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Abstract

This paper reviews the literature on the evaluation of government budget forecasts, outlines

a generic framework for forecast evaluation, and illustrates forecast evaluation with empiri-

cal analyses of different U.S. government agencies’ forecasts of U.S. federal debt. Techniques

for forecast evaluation include comparison of mean squared forecast errors, forecast encom-

passing, tests of predictive failure, and tests of bias and efficiency. Recent extensions of these

techniques utilize machine-learning algorithms to handle more potential regressors than ob-

servations, a characteristic common to big data. These techniques are generally applicable,

including to forecasts of components of the government budget, to forecasts of budgets

from municipal, state, provincial, and national governments, and to other economic and

non-economic forecasts. Evaluation of forecasts is fundamental to assessing the forecasts’

usefulness; and evaluation can indicate ways in which the forecasts may be improved.

Key Words: bias, big data, budget, debt, efficiency, evaluation, forecast encompassing,

forecasts, government forecasts, machine learning, MSFE, projections, RMSE, saturation

1. Introduction

Government budgets have attracted considerable attention, especially with federal

debt limits, sequestration, and federal government shut-downs in the United States

and with continuing discussions about national debt limits in the euro area. Be-

cause future outcomes of government revenues and expenditures are unknown, their

forecasts may matter in government policy. It is thus of interest to ascertain how

good those forecasts are and how they might be improved. Many tools are available

for forecast evaluation, including forecast comparisons, tests of predictive failure,

and tests of bias and efficiency. The current paper:

• summarizes the literature on the evaluation of forecasts of the government
budget;

• systematically reviews tools for forecast evaluation, empirically illustrating
each with different U.S. government agencies’ one-year-ahead forecasts of the

U.S. gross federal debt over 1984—2018; and
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• develops a generic framework for forecast evaluation, drawing on expositions
in Clements and Hendry (1998, 1999), Ericsson and Marquez (1998), Martinez

(2015), and Ericsson (2017a) inter alia.

This paper is organized as follows. Section 2 briefly reviews the literature on

forecasts of the government budget. Section 3 describes the data and forecasts used

in the empirical illustrations. Section 4 considers various methods for comparing

alternative forecasts. Section 5 discusses different approaches to testing for forecast

failure, including subsample tests, tests for bias and efficiency, and generalizations

thereof. Drawing on the expositions in Sections 4 and 5, Section 6 proposes a

unified approach to forecast evaluation. Section 7 draws out some implications,

and Section 8 concludes. The Appendix lists the data and one-year-ahead forecasts

analyzed.

Although this paper focuses on forecast evaluation per se, it is important to

highlight that evaluation also provides a promising basis for forecast improvement.

Identifying a forecast’s weaknesses is key to its improvement. Typically, those weak-

nesses are not known ex ante, so a panoply of evaluation tools is desirable because

different evaluation tools have varying power to detect different shortcomings in the

forecasts.

2. Literature Review

A large body of literature evaluates government budget forecasts. The current

section focuses on forecasts from U.S. federal budget agencies and includes forecasts

of the budget and of other economic variables.

Existing studies can be divided into two types. The first type compares agencies’

forecasts by looking at the forecast errors directly or by summarizing the forecasts’

properties with statistics such as the root mean squared error (RMSE), mean ab-

solute error (MAE), and mean absolute percent error (MAPE). The second type of

study compares different forecasts through regression analysis and regression-based

tests. Both types of studies can provide valuable information about the forecasts.

Studies of the first type date back to at least Kamlet, Mowery, and Su (1987),

who use measures of bias and MAPE to evaluate forecasts of economic variables

from their own ARIMA models and from the Congressional Budget Office (CBO),

Office of Management and Budget (OMB), and the ASA/NBER survey. McNees

(1995) uses MAEs and RMSEs to assess forecasts of economic variables from the

Federal Reserve Board (FRB), the CBO, the Council of Economic Advisors (CEA),

and several private forecasters. Frendreis and Tatalovich (2000) examine forecast

bias in CBO, OMB, and FRB forecasts of economic variables. The CBO also con-

ducts a semi-annual comparison of the bias, MAE, and RMSE for its own economic

forecasts and those of the OMB and Blue Chip Consensus; see (e.g.) CBO (2017a).

Additionally, CBO (2015b) conducts a similar evaluation of revenue forecasts by

the CBO and the OMB.

Studies of the second type use regressions to evaluate and compare the forecasts.

For example, Howard (1987) regresses the OMB’s forecast errors on the CBO’s

forecast errors to understand how the two forecasts are related to one another.

Belongia (1988) regresses the actual growth rate of economic variables on the growth

rates predicted by the CBO, CEA, and private-sector sources in order to assess which

forecast outperforms the others. Cohen and Follette (2003) regress the actual budget

deficit on forecasts by the OMB, CBO, and FRB in order to determine which forecast
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Table 1: Some studies evaluating U.S. federal budget agency forecasts, as charac-
terized by forecaster, forecast horizon, variable forecast, and forecast period.

Study Forecaster Forecast Variable forecast Forecast

CBO OMB Other horizon   ∆   period

CBO (various) • • • 2, 5 • • • various

Kamlet, Mowery, and Su (1987) • • • 1—6 • • • 1962—1985

Howard (1987) • • 1 • • • • 1976—1985

Plesko (1988) • • 1—5 • • 1974—1988

Belongia (1988) • • 1 • • • 1976—1987

Miller (1991) • 1 • • 1980—1987

Blackley and DeBoer (1993) • 1 • • • • • 1963—1989

Auerbach (1995) • 1 • 1982—1993

Campbell and Ghysels (1995) • 1 • 1969—1990

McNees (1995) • • 1—4 • • • 1962—1994

Auerbach (1999) • • • 1—11 • 1986—1999

Frendreis and Tatalovich (2000) • • • 1 • • • 1962—1997

Kliesen and Thornton (2001) • 1, 5 • 1981—2000

Lipford (2001) • • 1—5 • • • • 1980—1999

Penner (2001, 2002) • 1, 5 • 1980—2000

Kitchen (2003) • • 1—5 • 1982—2001

Cohen and Follette (2003) • • • 1 • 1977—2003

Krause and Douglas (2005) • • • 1 • • • • 1976—2001

Corder (2005) • • • 1—5 • • • • 1976—2003

Krause and Douglas (2006) • • 1 • 1947—2001

Penner (2008) • 1, 2, 5 • 1983—2005

Huntley and Miller (2009) • • 1—5 • • • • 1993—2003

Kliesen and Thornton (2012) • • 1, 5 • 1976—2010

Krol (2014) • • • 2, 5 • 1976—2008

CBO (2015b) • • 1—6 • • 1982—2014

Martinez (2011, 2015) • • • 1, 5 • 1984—2013

Tsuchiya (2016) • • • 1—4 • • 1984—2012

CBO (2017b) • • 1, 6 • • 1985—2016

Ericsson (2017a) • • • 1 • 1984—2012

Croushore and Van Norden (2017) • • 1 • • • 1967—2010

Croushore and Van Norden (2018) • • 1 • • 1981—2010

Notes. “CBO (various)” denotes CBO (2002), CBO (2004), CBO (2005), CBO (2006), CBO

(2007), CBO (2009), CBO (2010), CBO (2013), CBO (2015a), and CBO (2017a), which

examine forecast periods from 1976 through (respectively) 2000, 2003, 2004, 2005, 2006, 2008,

2009, 2010, 2012, and 2014. “Other” forecasters include the FRB, CEA, SSA, APB, SPF,

Blue Chip Consensus, the ASA/NBER survey, and various private-sector sources. Forecast

horizons are in years. Variables forecast are the budget and related items (), gross domestic

product ( ), inflation (∆), unemployment (), and other economic variables ().
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contains the most information content. Krause and Douglas (2005) run several

forecast-encompassing tests on CBO, OMB, and FRB forecasts of the budget and

other economic variables. In a related vein, Corder (2005) uses regression-based

tests to evaluate the economic forecasts from the Social Security Administration

(SSA), CBO, and OMB; and he examines whether an agency’s forecasts could be

improved by incorporating information from the other agencies’ forecasts.

