and Nandram and Yin 2016 a). So it is more robust
if we have an unspecified distribution G0. However, the discreteness of G0 means that
the same value can come from either G0 or from the balls already drawn in the Polya urn
scheme. But it is mandatory to have G0 discrete in this model if we have strong belief that
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the observations are from a discrete family. In such case, the number of distinct values in
the sample, k, is no long a sufficient statistics for α. This paper will correct this.

We will proceed this paper as follows. In Section 2, we briefly review the Dirichlet
process (DP), different sampling algorithms for alpha, the concentration parameter; We
also introduce our approach, the ratio of uniforms algorithm. In Section 3, we discuss one
limitation that current literature has regarding the baseline distribution of the DP and how
we resolve it, we also discuss the implementation of our method to the finite population
mean. In Section 4, we run a small simulation study. In section 5 we discuss an illustrative
example on Phytophthora data. We conclude this paper in section 6.

2. Dirichlet Process and Sampling the Concentration Parameter

2.1 Review of the Dirichlet Process

Let (Θ,B) be a measurable space, with G0 a baseline measure (nonrandom) on the space,
and let α be a positive real number. A Dirichlet process, DP(α,G0), is defined as the distri-
bution of a random probability measure G over (Θ,B) such that, for any finite measurable
partition of the measurable space (Θ, {Ai}ni=1,

{G(A1), · · · , G(An)} ∼ Dirichlet{αG0(A1), · · · , αG0(An)}.

We write G ∼ DP(α,G0), if G is a random probability measure with a distribution
given by the DP, where α is the concentration parameter. For any measurable set, A, we
have E[G(A)] = G0(A), that is the mean of the DP is the baseline distribution G0 and
Var[G(A)] = G0(A)[1G0(A)]/(α + 1). The larger α is, the smaller the variance (i.e., the
DP concentrates more of its mass around the baseline distribution). HereG0 and α are both
parameters and they play intuitive roles in the definition of the DP. Here G is constrained
to be around G0 and this is regulated by α.

Let G ∼ DP(α,G0) and y1, · · · , yn be a sequence of independent draws from G. The
posterior distribution, G|y1, · · · , yn is

DP

(
α+ n,

α

α+ n
G0 +

1

α+ n

n∑
i=1

δyi

)
,

where δyi is the cdf of a point mass at yi. This conjugate property of the DP was
motivated by Ferguson (1973), desirable for easy algebra and computations.

For a one-sample problem, one might take

Y1, · · · , Yn|G ∼ G,G ∼ DP (α,G0),

where G0 is the baseline measure and α the concentration parameter. Assuming that
there are k distinct values among Y1, · · · , Yn, the baseline model is Y ∗1 , · · · , Y ∗k |k ∼ G0.
Note that k is a random variable. The baseline measure G0 is assumed continuous. Binder
(1982) was the first to introduce this model to survey sampling; more recently, see Nandram
and Yin (2016 a,b). Although G0 can be discrete, it appears that this latter case was not
discussed by Antoniak (1994).

Antoniak (1974) wrote down the distribution of k given α and he proved that k is a
sufficient statistic for α. This is true when G0 is continuous. It is easy to write down the
posterior density with an appropriate prior. The sampling methods being discussed in this
section are all based on continuous baseline.

However, if G0 is discrete, k is no longer a sufficient statistic; this result appears to
be not so well known. Therefore, if the result is used, this is a violation of the sufficiency
principle; we will discuss this issue in Section 3.
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2.2 Current Sampling Methods

We first review the Adaptive Reject Sampling method (Gilks 1992).
Theorem. Let φ = log(α), where α is the concentration parameter. The posterior density
π(φ|k) is logconcave, (i.e., strongly unimodal with a unique mode).
The proof can be found in the appendix. Knowing that π(φ|k) is logconcave, we can use
the Adaptive Reject Sampling method (Gilks 1992) to draw φ. This sampling procedure
was realized with the R package ars. Then we can compute α in the form α = eφ. The
algorithm is as follows:

1. Initialize n and Sn

2. Generate X ∼ gn(x), U ∼ U(0, 1)

3. If U ≤ f(x)
w̄ngn(x) , accept x. Otherwise, update Sn to Sn+1 = Sn ∪ {x}. and repeat.

Nandram and Choi (2004) discussed the use of the gamma prior which was introduced
earlier by Escobar and West (1995). One concern is that the mix of Gamma method gives
bimodal sampling distribution whereas, we prefer the unimodal density of α.

Nandram and Yin (2016) transformed α according to ρ = 1
1+α , this is also the correla-

tion in the DP. The posterior density of ρ is

π(ρ|k) ∝ (1− ρ)k−1ρn−k∏n−1
j=1 (1− ρ+ ρj)

, 0 ≤ ρ ≤ 1.

