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                                                                              Abstract 
 
Gait asymmetry is often observed in populations with varying degrees of altered neuromuscular control.              
Traditionally, gait asymmetry is evaluated using mean peak vertical ground reaction forces (vGRF). However,              
mean peak vGRF does not have the level of sensitivity needed to detect subtle changes in gait movement                  
patterns. Biomechanically, it appears that time series generated from peak vGRF waveforms may be suitable to                
assess changes in abnormal gait patterns. Previously, autoregressive (AR) modeling has been used successfully              
to delineate between healthy and pathological gait during running; but has been little explored in walking. In                 
running, the coefficients of the AR model fit to peak vGRF data were used to differentiate between healthy                  
controls and post-anterior cruciate ligament reconstruction (ACLR) individuals. To expand upon this work, we              
will investigate the ability of AR modeling to both quantitatively and graphically delineate between healthy and                
abnormal gait patterns in healthy controls. We will use an asymmetric walking protocol to simulate abnormal                
gait patterns and fit the AR model to both the normal and asymmetric walking patterns. To address the scarcity                   
of our limited dataset, classical bootstrapping techniques will be employed to increase the number of peak vGRF                 
time series and improve our ability to construct viable and robust AR models to aid in the statistical                  
based-classification of healthy and abnormal gait. 
 
Introduction 
 
Autoregressive (AR) modeling is a data-driven statistical method that characterizes time series as a function of                
their prior correlated values.1,2 In biological settings AR modeling has been used extensively, for example to                
extract respiratory rates and detect propulsive force asymmetries and motor control strategies from physiological              
signals.3-4 In such studies, AR model coefficients capture relevant temporal features. Herein, a second-order              
AR(2) model, was used to fit peak vertical ground reaction force (vGRF) running data and evaluate gait                 
dynamic stability. These AR(2) models were found to provide the best fit based on the analysis of                 
autocorrelation function and partial autocorrelation function plots that modeled the current vGRF peak value as a                
function of the two preceding vGRF peaks.1,2 The derived AR model coefficients were important because they                
provided both a quantitative and visual way of denoting between limb stability using the stationarity triangle plot                 
devised by Box and Jenkins1. This stationarity triangle could be quickly used to detect stable or unstable time                  
series dynamics based on the AR(2) coefficients placement within or outside the triangle boundaries.1,2 Those               
AR(2) coefficients that resided inside the triangle characterized stable time series function, whereas those              
coefficients that resided outside of the triangle are indicative of unstable time series dynamics. Furthermore, this                
movement of AR(2) coefficients between different regions within the triangle, also captures changes in              
underlying gait pattern dynamics.1,2 The peak vGRF was the variable selected to assess between-limb stability                
because vGRF generated asymmetries are known to remain for years after ACLR and rehabilitation and are                
strongly correlated with altered limb loading and elevated injury risk.5,6 Given that a goal of post-ACLR                
rehabilitation is to track the restoration of functional stability, AR modeling should be a valuable tool for both                  
assessing and visually tracking changes in dynamic stability in post-ACLR individuals.  
 
The objective of the current study is to use bootstrapping to enhance our ability to establish criteria that delineate                   
differences in dynamic stability between control and post-ACLR individuals from peak vGRF running data.              
Typically, peak vGRF datasets are not of sufficient size for classification purposes. Hence, alternative methods,               
such as bootstrapping, must be used to achieve a better understanding of the underlying distributional feature of                 
small datasets. In this study we will use the dataset recently produced by Morgan (2019)8 summarized below to                  
determine the underlying distributional features of running gait data and to devised robust classification criteria.  
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Methods 
Participant Demographics 
A total of 15 healthy controls (height 1.7 [0.1] m; mass 63.5 [13.5] kg; age 21.0 [4.4] yr; speed 2.6 [0.3] m/s) and                       
15 post-ACLR (height 1.7 [0.1] m; mass 66.8 [9.6] kg; age 21.1 [8.4] yr; average running speed 2.7 [0.3] m/s)                    
participants performed a running protocol on a split-belt treadmill. Each group needed 15 participants to identify                
a moderate effect (0.70) and achieve adequate statistical power (α = .05; 1 − β = 0.80). The participant’s ages                    
ranged from 18 to 40 years. Written consent was obtained from each individual prior to their participation in the                   
study in accordance with the institutional review board. The post-ACLR participant’s reconstruction surgery was              
performed by physicians within the same orthopedic practice, where participants received either a bone-patellar              
bone or a hamstring graft. Each post-ACLR participant was cleared for return-to-sport drills by their physician                
prior to their participation. All control participants had no previous knee surgery and were injury free for at least                   
6 months prior to the study. 
 