These various studies provide information on the relative performance of fore-

casts across different samples, variables, and metrics. Table 1 lists a selection of

studies that have evaluated the U.S. federal budget agency forecasts. Additional

studies evaluate budget forecasts other than those by U.S. federal agencies. See in

particular Williams and Calabrese (2016) for an extensive and systematic review of

the literature, Frankel (2011) for cross-country comparisons, and Feenberg, Gentry,

Gilroy, and Rosen (1989), Gentry (1989), and Sun (2008) on forecasts of U.S. state

budgets.

3. Data

In Sections 4—6 below, empirical examples illustrate different forecast evaluation

methods in order to clarify how those methods are implemented and to highlight

their strengths and limitations. Section 3.1 describes the forecasts in those examples,

which are all of U.S. gross federal debt. Section 3.2 provides a graphical perspective

as a prelude to the numerical illustrations in Sections 4—6.

3.1 Data Description

The variable being forecast in the empirical examples is total U.S. gross federal debt

outstanding, in billions of dollars, from 1984 through 2018, as measured for fiscal

years ending on September 30. The data on total U.S. gross federal debt (“DEBT”)

are published by the U.S. Department of the Treasury’s Financial Management

Service in the December issue of the Treasury Bulletin and in its Monthly Treasury

Statement .

For the most part, the forecasts examined are the one-year-ahead forecasts.

Those forecasts are denoted by their sources:

• the Congressional Budget Office (CBO), from its Budget and Economic Out-

look ;

• the Office of Management and Budget (OMB), from its Budget of the United

States Government ; and

• the Analysis of the President’s Budget (APB).

The Congressional Budget Office and the Office of Management and Budget are dif-

ferent agencies within the U.S. federal government. The Analysis of the President’s

Budget is produced by the Congressional Budget Office, but the policy assumptions

embedded in the forecasts from the Analysis of the President’s Budget differ from

those in the forecasts from the CBO’s Budget and Economic Outlook . Thus, these
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two forecasts are referred to as the “APB forecast” and the “CBO forecast” respec-

tively, while noting that both are produced by the Congressional Budget Office. For

expositional convenience, the three forecasts listed above are referred to as “agency

forecasts”, although only two agencies are involved. Also, the empirical illustrations

below always use logs (rather than levels) of debt and its forecasts.

The three forecasts are released at the beginning of the calendar year–usually

about a month apart in January, February, and March–and are of the level of the

U.S. federal debt at the end of the (then) current fiscal year and of future fiscal

years. Thus, the forecasts are not precisely one year ahead or an integer number

of years ahead, but they will be referred to as such for ease of reference. So, the

forecast horizon  is denoted  = 1 (denoting the end of the current fiscal year) or

  1 (denoting the end of future fiscal years). See Martinez (2015, Figure 1) for

an illustrative timeline, Martinez (2011, Table 2) for specific dates, and Martinez

(2015) and Ericsson (2017a) for more detailed descriptions of this measure of debt

and of its forecasts.

Importantly, the forecasts are conditioned on different policy assumptions. The

CBO forecast assumes that current laws will remain unchanged over the forecast

horizon, whereas the OMB and APB forecasts assume that the policy changes pro-

posed in the president’s budget will be implemented. From this perspective, the

forecasts represent different policy scenarios (or “projections”) rather than uncon-

ditional forecasts per se. That said, it is still of interest to determine how useful

these different forecasts are, both relatively and absolutely, and whether any indi-

vidual forecast subsumes the information in the other forecasts–especially given

the prominence that the forecasts play in policy formulation. With that in mind,

the agencies’ forecasts are referred to as “forecasts” below, while recognizing that

some of these forecasts may also be usefully viewed as policy scenarios. This broader

usage of the term “forecast” is in line with Clements and Hendry (2002, p. 2): “A

forecast is any statement about the future”. For more information on the forecasts’

assumptions, see Martinez (2011).

Discussions of the deficit often overshadow discussions of the federal debt, since

the deficit is commonly thought of as equaling the change in debt. Nonetheless, the

change in debt differs from the deficit. The latter excludes certain items that are

included in the change in debt, such as the Troubled Asset Relief Program (TARP)

and changes in cash balances held by the Treasury. The inclusion or exclusion of

such items can substantially alter the implied measure of debt; and the CBO and

OMB debt forecasts and their relative merits may depend on which measure of debt

is used. For example, the difference between the 2009 debt forecasts by the CBO

and the OMB was largely due to differences in the agencies’ forecasts of the change

in financial assets and liabilities in response to the financial crisis. Equally, focusing

on the deficit could miss components of debt that are important for policy. Gross

federal debt per se may be a particularly relevant measure for policy because it is

a closer measure of the debt subject to the debt ceiling than is (e.g.) debt held by

the public.

 
2214



Actual 
CBO 
OMB 
APB 

1985 1990 1995 2000 2005 2010 2015

7.5

8.0

8.5

9.0

9.5

10.0
Panel A

Actual 
CBO 
OMB 
APB 

CBO forecast error 
OMB forecast error 
APB forecast error 

1985 1990 1995 2000 2005 2010 2015

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06
Panel B

CBO forecast error 
OMB forecast error 
APB forecast error 

Figure 1: Government agency forecasts and outcomes (in logs) and forecast errors

(in percent, expressed as a fraction) of the federal debt.

3.2 Graphical Analysis

Graphs furnish a useful preamble to a more formal statistical comparison and econo-

metric evaluation. To highlight the value of graphical analysis, the current subsec-

tion considers the actual debt, its forecasts, and the implied forecast errors in various

representations that afford a variety of perspectives on the forecasts themselves. Di-

rect visual comparison of forecasts relative to the outcomes being forecast provides

an initial assessment of forecast performance. Figures 1—3 present a smorgasbord

of such comparisons.

To start, consider a comparison of forecasts at a given horizon with the outcomes

being forecast, as in Figure 1 for the one-year-ahead forecasts. Panel A in Figure 1

plots the logs of actual debt and its forecasts, showing just how much debt has

grown over the sample period and indicating how the forecasts have performed.