We see that it is not in a simple form and a one-dimensional grid method was used
to draw samples from it, thereby avoiding Markov chain Monte Carlo methods. The unit
interval is simply divided into 100 sub-intervals of equal width, and the joint posterior
density is approximated by a discrete distribution with probabilities proportional to the
heights of the continuous distribution at the mid-points of these sub-intervals. Now, it is
easy to draw a sample from this univariate discrete distribution of π(ρ|k). The algorithm
goes as follows:

1. Draw a number U between [0, 1] with probability proportional to the heights of the
intervals.

2. Draw x uniformly from [U − w/2, U + w/2], where w is the width of the interval

Nonetheless, there is drawback of this method, because it does not perform well near the
tail.

2.3 Ratio of Uniforms Method

Original introduced by Kingderman and Monahan (1977), a point is generated uniformly
over a certain region in the plane. To realize this, independent uniform random variables
are simulated, U and V say, and those that fall outside some set are discarded. The ratio
V/U is then calculated for those points inside the set. The ratio values obtained are used as
observations from the required distribution. This method can proceed using the following
algorithm: Suppose we want to draw samples from h(x), an unknown distribution.

1. Generate u and v independently from U(0, b) and U(c, d).

2. Set x = v/u if u2 ≤ h(v/u) and return to (i) otherwise.
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Here b, c and d are given by

b = sup
x

√
h(x) c = − sup

x
x
√
h(x) d = sup

x
x
√
h(x)

Because α is positive, we can restricted c = 0. This algorithm is very easy to implement
and very efficient to get samples.

3. Baseline Consideration

3.1 A Problem

Current literature has been using continuous baseline distributions, see Teh, Jordan, Beal
and Blei(2006), Antonelli, Trippa and Haneuse(2016). Here we explored a possibility of
using a discrete baseline. One problem is that the distinct values in the sample is no longer
the true distinct ones because for discrete baseline, we allow observing a “new” value from
the baseline distribution that is the same as one that is already in the sample. To solve this
problem, we introduce a latent variable Zi ∼ Ber( α

α+i−1), with

Zi =

{
1, if a draw is made from the baseline,

0, if a draw is from the value that is already observed.

The true number of distinct values k is the sum of zi, k =
∑n

i=1 zi.

3.2 Finite Population Prediction

Suppose we want to predict the finite population proportion for a given area based on a
random sample from it. This could be applied to many areas of study, for example we want
to predict the infectious rate of the given farmland for some disease and it is not feasible
to observe all the plant on the farm, however, we could take a random sample and estimate
the posterior mean using this sample. We have observed n of them and want to make
predictions to the N − n individuals. Consider following scenarios:

Scenario 1. We use the one-level DP model for the population values to make inference
for a finite population mean. For this case, the baseline distribution is chosen to be normal.
We assume that

y1 · · · , yN |G ∼ G

G ∼ DP (α,G0)

G0 ∼ N(µ, σ2)

Scenario 2. We use the one-level DP model for the population values to make inference
for a finite population mean. For the one-level DP model we assume that

y1 · · · , yN |G ∼ G

G ∼ DP (α,G0)

G0 ∼ Bin(m, p), with m known

Scenario 3. Using the model in scenario 2, but suppose we have already observed
y∗1, · · · , y∗d, d distinct values (1 ≤ d ≤ n), with n1, · · · , nd being their correspond-
ing counts. Now we want to predict N1 − n1, · · · , Nd − nd, for convenience, we write
N∗1 , · · · , N∗d . Let N∗ = N − n, Now

N∗1 , · · · , N∗d ∼ Multinomial

{
N∗, (w1, · · · , wd)

}
,
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where w1, · · · , wd are the weights in stick-breaking algorithm with
∑∞

s=1ws = 1 and

w1 = ν1, w2 = ν2(1− ν1) · · · , νi
iid∼ Beta (1, α). Given α from the Gibbs sampler, we can

draw νi and thus draw the predicted values from a Multinomial distribution. This is based
on Sethuraman(1994).

3.3 The Sampling Procedure

We will describe the sampling procedure for the three scenarios mentioned in Section 3.2
respectively.

Scenario 1. Using a normal cdf as the baseline distribution, we can observe the number
of distinct values k and then sample α as discussed in Section 2. For each sampled alpha
value, we predict the unobserved Yn+1, · · · , YN using the Polya urn scheme,

Yn+i+1|y1, · · · , yn, yn+1, · · · , yn+i ∼
α

α+ n+ i
G0 +

n+ i

α+ n+ i

n+i∑
j=1

δyj ,

for i = 1, · · · , N − n − 1. Now it is easy to draw the unsampled values one by one using
the equation.

Scenario 2. We correct the true number of observations from the baseline distribution
k
′

=
∑n

i=1 zi. And the Gibbs sampler is as follows:

1. Zi|α, p ∼ Ber( α
α+i−1)

2. π(α|z, p) ∝ αk
′∏n−1

j=1 (j+α)
· 1

(1+α)2

3. p|z, α = 1
k′
∑
{i:zi=1} yi

Scenario 3. From the sample, we have distinct y∗1, · · · , y∗d, with corresponding weights
w1, · · · , wd, where
w1 = ν1, w2 = ν2(1− ν1) · · · , wd =

∏d−1
s=1(1− νs), νi

iid∼ Beta (1, α). So

π(ν|α, d) ∝ νn1
1 [ν2(1− ν1)]n2 · · · [νd−1(1− ν1) · · · (1− νd−2)]nd−1

[(1− ν1) · · · (1− νd−2)(1− νd−1)]nd ×
∏

(1− νi)α−1

∝ νn1
1 (1− ν1)n2+···+nd+α−1νn2

2 (1− ν2)n3+···+nd+α−1 · · · νnd−1

d−1 (1− νd−1)nd+α−1.

