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Abstract
Since realized measures of volatility are affected by measurement errors, the study considers a new
class of discretetime stochastic volatility (SV) models, which can relate many realized volatility
measures to the latent conditional variance. We propose a hybrid estimator for this class of models
that combines a generalized least square (GLS) type transformation and instrumental variable (IV)
approach. A simulation study reveals that the hybrid estimation method has excellent finitesample
properties. We illustrate the proposed method’s empirical relevance using mixed frequency IBM
stock returns and options prices.
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1. Introduction

Modelling the timevarying volatility of asset returns is one of the major problems of finan
cial econometrics. To deal with such features, two main classes of parametric models have
been proposed: (1) ARCH [Engle (1982)] and GARCH models [Bollerslev (1986)], where
volatility is modelled as a deterministic function of past shocks; (2) stochastic volatility
(SV) models [Taylor (1986)], where volatility is a latent stochastic process. Several studies
have documented the superior performance of SV models over GARCHtype models for
several reasons:

• SVmodels constitute discrete versions of continuoustime diffusion processes, which
are widely used in the optionpricing literature; see Hull and White (1987), Taylor
(1994), Shephard and Andersen (2009).

• SV models are flexible and relatively robust to model misspecification. GARCH
models often require adding a random jump component or allowing for innovations
with heavytailed distributions to tackle these problems. Such modifications sub
stantially improve the performance of the standard GARCH, but do not appear to be
required for SV models; see Carnero et al. (2004), Chan and Grant (2016).

• SV models perform better than GARCHtype models in volatility forecasting, which
suggests that timevarying volatility is better modelled as a latent firstorder autore
gression; see Kim et al. (1998), Yu (2002), Poon and Granger (2003), Koopman et al.
(2005).

Despite their appealing features, statistical inference is challenging in SV models due
to the inherent problem of evaluating the likelihood function. The marginal likelihood of
SV models is given by a high dimensional integral, which makes the estimation by con
ventional maximum likelihood (ML) infeasible. This is a general feature of most nonlinear
latent variable models because the latent variables must be integrated out of the joint den
sity for the observed and latent processes, leading to an integral of high dimensionality.
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As a result, a variety of alternative methods have been proposed to estimate SV models.
Major references include: the QuasiMaximum Likelihood (QML) [Harvey et al. (1994);
Ruiz (1994)], the Generalized Method of Moments (GMM) [Melino and Turnbull (1990);
Andersen and Sørensen (1996)], the Efficient Method of Moments (EMM) [Gallant and
Tauchen (1996); Andersen et al. (1999)], the Maximum Likelihood Monte Carlo (MLMC)
[Sandmann and Koopman (1998)], the Simulated Maximum Likelihood (SML) [Daniels
son and Richard (1993); Danielsson (1994); Durham (2006); Liesenfeld and Jung (2000);
Richard and Zhang (2007)], method base on linearrepresentation (LiR) [Francq and Za
koïan (2006)], the closedform momentbased estimator (DV) [Dufour and Valéry (2006)],
the ARMAbased winsorized estimator (WARMASV) [Ahsan and Dufour (2019)] and
Bayesian methods based on Markov Chain Monte Carlo (MCMC) methods [Jacquier et al.
(1994), Kim et al. (1998), Chib et al. (2002), Flury and Shephard (2011)]. For a review of
the SV literature; see Ghysels et al. (1996), Broto and Ruiz (2004), Shephard (2005), Ahsan
and Dufour (2020).

This paper considers a new class of discretetime SV models, which is proposed by
Ahsan (2020). This class of models extends the SVmodel’s usual statespace representation
by adding an additional measurement equation. This additional measurement equation is
viewed as an instrument equation, and it can relate many realized volatility measures to the
latent log volatility. In this paper, we propose a hybrid estimator for this class of models.
The hybrid method combines a generalized least square (GLS) type transformation and
instrumental variable (IV) approach.

We use RVmeasures as instruments for the latent volatility, in contrast with recent stud
ies, where RV has been incorporated in traditional volatility models (GARCH or SV) by
adding a measurement equation that connects the lowfrequency volatility measure and re
alized volatility, these are: (1) Realized SV [Takahashi et al. (2009), Koopman and Scharth
(2012)], (2)Multiplicative ErrorModel [Engle andGallo (2006)], (3) HEAVYmodel [Shep
hard and Sheppard (2010), Noureldin et al. (2012)], (4) Realized GARCH [Hansen et al.
(2012)].