Panel B in Figure 1 plots the corresponding forecast errors, where the forecast error

is calculated as the log of actual debt minus the log of the forecast. The forecast

errors in Panel B are thus in percent of debt, expressed as a fraction. The largest

forecast errors were in 1990, 2001, 2002, 2008, 2009, 2011, and 2013. By way of

interpretation, in each of these years the United States was entering a recession or

expansion (as dated by the National Bureau of Economic Research), or there were

major policy changes. For 2008 and 2009, some forecast errors are 4% of debt or

more–very large for forecasts of a stock (debt) made within a year of its realization.
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Figure 2: Hedgehog graphs of illustrative forecasts (Forecasts A, B, and C) of the

federal debt (in logs).

Another form of graph–the hedgehog graph–helps ascertain systematic fea-

tures of the forecasts over multiple horizons. There are two types of hedgehog

graphs: “takeoff” and “landing”. Some stylized forecasts help demonstrate what

these graphs convey. Then, hedgehog graphs of the CBO, OMB, and APB forecasts

are considered.

Figure 2 presents both types of hedgehog graphs for the log of three illustrative

(and purely artificial) forecasts–denoted Forecasts A, B, and C–along with the

log of actual debt. The top row of panels in Figure 2 are hedgehog graphs of takeoff,

one graph for each of Forecasts A, B, and C. Each “spine” on a takeoff graph plots a

path of forecasts that were made on a given date, across multiple forecast horizons.

For instance, in the takeoff graph for Forecast A, the upward-angled arrow points to

the spine of the forecasts that were (hypothetically) made at the beginning of 2009

for debt at the end of fiscal years 2009, 2010, . . . , 2014, and 2015. These forecasts

substantially under-predict actual debt, and the magnitude of under-prediction in-

creases as the forecast horizon increases. The spines in this takeoff graph illustrate

under-prediction in the second half of the sample (spines below actual) and over-

prediction in the first half of the sample (spines above actual). On average over

the sample, though, the forecast errors for Forecast A are approximately zero (i.e.,

unbiased), even though the forecasts are systematically biased over each subsample.

Section 5 considers forecast bias in greater detail.

Forecast B has smaller forecast errors than Forecast A for all horizons and

dates, with the spines for Forecast B’s takeoff graph all lying closer to the line for

actual federal debt than do the spines for Forecast A. Forecast C represents a set
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of “perfect” forecasts, in that the forecasts equal the actual values being forecast.

In the takeoff graph for Forecast C, the spines lie on top of the actual values being

forecast.

The bottom row of panels in Figure 2 are hedgehog graphs of landing. Each

spine on a landing graph plots a sequence of forecasts from the longest horizon to

the shortest horizon, where the outcome being forecast occurs on a given date. For

instance, in the landing graph for Forecast A, the downward-angled arrow points

to the spine of the forecasts that were (again, hypothetically) made in 1984, 1985,

. . . , 1989, and 1990 for debt at the end of fiscal year 1990. As the negative slope

of the spine implies, the forecasts were revised downward year by year. The cor-

responding forecast errors were negative, declining in magnitude as the forecast

horizon decreased. All spines prior to 2000 share those features–a negative slope,

and implied negative forecast errors that decline in magnitude as the forecast hori-

zon decreased. After 2000, the positive slope of the spines implies that the forecasts

were revised upward year by year. Their corresponding forecast errors were positive,

declining in magnitude as the forecast horizon decreased.

Forecast B has smaller forecast errors than Forecast A for all horizons and

dates, with the spines for Forecast B’s landing graph all lying flatter than those for

Forecast A. Forecast C represents a set of “perfect” forecasts, in that the forecasts

equal the actual values being forecast. In the landing graph for Forecast C, the

spines are horizontal, lying at the actual values being forecast. These hedgehog

graphs of stylized forecasts provide context for interpreting hedgehog graphs of the

CBO, OMB, and APB forecasts.

Figure 3 presents both types of hedgehog graphs for the log of each agency’s

forecast, along with the log of actual debt.

The top row of panels in Figure 3 are hedgehog graphs of takeoff. Each spine

on a takeoff graph plots a path of forecasts that were made on a given date, across

multiple forecast horizons. For instance, in the CBO takeoff graph, the horizontal

arrow points to the spine of CBO forecasts that were made in January 2009 for debt

at the end of fiscal years 2009, 2010, . . . , 2018, and 2019. These forecasts substan-

tially under-predict actual debt, and the magnitude of under-prediction increases as

the forecast horizon increases. This spine and others in the takeoff graphs illustrate

that longer-horizon forecasts perform particularly poorly around turning points.

Forecasts made in 2001 and 2008—2009 (both beginnings of recessions) tended to

under-predict future debt. That said, debt forecasts in the late 1990s (an expan-

sionary period) tended to over-predict somewhat: the economy grew faster than

expected, with tax receipts bringing in more revenue than anticipated. More gen-

erally, takeoff graphs portray how “optimistic” or “pessimistic” the forecasts were,

relative to outcomes, and how that optimism or pessimism evolved across horizons

and over time.

The bottom row of panels in Figure 3 are hedgehog graphs of landing. Each

spine on a landing graph plots a sequence of forecasts from the longest horizon to

the shortest horizon, where the outcome being forecast occurs on a given date. For

instance, in the CBO landing graph, the vertical arrow points to the spine of CBO

forecasts that were made in 1984, 1985, . . . , 1989, and 1990 for debt at the end
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Figure 3: Hedgehog graphs of U.S. government agency forecasts of the federal debt

(in logs).

of fiscal year 1990. As the relative flatness of that spine implies, these forecasts

changed little as they were updated year by year. This spine and others in the

landing graphs show that forecast revisions are typically small, with many forecast

paths being remarkably flat. Occasionally, however, forecasts have large upward or

downward revisions, often corresponding to significant changes in macroeconomic

conditions, government policies, or both. More generally, the landing graphs show

how forecasts of a particular outcome are revised over time, as might arise from

new information obtained about the economy and about policy.

4. Comparison of Alternative Forecasts

This section considers various methods for comparing alternative forecasts. These

methods include mean squared forecast errors (MSFEs, in Section 4.1), forecast

encompassing (in Section 4.2), and (closely related) the pooling and combination of

forecasts (in Section 4.3).

4.1 Comparisons of RMSEs

In many frameworks, good forecasts produce small expected losses, while bad fore-

casts produce large expected losses. One very common loss function is squared error

loss, also known as quadratic mean squared error (MSE) loss. The MSE satisfies

requirements laid out by Granger (1999) that a loss function (i) has a minimum of

zero for a zero forecast error, (ii) is greater than zero for nonzero forecast errors,

and (iii) is non-decreasing as the magnitude of the error increases. Additionally, the
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Table 2: A comparison of root mean squared forecast errors.

Statistic CBO OMB APB DDD

RMSE 1.68% 2.17% 1.39% 2.78%

Relative RMSE 0.60 0.78 0.50 1

Diebold—Mariano -statistic −288** −206* −351**
[0.007] [0.048] [0.001]

Diebold—Mariano -statistic (HAC) −270* −168 −299**
[0.011] [0.101] [0.005]

Notes. Asterisks * and ** denote statistical significance at the 5% and 1% levels respectively,

and -values are in square brackets.

MSE is symmetric, and its quadratic nature penalizes larger forecast errors more

than proportionately.