Using a Gibbs sampler,

1. Draw νi from π(νi|α, d)

2. π(α|d) ∝ αd∏n−1
j=1 (j+α)

· 1
(1+α)2

4. Simulation Study

It is convenient to compare different sampling methods using simulations because we can
obtain the true distribution of α and compare the theoretical values with the sampled values.
Firstly we find the theoretical percentiles of α using fine grids of width 0.0025. Then we
perform the four sampling methods to get 10,000 sample points. We can find the sample
percentiles by ordering the sample values and find corresponding quantiles as the theo-
retical values. Lastly, we compare the theoretical value vs. the sampled value using a
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quantile-quantile plot. Result is shown in Figure 1. All four methods provide reasonable
sampling distribution for α. However, as we mentioned in Section 2, the ARS and grid
method have tail problems and mixture of gamma uses an informative prior which remains
to be validated. Our method does not require informative gamma prior and is faster and
easy to implement. So we recommend using ratio of uniforms to sample α

5. Real Data Analysis

The data we present here are about Phytophthora Epidemic in Bell Pepper Gumpertz (1997).
The pathogen Phytophthora Capsici Leonian causes lesions on the crown, stem, and leaves
of bell pepper, and rapidly causes the plant to die. For their analyses, they took one field
which was a square lattice of 20 by 20 quadrats with 2 to 3 bell pepper plants per quadrat as
an example. The response variable within each quadrat was presence or absence of disease
in a quadrat. If any plant was wilted, dead, or had lesions on stem, crown, or leaves, disease
was considered to be present in the quadrat. Disease presence or absence was recorded for
each quadrat on nine dates throughout the growing season, from 6/16/92 to 8/5/92. Figure
2 shows the disease incidence on 6/25/92. We want to make this data set usable to mimic
our discrete response scenario so we perform the following sampling procedure: we divide
each row of the field by every five quadrats; and then we take one random sample within
each row of the field. We assume that the sampled value follows a binomial distribution
with total number of trials being 5. Now our goal is to predict the unobserved quadrats
and estimate the infectious rate, which is the success probability for this binomial distri-
bution. We performed the estimation using both discrete baseline and continuous baseline
approach discussed in Section 3.2.

We report the posterior mean and the credible interval in Table 1. We found that the
continuous baseline distribution provides a biased estimation to the infectious rate compar-
ing to the discrete baseline approach we propose. Also the former is not precise as the latter
with a wider credible interval. This result can be seen in Figure2, with red line indicating
the true infectious rate.

6. Conclusions

We have proposed a new sampling method for the concentration parameter of the Dirichlet
Process and compared it with other three exited methods. Our method performs as well as
other methods and it is faster considering the computational time. In the mean time, we
pointed out a problem that current researchers have ignored regarding the baseline distri-
bution of the DP. We have corrected the true number of distinct values in the sample by
introducing a latent variable which indicated which urn a new observation is from. By us-
ing this approach, we are able to give a more accurate estimation of the finite population
mean when the observations are discrete. We used a Phytophthora example to illustrate our
approach. And concluded the discrete baseline method is more reasonable.

There are two directions we could proceed to extend our current work. First, we could
consider spatial model for the example provided in this paper. Also, we could easily extend
the one-level DP model to a two or multilevel DP model. The hierarchical structure will
make our inference more robust and accurate.
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Appendix:

proof. Consider a ”Cauchy” type prior for α, also called a shrinkage prior, of the form,
p(α) = 1

(1+α)2
, α > 0.

π(α|k) ∝ αk∏n−1
j=1 (j + α)

· 1

(1 + α)2

Letting α = eφ,

π(φ|k) ∝ ekφ∏n−1
j=1 (j + eφ)

· 1

(1 + eφ)2

Now we need to show that π(φ|k) is logconcave.

log π(φ|k) = kφ−
n−1∑
j=1

log(j + eφ)− 2 log(1 + eφ)

∂

∂φ
log π(φ|k) = k −

n−1∑
j=1

eφ

j + eφ
− 2 · eφ

1 + eφ

∂2

∂φ2
log π(φ|k) = −

n−1∑
j=1

jeφ

(j + eφ)2
< 0

And we conclude that the posterior density π(φ|k) is logconcave.
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Table 1: Estimation of the Infectious Rate (True Rate:0.1525)

Baseline Distribution Posterior Mean 95% Credible Interval
Normal (µ, σ2) 0.1691 (0.047,0.294)
Binomial (5,p) 0.1502 (0.114,0.174)

Figure 1: Quantile-Quantile Plot of Different Sampling Methods.

Figure 2: Map of Disease Incidence.

 
2304



Figure 3: Posterior Distribution of Mean from the Two Baseline DP Models
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