Instrumented Gait Analysis 
For the running protocol, participants ran at a self-selected speed to get acclimated to the instrumented split-belt                 
treadmill (Bertec Corp, Columbus, OH). Once acclimated, participants were instructed to jog at a comfortable               
pace. Participants wore WR662 running sneakers (New Balance, Brighton, MA). GRF data were collected at               
1200 Hz and filtered using a zero-lag, fourth-order Butterworth filter with a 35-Hz low-pass cutoff frequency.                
Peak vGRF data were extracted from each limb for each running stride during a 10-second trial. A time series                   
was created by extracting alternating vGRF peaks from the individual’s right and left limbs. This meant that the                  
vGRF was first extracted from the right limb and then was followed by the vGRF peak for the left limb. This                     
process of compiling the alternating peak vGRF for the right and left limbs was repeated for the entire running                   
interval. This process was repeated for the ACLR participants. Their time series were constructed from the                
vGRF peaks from their reconstructed and non-reconstructed limbs.  
 
Autoregressive Modeling Analysis 
First, a linear trend was removed from the vGRF time series. Then, an AR(2) was fit to the detrended vGRF peak                     
time series. An AR(2) model was selected based on the results of the autocorrelation function and partial                 
autocorrelation function plots, which illustrate how a time series is strongly correlated with a lagged version of                 
itself.1,2 An AR(2) model was deemed appropriate because the autocorrelation function plots were shown to                
slowly decay and the partial autocorrelation function plots displayed a drop-off after a lag of 2.1,2 To validate the                    
model fit, a histogram of the residuals, obtained from subtracting the AR(2) generated model value from the                 
original time series, was plotted. The model was a good fit because the residuals were normally distributed about                  
zero.1,2 An AR(2) model is appropriate here because the time series model errors are not independent but serially                   
correlated.1,2 The AR(2) model generated 2 coefficients, AR1 and AR2, for each time series, which were plotted                  
on a stationarity triangle. The stationarity triangle indicates the behavior of the time series; more specifically, it                 
indicates if the time series is stable.1,2 The coefficients of stable time series lie inside of the stationarity                   
triangle.1,2 Coefficients that reside outside of the triangle are unstable. As coefficients move to the edge of the                   
triangle, they indicate the time series is less stable.1,2 The dimensionless AR(2) model coefficients, AR1 and                 
AR2, acted as the x- and y-coordinates, respectively, and were plotted on the stationarity triangle. The distance                 
of the dimensionless AR(2) coefficients from the centroid of the triangle, located at (0, −1/3), was used to                  
quantify the stationarity of the model. The analyses were conducted using a custom MATLAB code (MATLAB                
R2018a; The MathWorks, Inc, Natick, MA). 
 
 
Results 
The AR(2) coefficients for the post-ACLR and healthy controls indicated that both groups resided in the regions                 
1 and 2 on the AR(2) stationarity triangle thus indicating that both groups exhibited an overdamped response                 
(Fig. 1). Moreover, the results indicated that the post-ACLR individuals reside predominantly in region 1 while                
the healthy controls encompassed regions 1 and 2 (Fig. 1).  
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Figure 1. Comparison of the post-ACLR and healthy control individuals AR model coefficients displayed on a 
AR(2) stationarity triangle. 
 
 
Bootstrapping was used to obtain 400 independent estimates of the two separate AR1 and AR2 coefficients                
under the provision that the values of the respective AR1 and AR2 coefficients must lie within the boundaries of                   
the stationarity triangle. The discriminant value (DC) were also evaluated for each paired set of AR1 and AR2                  
coefficients (Eq. 1) and used to plot discriminant curve contour lines . Normal probability plots of the respective                  
AR coefficients were found to exhibit normal behavior (Fig. 2).  
 
   DC=AR12  + 4*AR2  (1) 
 
 

 
 
 
Figure 2. (a) Normal probability plot for the AR(2) model coefficients for the healthy controls. (b) Normal 
probability plot for the AR(2) model coefficients for the post-ACLR individuals. 
 