In this vein, a forecast can be empirically evaluated by estimating its expected

loss with the sample average of the loss. For the MSE, the sample average of the

squared forecast errors is:

MSE =
1



X
=1

( − ̂)
2  (1)

where  is the outcome at time  (i.e., the variable being forecast), ̂ is a forecast

of , and the forecasts are made for  observations (;  = 1   ).

In practice, the square root of the MSE in equation (1) is typically reported,

rather than the MSE itself, noting that the root mean squared error (RMSE) is the

out-of-sample equivalent to the in-sample residual standard error. From the prop-

erties of the RMSE, a smaller value indicates a better forecast performance. Hence,

it is common to compare forecast performance by comparing the RMSEs across

forecasts, with smaller RMSEs indicating better performance. Granger (1989b,

pp. 186—187) proposes how to test for statistically significant differences between

RMSEs. Diebold and Mariano (1995), and subsequently Giacomini and White

(2006), extend and generalize that approach to testing. See Clements and Hendry

(1993) on limitations of the RMSE and Diebold (2015) on the use and misuse of

the Diebold—Mariano test statistic.

Illustration. Table 2 reports the RMSEs for each of the three agencies’ one-

year-ahead debt forecasts. It also reports the RMSE for forecasts from a simple

double-differenced device (DDD), which is a “robust” naive forecast device that is

calculated as the previous year’s debt plus the change in the previous year’s debt; see

Hendry (2006). The agency forecasts have smaller RMSEs than the naive forecast.

The APB forecast has the smallest (139%), followed by the CBO forecast (168%)

and the OMB forecast (217%). Table 2 also reports the RMSEs, relative to the

RMSE of the naive forecast (the DDD forecast). Relative RMSEs are a common

way of numerically comparing forecasts to a benchmark forecast.

The penultimate row in Table 2 reports Diebold—Mariano test statistics that

compare each agency’s forecast with the DDD forecast. Associated -values are in
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square brackets. The RMSE of each agency’s forecast is statistically significantly

smaller than the RMSE for the DDD forecast at the 95% level. The final row

in Table 2 reports the same Diebold—Mariano test statistics but with Andrews’s

(1991) heteroscedasticity- and autocorrelation-consistent (HAC) correction. The

results are similar but at somewhat reduced significance levels.

4.2 Forecast Encompassing

Chong and Hendry (1986) develop the concept of forecast encompassing as an ap-

proach for comparing alternative forecasts and determining whether one of them

is “sufficient” in a very specific statistical sense. Importantly, having the small-

est RMSE is necessary but not sufficient for a given forecast to forecast-encompass

other forecasts; see Ericsson (1992). This subsection motivates forecast encompass-

ing through the regression used to test for it. Transformations of and restrictions on

that regression provide additional insight on the nature of forecast encompassing;

and they also link directly to subsequent sections.

Consider two alternative forecasts ̂ and ̃ of the variable . Chong and Hendry

(1986, equation (7)) propose running the following “unrestricted” regression with

coefficients {1 2} and residual :

 = 1̂ + 2̃ +   (2)

and testing {1 = 1 2 = 0}. This hypothesis holds when the first forecast ̂ is
an “adequate” forecast for  (hence 1 = 1) and, given that first forecast ̂, the

second forecast ̃ is redundant (hence 2 = 0).

In that light, equation (2) has a useful second representation. Subtracting ̂

from both sides, equation (2) can be rewritten as:

( − ̂) = 1̂ + 2̃ +   (3)

where the dependent variable is the first forecast’s forecast error ( − ̂), and

1 = 1 − 1. Under the same null hypothesis as before, then {1 = 0 2 = 0}: that
is, the two forecasts ̂ and ̃ are uninformative in explaining the first forecast’s

forecast error ( − ̂).

Chong and Hendry (1986, equation (8)) also consider a restricted version of

equation (3) in which 1 = 0 is imposed:

( − ̂) = 2̃ +   (4)

Equation (4) is used to test whether the second forecast ̃ is informative about the

first forecast’s forecast error ( − ̂). As Chong and Hendry note, this expresses

the regression in a “residual diagnostics” form, with the “residual” being the first

forecast’s forecast error ( − ̂).

Equation (2) has a third representation that provides yet additional insight. To

obtain that representation, add +2̂− 2̂ to the right-hand side of equation (3).

Then, re-arrange terms in that equation to obtain ̂ (the first forecast) and (̃− ̂)
(the differential of the two forecasts) as regressors:

( − ̂) = 2̂ + 2(̃ − ̂) +   (5)
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where 2 = 1 + 2 = 1 + 2 − 1. Under the null hypothesis discussed above, then
{2 = 0 2 = 0}: that is, neither the second forecast nor the differential between
the two forecasts is informative in explaining the first forecast’s forecast error.

In practice, unit homogeneity of the two forecasts with respect to the outcome is

sometimes imposed on equation (5), as would occur if each forecast is cointegrated

(+1 : −1) with the outcome; see Ericsson (1993). In equation (5), that homogeneity
restriction corresponds to 2 = 0, resulting in:

( − ̂) = 2(̃ − ̂) +   (6)

Intuitively, equation (6) examines whether the additional information in the sec-

ond forecast–as captured by the forecast differential (̃ − ̂)–can help explain

the first forecast’s forecast error ( − ̂). Put somewhat differently, the forecast

differential (̃ − ̂) measures the relevance of information in the second forecast

that is not contained in the first forecast. Equivalently, equation (6) imposes the

unit homogeneity restriction 1 + 2 = 1 on equation (2). Equation (6) also solves

a “balance” problem in equation (4) for integrated-cointegrated forecasts and out-

comes; see Ericsson (1992). Equations (3) and (5) do not impose that homogeneity

restriction: they are directly equivalent to equation (2) but are written in different

representations.

To summarize, in each of equations (2)—(6), the basic question is whether addi-

tional information can help explain the first forecast’s forecast error or, in essence,

help improve the first forecast. These equations can be easily extended in useful

directions to include an intercept, to reverse the forecasts’ roles, and to compare

more than two forecasts; see Ericsson and Marquez (1993), Marquez and Ericsson

(1993), and Martinez (2015) inter alia. The empirical illustrations below employ

these extensions, with three (rather than two) forecasts.

Illustration. To start, consider the “unrestricted” regression (2) as applied to

actual debt and the three debt forecasts:

 = − 0064
(0032)

− 015
(020)

 − 102
(031)

 + 217
(045)

  (7)

where estimated coefficients are reported for the intercept and {  },
which generalize {1 2}. Lowercase variables denote the logs of uppercase variables,
estimated standard errors are in parentheses, and the sample period is 1984—2018.

Building on the discussion of equation (2), the forecast-encompassing hypothesis

{ = 1  = 0  = 0} examines whether the CBO forecast is an adequate

forecast for actual debt, with the OMB and APB forecasts being redundant, given

the CBO forecast. This hypothesis is strongly rejected, with an  -statistic of 115

and a -value of less than 01%. Similar tests can be calculated for the OMB and

APB forecasts. As reported in the row for “unrestricted” regressions in Table 3,

each agency’s forecasts could benefit from the other agencies’ forecasts: all three

statistics for the unrestricted equation reject at standard significance levels.

Next, consider the “residual diagnostic” formulation in equation (4), with the

CBO’s forecast error as the dependent variable and the OMB and APB forecasts

as regressors:

( − ) = − 0018
(0044)

− 003
(038)

 + 003
(038)

  (8)
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Table 3: Forecast-encompassing test statistics.

Regression type CBO OMB APB

Unrestricted 11.5** 20.7** 4.01*
[equation (2)] [0.000] [0.000] [0.016]

 (3 31)  (3 31)  (3 31)

Residual diagnostic 0.13 4.60* 2.27
[equation (4)] [0.880] [0.018] [0.119]

 (2 32)  (2 32)  (2 32)

Forecast differential 13.8** 26.5** 3.61*
[equation (6)] [0.000] [0.000] [0.039]

 (2 32)  (2 32)  (2 32)

Notes. The three entries within a given block of numbers are the value of the  -

statistic for testing the null hypothesis of forecast encompassing by the forecasting

agency listed at the top of the column, the tail probability associated with that value

of the test statistic (in square brackets), and the distribution under the null hypo-

thesis, with degrees of freedom in parentheses. Asterisks * and ** denote statistical

significance at the 5% and 1% levels respectively.

In equation (8), the coefficients on  and  are jointly insignificant, with an

 -statistic of 013. However, the implicit unit restriction on  is strongly rejected,

with an  -statistic of 340, as is apparent from the coefficient on  in equation (7).

Table 3 reports  -statistics for the residual diagnostic form for all three forecasts.

Finally, consider the “forecast differential” regression in equation (6), which

imposes  +  +  = 1 on the unrestricted formulation (7). With the CBO

forecast error as the dependent variable, that forecast-differential regression is:

( − ) = − 0000
(0002)

− 061
(025)

( − ) + 166
(040)

( − )  (9)

Jointly, the coefficients on both of the forecast differentials ( − ) and

(−) in equation (9) are statistically highly significant, with an  -statistic of
138. The final row in Table 3 reports the forecast-differential form of the forecast-

encompassing statistic for all three forecasts. For each forecast, its forecast error can

be explained in part by the forecast differentials relative to the two other forecasts.

In summary, each agency forecast could be improved by using information in

the other two forecasts, as the unrestricted form and forecast-differential form of

the forecast-encompassing test statistic indicate. The residual diagnostic form of

the forecast-encompassing test appears less informative here, probably because that

test imposes an empirically rejectable implicit unit restriction.

4.3 Pooling and Combining Forecasts

Bates and Granger (1969) propose combining or “pooling” forecasts to improve

forecast accuracy. In essence, forecast combination implies choosing nonzero values

for both 1 and 2 in equation (2), which could be advantageous if neither forecast

forecast-encompasses the other. Many options have been considered for selecting

the weights 1 and 2 on the forecasts, including equal weights, regression-based
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Table 4: RMSEs of some individual and pooled forecasts.

CBO OMB APB DDD Average Reg-Un Reg-FD

RMSE 1.68% 2.17% 1.39% 2.78% 1.51% 1.15% 1.23%

weights, and Bayesian weights. Granger (1989a), Clemen (1989), and Timmermann

(2006) review the literature on forecast combinations; Diebold (1989) discusses links

and differences between forecast encompassing and forecast combination; Hendry

and Clements (2004) consider the possible benefits to pooling the forecasts of dif-

ferentially mis-specified models; and Hansen (2007) examines estimated weights.

Forecast combination has potential benefits, and also important caveats, as Hendry

and Doornik (2014) discuss.

. . . A combination of forecasts can outperform, on some measures, all the

individual forecasts when there are offsetting biases, offsetting breaks, or

diversification across relatively uncorrelated forecasts which reduces the

variance of the average. Conversely, averaging without any selection for

the set of forecasts involved has obvious drawbacks: by way of analogy,

with 10 glasses of pure drinking water and one of a virulent poison, it

does not seem wise to mix all of these before drinking, rather than select

out the glass of poison. (p. 286)

Illustration. The forecast-encompassing equations in Section 4.2 can be inter-

preted as motivation for forecast combination. To illustrate, Table 4 augments the

RMSEs in Table 2 with RMSEs from three pooled forecasts:

• an equally weighted average of the CBO, OMB, and APB forecasts (“Aver-
age”);

• the regression-based combination of the forecasts from the unrestricted forecast-
encompassing regression in equation (7) (denoted “Reg-Un”); and

• the regression-based combination of the forecasts from the forecast-differential
forecast-encompassing regression in equation (9) (denoted “Reg-FD”).

Both of the regression-based forecast combinations have smaller RMSEs than the

APB forecast, which itself has the smallest RMSE among the individual agency

forecasts. Thus, the APB forecast appears to lack some relevant information that

is available from the other agencies’ forecasts. The forecast-encompassing statistics

in the final column of Table 3 indicate that the CBO and OMB forecasts could

improve the APB forecast. The RMSEs in Table 4 for the regression-based forecast

combinations indicate what that improvement might be. That said, the RMSE for

the APB forecast is still smaller than the RMSE for the equally weighted average

of the three individual forecasts.
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5. Forecast Failure

This section discusses different approaches to testing for forecast failure, including

subsample tests (Section 5.1), tests for bias and efficiency (Section 5.2), and gener-

alizations thereof (Section 5.3). Section 6 then develops a unified framework that

includes these tests and the ones in Section 4, which compare alternative forecasts.

5.1 Comparisons across Subsamples

This subsection examines how forecasts may be evaluated across subsamples, and

in particular how such evaluation can help detect predictive failure. In this vein,

Chow (1960) proposes comparing the in-sample performance of a given model with

that same model’s out-of-sample performance, utilizing the prediction interval of

the (out-of-sample) forecasts. Numerically, Chow’s test statistic compares the in-

sample estimated residual variance with the out-of-sample mean squared forecast

error. Chow’s statistic is thus designed to detect a worsening performance of a given

model in the out-of-sample period, i.e., predictive failure.

Chow distinguishes his statistic from the Fisher (1922) covariance test statistic,

which compares the coefficient estimates from one subsample with the coefficient

estimates from another subsample. Andrews’s (1993) unknown breakpoint test and

Bai and Perron’s (1998) multiple breakpoint test generalize Fisher’s test; see also

Section 5.3.

As illustrated below, Chow’s statistic can also be used for comparing forecasts

across different subsamples, and not just for comparing model-based in-sample and

out-of-sample results. That is, the Chow statistic can compare the performance

of a given forecast across different subsamples. That contrasts with the Diebold—

Mariano and forecast-encompassing statistics, which compare different forecasts

across the same sample. The Chow statistic thus provides information about the

forecasts that is distinct from the information in the Diebold—Mariano and forecast-

encompassing statistics; see Ericsson (1992) for further discussion.

Illustration. Table 5 reports the RMSEs for the three agencies’ forecasts over

the subsamples 1984—2000 and 2001—2018, with the RMSEs for the full sample

(1984—2018) given as reference. For all agencies, the RMSEs increase markedly

from the first subsample to the second. The last row in Table 5 reports the Chow

statistics for that split of the sample: the increases in RMSEs are statistically highly

significant for all three agencies’ forecasts.