 
The results below display how the healthy controls and post-ACLR groups are distributed in various               
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regions of the triangle with the post-ACLR subjects clustered mostly in region 1. The healthy controls                
mainly resided in regions 1 and 2 but can also be found dispersed in the underdamped regions 3 and 4                    
(Fig. 3). 
 

 
Figure 3. (a) The bootstrapped AR(2) model coefficients for the healthy controls (blue). (b) Comparison of the 
bootstrapped AR(2) model coefficients for the healthy controls (blue) and post-ACLR individuals (green). 
 
Three simple geometrical classification criteria were devised using an objective function that minimizes the sum               
of the total number of false positive and false negative observations in each case. One criterion was a best                   
symmetric system (BSS) that used the optimal placement of intersecting horizontal (AR2=0.3) and vertical              
(AR1=0) lines to locate the critical classification pathway. A second criterion was a best symmetric alternative                
(BSA) that used the optimal placement of an intersecting horizontal line (AR2=0.3) with the left boundary line                 
(AR2=AR1+0.7) of the stationarity triangle to identify the critical classification pathway. The remaining and              
final criterion was a quadratic based system (QBS) that used the optimal placement of the discriminant curve to                  
local the desired critical classification pathway. This final criterion satisfied the interval constraint of 1.4<               
DC<4. To quantify the ability of the three criteria to accurately classify the individuals we generated a separate                  
confusion matrix (Tables 1-3) for each case. A confusion matrix consists of four quadrants that summarizes all                 
possible error states. A practical goal of any effective classification scheme is to minimize the total number of                  
type 1 and 2 errors. Type 1 errors are false- positives while type 2 errors are true-negatives. Interestingly enough,                   
all three criteria yield essentially the same level of performance. Each had a high sensitivity (> 94%), an                  
excellent accuracy level (>90%) and a low error rate (<10%). Although more sophisticated classification              
schemes can be employed for this type of analysis, in light of the performance of our simple geometrical                  
schemes this analysis was sufficient.  
 
 
Table 1. Confusion Matrix for Criterion 1: BSS Method 
 

N=400 Predicted No Predicted Yes  
Actual No TN=172 FP=28 200 
Actual Yes FN=12 TP=188 200 
 184 216 400 
 
 
Table 2. Confusion Matrix Criterion 2: BSA Method 

N=400 Predicted No Predicted Yes  
Actual No TN=164 FP=36 200 
Actual Yes FN=2 TP=198 200 
 166 234 400 
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Table 3. Confusion Matrix for Criterion 3: QBS Method  
N=400 Predicted No Predicted Yes  

Actual No TN=159 FP=41 200 
Actual Yes FN=0 TP=200 200 
 159 241 400 

 
 

Table 4. Summary Table of Classification Models for the Three Methods  
 Method 1: BSS Method 2: BSA Method 3: QBS 

Sensitivity 0.94 0.99 1.00 

False Alarm Rate 0.14 0.09 0.20 
Accuracy 0.90 0.91 0.90 

Precision 0.87 0.85 0.93 

Error Rate 0.10 0.09 0.10 
 
 
Discussion 
 
The purpose of this study was to employ bootstrapping to aid in identifying optimal criteria to delineate between                  
healthy controls and post-ACLR individuals based on their running dynamics. Gait biomechanics studies are              
often hampered by their limited sample sizes, which make drawing conclusions about larger general populations               
difficult. However, bootstrapping allowed us to increase our sample size and, together with our three newly                
derived criteria we were able to classify the healthy controls and post-ACLR with greater than 90% accuracy.                 
We were able to accurately classify individuals based on our ability to use AR modeling to characterize gait                  
dynamics. AR modeling has not been extensively used in gait biomechanics; however, previous work has shown                
that it has potential to identify differences in gait biomechanics between healthy controls and those suffering                
from neuromuscular or cognitive impairments.8,18 These findings works highlight the robustness of this technique              
and support its use as a clinical tool. 
 
Conclusion 
 
Bootstrapping of the AR(2) model coefficients showed how post-ACLR and healthy individuals dispersed across              
regions 1 and 2 of the AR (2) stationarity triangle. While several simple classification schemes lead to effective                  
delineation of group behavior. Effective longitudinal studies are needed to access individual group migration              
rates that would aid in the development and tracking of rehabilitation protocols for post-ACLR populations. 
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