These Chow statistics quantify what is apparent visually in Panel B of Figure 1:

forecast performance worsens substantially after 2000. That worsening could have

resulted from any of many potential causes–for instance, greater challenges in

forecasting over 2001—2018, which included two major recessions. Chow’s (1960)

statistic is specific to the particular sample split chosen: Sections 5.3 and 6 discuss

how that restriction can be relaxed.

5.2 Tests of Bias and Efficiency

An additional approach for assessing forecast performance is through tests of fore-

cast bias and efficiency. Mincer and Zarnowitz (1969, pp. 8—11) propose testing for
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Table 5: Subsample RMSEs and corresponding Chow statistics.

Statistic CBO OMB APB

RMSE (1984—2018) 1.68% 2.17% 1.39%

RMSE (1984—2000) 0.99% 1.17% 0.95%

RMSE (2001—2018) 2.13% 2.80% 1.71%

Chow statistic 4.63** 5.77** 3.20*
[0.001] [0.000] [0.010]

 (18 17)  (18 17)  (18 17)

Notes. The three entries within a given block of numbers for the Chow statistic

are the value of the statistic itself, the tail probability associated with that value

of the statistic (in square brackets), and the statistic’s distribution under the null

hypothesis, with degrees of freedom in parentheses. Asterisks * and ** denote

statistical significance at the 5% and 1% levels respectively.

forecast bias by regressing the forecast error on an intercept and testing whether

the intercept is statistically significant. Continuing in the notation of Section 4.2,

that regression is:

( − ̂) = 0 +   (10)

where 0 is the intercept. A test of 0 = 0 is interpretable as a test that the

forecast ̂ is unbiased for the variable . That is, the forecast error is zero on

average. For one-step-ahead forecasts, the error  may be serially uncorrelated, in

which case a standard - or  -statistic for 0 = 0 may be appropriate. For multi-

step-ahead forecasts,  generally will be serially correlated; hence, inference about

the intercept may require accounting for that autocorrelation.

Mincer and Zarnowitz (1969, p. 11) also propose how to assess a forecast’s

efficiency. Their efficiency test uses a slightly more general version of equation (10)

in which the coefficient on the forecast itself is estimated, rather than imposed to

be unity:

 = 0 + 1̂ +   (11)

where 1 is the coefficient on ̂, and 1 = 1 in equation (10). Mincer and Zarnowitz

(1969) interpret a test that 1 = 1 as a test of the efficiency of the forecast ̂ for the

outcome . The joint hypothesis {0 = 0 1 = 1} of unbiasedness and efficiency is
also of interest.

Equation (11) has a useful alternative representation. Subtracting ̂ from both

sides, equation (11) can be rewritten in a residual diagnostic form:

( − ̂) = 0 + 1̂ +   (12)

where 1 = 1 − 1, as in equation (3). The hypothesis {0 = 0 1 = 0} in equa-
tion (12) is equivalent to {0 = 0 1 = 1} in equation (11). A large literature on

forecast efficiency further develops tests of such hypotheses. For example, Patton

and Timmermann (2012) extend tests of forecast efficiency to multi-horizon fore-

casts by examining the forecast revisions across horizons; see also Nordhaus (1987)

and Coibion and Gorodnichenko (2015).
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Table 6: Mincer—Zarnowitz - and  -statistics for testing unbiasedness and effi-

ciency.

Null hypothesis CBO OMB APB

Unbiasedness 050 −247* −138
[equation (10): 0 = 0] [0624] [0018] [0178]

(34) (34) (34)

Efficiency 045 −206* −020
[equation (12): 1 = 0] [0655] [0047] [0845]

(33) (33) (33)

Unbiasedness and efficiency 022 549** 094
[equation (12): 0 = 1 = 0] [0803] [0009] [0401]

 (2 33)  (2 33)  (2 33)

Notes. The three entries within a given block of numbers are the value of the test

statistic (either  or  ) for testing the null hypothesis, the tail probability associated

with that value of the test statistic (in square brackets), and the distribution under

the null hypothesis, with degrees of freedom in parentheses. Asterisks * and ** denote

statistical significance at the 5% and 1% levels respectively.

Illustration. Using the CBO forecast to illustrate, the regression in equa-

tion (10) is:

( − ) = + 00014
(00029)

 (13)

and the regression in equation (12) is:

( − ) = − 0014
(0035)

+ 00018
(00040)

  (14)

From equation (13), the CBO forecast has a numerically small bias of +014%; and

that bias is statistically insignificant, with a -value of 624%. From equation (14),

the estimates of the intercept and the slope coefficient are individually numerically

small and statistically insignificant. Jointly, they also appear statistically insignif-

icant, with an  -statistic of 022 and a -value of 803%. Table 6 reports tests of

unbiasedness and efficiency for all three agencies’ forecasts. The CBO and APB

forecasts appear unbiased and efficient in Mincer and Zarnowitz’s sense, whereas

the OMB forecasts appear both biased and inefficient.

5.3 General Tests of Forecast Bias

Mincer and Zarnowitz’s (1969) test for forecast bias implicitly assumes that the

bias 0 is time-invariant; see equation (10). In practice, however, the forecast bias

may vary over time. If it does, other tests may be more effective than the Mincer—

Zarnowitz test at detecting that bias. Moreover, the Mincer—Zarnowitz test may

lack power to detect certain forms of time-varying forecast bias, as when a positive

forecast bias over part of the sample offsets a negative forecast bias elsewhere in the

sample.

By allowing the intercept 0 in equation (10) to vary freely over time, a com-
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pletely general model of time-varying forecast bias may be formulated, as follows:

( − ̂) =

X
=1

 +   (15)

where  is an impulse dummy equal to unity for  =  and zero otherwise, and 

is the coefficient on . That is,  is the forecast bias in period . Equation (15)

can also be written with the intercept 0 explicit:

( − ̂) = 0 +

X
=1

 +   (16)

in which case  captures the deviation of the forecast bias in observation  from the

average forecast bias 0. When 1 = 2 =    =  = 0 is imposed, equation (16)

simplifies to equation (10) for Mincer and Zarnowitz’s test.

For unrestricted , equation (16) is not directly implementable in regression

because it has  dummy coefficients for  observations. However, blocks of dummies

can be included in regression, and that insight provides the basis for a technique

known as impulse indicator saturation (IIS). IIS proceeds in two phases. In the

first phase, equation (16) is estimated for subsets of impulse dummies and, for each

subset, significant dummies are retained. In the second phase, equation (16) is re-

estimated with the retained dummies from those subsets, followed by re-selection

across those retained dummies. These two phases may be iterated as well. IIS has

well-defined statistical properties, including (in the current context) high power to

detect time-varying forecast bias.

Hendry (1999) originally proposed IIS as a procedure for testing parameter con-

stancy. As such, IIS is a generic test for an unknown number of breaks, occurring

at unknown times anywhere in the sample, with unknown duration, magnitude,

and functional form. IIS is a powerful empirical tool for both evaluating and im-

proving existing empirical models. Furthermore, many existing procedures can be

interpreted as special cases of IIS in that they represent particular algorithmic im-

plementations of IIS. Special cases include recursive estimation, rolling regression,

Chow’s (1960) predictive failure statistic, the unknown breakpoint tests by Andrews

(1993) and Bai and Perron (1998), tests of extended constancy in Ericsson, Hendry,

and Prestwich (1998), tests of nonlinearity, intercept correction (in forecasting),

tests of aggregation, and robust estimation.

By testing and selecting over blocks of variables, IIS implements a machine-

learning algorithm that solves the problem of having more potential regressors than

observations. Notably, that is a problem common to the analysis of big data. Erics-

son (2017a, Section 4) formalizes how IIS can also be used to test for time-varying

forecast bias, as in equation (16). See also Johansen and Nielsen (2009, 2016),

Doornik (2009), Hendry and Doornik (2014), and Ericsson (2017a) inter alia for

theoretical developments and empirical applications of saturation techniques.

Illustration. Again, using the CBO forecast, IIS applied to equation (16)

obtains:

( − ) = − 00002
(00024)

+ 00571
(00144)

2008  (17)
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Table 7: IIS-based estimates of time-varying bias.

Estimates CBO OMB APB

Estimated coefficients of retained impulse indicators
1990 +380

2001 +341 +295

2008 +571 +421 +429

2009 −718 −311
2011 −387

IIS estimate of the average bias 0 −002 −086** −044*
[equation (16)] (024) (018) (017)

Mincer—Zarnowitz estimate of the 014 −085* −032
average bias 0 [equation (10)] (029) (034) (023)

Notes. Estimated biases are reported as percentages. The retained impulse indicators

are detected at a 1% target size. Estimated standard errors for the impulse indicators

are 1.4, 1.0, and 1.0 for the CBO, OMB, and APB forecasts respectively. Asterisks *

and ** on estimated average biases denote statistical significance at the 5% and 1%

levels respectively. Estimated standard errors are in parentheses.

where 2008 (the impulse indicator for 2008) is retained at a tight (1%) target size

or “gauge”. Thus, from equation (17), the CBO forecast appears to have a time-

varying bias, with a numerically large and statistically highly significant bias of over

5% in 2008 and a near-zero and statistically insignificant bias for all other years.

Accounting for such time variation can also affect inferences about the average

forecast bias, as Table 7 highlights. In particular, the average bias for the APB

forecast is statistically significant at close to the 1% level when using IIS, but it

is statistically insignificant when estimated without IIS in the Mincer—Zarnowitz

framework. IIS allows detection of time-varying forecast bias; and, it permits more

robust and efficient estimation of time-invariant bias that may be present.

6. A Unified Approach

Impulse indicator saturation is not only a valuable tool for forecast evaluation: it

also underpins a unified framework for all of the forecast evaluation procedures

discussed above. This section sketches that framework.

As a preface, it is useful to note that the saturation approach discussed above

applies to linear transformations of the impulse indicators, and not just to the

impulse indicators themselves. Examples of such transformations include step func-

tions, broken trends, economic variables, principal components and factors, time-

dependent changes in variables’ slope coefficients (“multiplicative indicator satura-

tion”), and “designer” breaks. Ericsson (2011) proposes a systematic structure for

discussing and developing such extensions.

With this in mind, consider the following equation:

( − ̂) = 0 +

X
=1

 +   (18)
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Table 8: A summary of tools for forecast evaluation.

Type of Statistical basis Reference

evaluation

Alternative Graphical analysis –
forecasts RMSEs Granger (1989b), Diebold and Mariano (1995)

Forecast encompassing Chong and Hendry (1986)

Forecast Graphical analysis –
failure Known subsamples Fisher (1922)

Unknown subsamples Andrews (1993), Bai and Perron (1998)
Predictive failure Chow (1960)
Bias Mincer and Zarnowitz (1969)
Efficiency Mincer and Zarnowitz (1969)

Generic IIS Hendry (1999), Johansen and Nielsen (2009)
Saturation techniques Ericsson (2011)

which includes an intercept 0 and  potential regressors  with slope coeffi-

cients ; and  may be greater than the number of observations  . For suitable

choices of 0, , , and , equation (18) can be re-expressed as each of the equa-

tions above, which motivate the different forecast evaluation tools. The regressions

for the forecast-encompassing, Diebold—Mariano, and efficiency test statistics can

be written as equation (18) because those regressions are all based on the forecasts

̂ and ̃, which can be written as
P

=1 ̂ and
P

=1 ̃, i.e., as linear combi-

nations of impulse indicators. The Chow predictive failure statistic includes impulse

indicators for only the out-of-sample period, simply testing their joint significance

and not selecting among them; see Salkever (1976). For Mincer and Zarnowitz’s

test of forecast bias, the regression intercept can be written as
P

=1 1 · , which is
the sum of the impulse indicators. In this way, the saturation framework provides

a basis for interpreting these and many other tests for forecast evaluation.

Table 8 summarizes techniques for forecast evaluation, as categorized by the type

of evaluation. The first category evaluates forecasts by comparing one forecast with

other forecast(s): through graphical analysis, RMSEs, and forecast encompassing.

The second category evaluates forecasts by their properties: across subsamples,

bias, and efficiency. The third category, as represented by equation (18), includes

generic procedures for evaluating forecasts and subsumes the first two categories.

Equation (18) emphasizes that these tools for forecast evaluation are in the spirit

of Lagrange-multiplier residual-diagnostic tests; see Engle (1982, 1984). Moreover,

regressors from different evaluation procedures can be included together in equa-

tion (18), allowing joint hypotheses to be tested. Also, some regressors may be

“forced” to enter equation (18), as when those regressors are of central importance to

the hypotheses being examined; see Martinez (2011), Hendry and Johansen (2015),

and Ericsson (2017a) for examples.

Illustration. As Section 5.3 found, turning points in the business cycle may

give rise to large errors in forecasts of government debt–and unsurprisingly so

because actual outcomes of both expenditures and revenues are liable to be affected
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when the economy moves from an expansion to a recession or from a recession to an

expansion. Following Hendry and Johansen (2015), a natural extension of IIS in this

context is to force NBER-based turning-point dummies to enter equation (16) (and

hence equation (18)), with IIS applied to all remaining observations so as to capture

any other important events that might bias the forecasts. That is, equation (16)

becomes:

( − ̂) = 0 +
X

∈NBER
 +

X
 ∈NBER

 +   (19)

where NBER denotes the set of turning-point observations, and selection of impulse

indicators is across only the second summation, i.e., for  ∈NBER. This variation of
IIS is thus “focused saturation” in that it focuses attention on certain key regressors

(here, the intercept and the turning-point dummies) while still saturating the sample

with impulse indicator dummies. Because the focus variables themselves are impulse

indicator dummies, saturation does not need to include those particular dummies.

Applying focused saturation at a 1% target size to equation (19) with the CBO

forecast obtains:

( − ) = − 00057
(00017)

+ 00264
(00089)

2003 + 00256
(00089)

2010 + {NBER }  (20)

where {NBER } denotes the inclusion of impulse indicators for 1990, 1991, 2001,
2002, 2008, and 2009, i.e., the NBER-dated turning points in this sample. In

equation (20), positive biases of about +26% are detected for both 2003 and 2010,

and a small statistically significant bias of about −06% is present for the sample

as a whole.

Table 9 summarizes the estimated forecast biases for the three agencies. Turning

points typically have numerically large and statistically significant biases, with 2008

and 2009 dominating. Additional time-dependent biases are detected for the CBO

and OMB forecasts, but not for the APB forecasts. The IIS estimate of the average

bias 0 indicates relatively small, negative, but highly statistically significant time-

invariant biases for all agencies. At a more general level, equation (18) and the

example in Table 9 illustrate the flexibility of the saturation approach–how it can

incorporate into the model’s structure the economic, institutional, and political

insights of the researcher, while allowing for detection of additional phenomena.

7. Remarks

This section summarizes some implications of forecast evaluation, focusing on policy,

predictability, diagnostics, interpretability, and extensions.

First, because forecasts of government budgets play important roles in policy,

it is valuable to ascertain how good those forecasts are, and how they might be

improved. The procedures discussed above provide a host of tools for evaluating

those forecasts and for seeking ways in which to improve them. For the illustration

with U.S. gross federal debt, agency forecasts are relatively good during quiescent

periods, but they do sometimes deviate significantly from outcomes, particularly

at turning points in the business cycle. So, budget forecasts might benefit from

improving forecasts of the business cycle itself.
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Table 9: Estimates of time-varying bias from focused impulse indicator saturation

with NBER-based turning-point dummies.

Estimates CBO OMB APB

Estimated coefficients of NBER-based turning-point dummies
1990 +295 +393 +234

1991 +037 +046 +010

2001 +351 +354 +309

2002 +310 +198 +189

2008 +625 +434 +443

2009 +352 −705 −298
Estimated coefficients of retained impulse indicators

1986 +183

1988 +172

2003 +264

2010 +256

2011 −374
2013 −215

Focused IIS estimate of the average −057** −099** −057**
bias 0 [equation (19)] (017) (016) (016)

Notes. Estimated biases are reported as percentages. Estimated standard errors for impulse

indicators are 0.9, 0.8, and 0.8 for the CBO, OMB, and APB forecasts respectively. The

retained impulse indicators are detected at a 1% target size. Asterisks * and ** on estimated

average biases denote statistical significance at the 5% and 1% levels respectively. Estimated

standard errors are in parentheses.

Second, forecast evaluation with equation (18) emphasizes that evaluation fo-

cuses on the possible predictability of forecast errors–specifically, on whether or

not the forecast errors have a systematic component. In essence, forecast evalua-

tion with equation (18) examines whether the forecasts fully utilize the information

in the regressors {}. If the forecasts don’t, then improvement in the forecasts
may be possible by better utilizing that information. That information may re-

flect information in another agency’s forecasts (as with the Diebold—Mariano and

forecast-encompassing statistics) or information specific to subsamples (as with the

Chow statistic). Systematic forecast errors need not be persistent, as Granger (1983)

highlights in his paper “Forecasting White Noise”.

Third, certain challenges arise when interpreting rejection by any diagnostic

statistic in forecast evaluation: the diagnostic statistic may have power to detect

features other than the ones that it was designed for. Saturation-based tests in

particular can detect not only time-varying forecast bias but also other forms of

mis-specification, such as outliers due to heteroscedasticity and thick tails. Two

items can help resolve this interpretational challenge. The structure of the retained

dummies may have implications for their interpretation, as with the pattern of their

estimated coefficients over time. And, outside information–such as from economic,

institutional, and historical knowledge–can assist in interpreting the results, as
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with the dates of business-cycle turning points in the empirical illustrations above.

While “rejection of the null doesn’t imply the alternative”, the date-specific na-

ture of saturation procedures can aid in identifying and potentially adjusting for

important sources of forecast error. See Ericsson (2017b) for further discussion.

Fourth, from a more constructive perspective, different indicators are adept at

characterizing different types of bias: impulse dummies for date-specific anomalies,

step dummies for level shifts, and broken trends for evolving developments. Con-

versely, multiple tools are needed for forecast evaluation because the nature of the

forecast errors is not known ex ante. Transformations of the variable being fore-

cast may also affect the interpretation of the retained indicators. For instance,

an impulse dummy for a growth rate implies a level shift in the (log) level of the

variable.

Finally, many extensions are of interest. For instance, Clements and Hendry

(1993) analyze system-based multivariate forecasts over multiple horizons; and Hen-

dry and Martinez (2017) further develop that framework. In a policy context, it is

often valuable to evaluate the discrepancies between the paths of forecasts and to

relate policy decisions to the underlying forecasts; see Martinez (2017) and Castle,

Hendry, and Martinez (2017) respectively.

8. Conclusions

This paper describes a spectrum of interrelated new and old techniques for eval-

uating forecasts in general, and forecasts of the government budget in particular.

These tools permit rigorous assessment of forecasts and offer directions for their

potential improvement. In so doing, these tools help glean the implications of dif-

ferent forecast errors over time and across forecasting techniques, and they provide

a basis for understanding the sources of forecast errors.
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Appendix. The Data and the Forecasts

This paper analyzes data on U.S. gross federal debt and the one-year-ahead CBO,

OMB, and APB forecasts of that debt, as compiled by Martinez (2015) and extended

herein. Table A lists those data. See Martinez (2015) and Section 3 above for details,

including sources and definitions. Multi-year forecasts (for the hedgehog graphs)

appear in the original sources.

Table A: U.S. gross federal debt and the one-year-ahead CBO, OMB, and APB

forecasts of that debt.

Year DEBT CBO OMB APB

1983 1381.886 — — —
1984 1576.748 1600. 1591.573 1599.
1985 1827.47 1853. 1841.077 1854.

1986 2129.964 2114. 2112. 2110.6
1987 2355.206 2364. 2372.4 2367.2
1988 2600.679 2598. 2581.6 2603.
1989 2865.664 2865. 2868.8 2869.
1990 3206.26 3131. 3113.3 3150.

1991 3598.919 3606. 3617.837 3616.
1992 4002.815 4039. 4080.3 4058.
1993 4351.149 4392. 4396.7 4391.
1994 4643.996 4690. 4676. 4692.
1995 4920.95 4942. 4961.5 4947.

1996 5181.923 5191. 5207.3 5193.
1997 5369.7 5436. 5453.7 5432.
1998 5478.717 5540. 5543.6 5524.
1999 5606.486 5579. 5614.9 5578.
2000 5629.009 5665. 5686. 5674.

2001 5770.249 5603. 5625. 5627.
2002 6198.129 6043. 6137.1 6117.
2003 6758.722 6620. 6752. 6706.
2004 7352.017 7459. 7486.4 7453.
2005 7902.8 7975. 8031.4 7991.

2006 8448.991 8515. 8611.5 8556.
2007 8948.534 8915. 9007.8 8968.
2008 9983.694 9432. 9654.4 9606.
2009 11873.812 11529. 12867.5 12303.
2010 13526.633 13260. 13786.6 13684.

2011 14762.223 15047. 15476.2 15006.
2012 16048.111 16002. 16350.9 16187.
2013 16716.791 17068. 17249.2 16909.
2014 17792.023 17694. 17892.6 17750.
2015 18117.866 18472. 18627.6 18455.

2016 19537.417 19332. 19433.3 19274.
2017 20203.891 20355. 20354.4 20188.
2018 21460.692 21375. 21478.2 21363.
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