We present some simulation evidence on the performance of the Hybrid estimator. The
hybrid estimation method has excellent finitesample properties in terms of bias and root
mean square error. Finally, we illustrate the hybrid inference method’s empirical relevance
using mixed frequency IBM stock returns and options prices.

2. Framework

The process {st : t ∈ N0} follows an SV model of the type:

st = σtzt, (1)

log(σ2
t ) = µ+ ϕ log(σ2

t−1) + vt, (2)

where st is the return observed at time t, and σt is the corresponding volatility. N0 refers
to the nonnegative integers. The zt’s and vt’s, are i.i.d. N(0, 1) and N(0, σ2

v) random
variables, respectively and ϕ, µ, σv are the fixed parameters of the model. Further, the
process lt =

(
st, log(σ2

t )
)′ is strictly stationary.

The linear state space representation for the above SV model can be written as follows

State Transition Equation: wt = µ+ ϕwt−1 + vt (3)
Measurement Equation: yt = wt + ϵt (4)

where
yt := log(s2t )− E

[
log(z2t )

]
, wt := log(σ2

t ) , (5)
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and
ϵt := log(z2t )− E

[
log(z2t )

]
. (6)

Under the standard normality assumption for zt, the transformed errors ϵt are i.i.d. accord
ing to the distribution of a centered log(χ2

(1)) random variable withE
[
log(z2t )

]
≃ −1.2704,

σ2
ϵ := E[ϵ2t ] = Var

(
log(z2t )

)
= π2/2 and E[ϵ4t ] = π4 + 3σ2

ϵ [see Abramowitz and Stegun
(1970)].

It is evident from (3)(4) that using any proxy for latent volatility (e.g., replacing wt by
yt) will induce a measurement error problem. Further, the latent volatility process intro
duces a moving average of measurement errors. We could alleviate this type of problem
by using an IV regression where we replace the unobserved variables by their proxies. In
below, we introduce a new class of stochastic volatility models, where the instrument equa
tion can relate many realized volatility measures Z̄t−2 to the latent log volatility wt−1. The
process {yt : t ∈ N0} satisfies the following equations:

State Transition Equation: w = ϕw−1 +Xβ + v (7)
Measurement Equation: y = w + ϵ (8)
Instrument Equation: w−1 = Z̄−2π̄ + u−1 (9)

where w = (w1, . . . , wT )
′, w−1 = (w0, . . . , wT−1)

′, y = (y1, . . . , yT )
′ are T × 1 vector,

X = [X ′
1, . . . , X

′
T ]

′ is a T×kmatrix of exogenous explanatory variables whichmay predict
the latent volatility as well as capture the leverage effect, Z̄−2 = [Z̄ ′

−1, . . . , Z̄
′
T−2]

′ is a T ×
mmatrix of of variables related to w−1, while ϵ = (ϵ1, . . . , ϵT )

′, v = (v1, . . . , vT )
′, u−1 =

(u0, . . . , uT−1)
′ are T × 1 vector of disturbances. The matrices of unknown coefficients ϕ,

β , and π̄ have dimensions respectively 1 × 1, k × 1, and m × 1. Note that model (7)(8)
with Xβ = µ1 corresponds to a standard SV model.

3. A Hybrid Estimator

In this section, we propose a hybrid estimator for the model given in (7)(9). We assume
that the ϵt’s and vt’s are i.i.d. N(0, σ2

ϵ ) and N(0, σ2
v) random variables, and Xβ = µ1.

Substituting (8) into (7), we have:

y = µ+ ϕy−1 + v + ϵ− ϕϵ−1 = µ+ ϕy−1 + ξ (10)

where ξ := v + ϵ− ϕϵ−1 is an MA(1) process with ξ ∼ N
[
0, σ2

ξΣ(ρ)
]
where

Σ(ρ) :=



1 −ρ 0 · · · · · · · · · · · · 0

−ρ 1 −ρ 0
...

0 −ρ 1 −ρ
. . .

...
... 0

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
...

. . . −ρ 1 −ρ 0
... 0 −ρ 1 −ρ
0 · · · · · · · · · · · · 0 −ρ 1



, (11)

σ2
ξ := (1 + ϕ2)σ2

ϵ + σ2
v , ρ :=

−Cov(ξtξt−1)

Var(ξt)
=

ϕσ2
ϵ

(1 + ϕ2)σ2
ϵ + σ2

v

. (12)

Clearly, ρ is a function of ϕ, σ2
v , and σ2

ϵ . Σ(ρ) is a Toeplitz matrix (or diagonalconstant
matrix) with dimension T ×T . BecauseΣ(ρ) is a symmetric positivedefinite matrix, there
exists a T × T matrix C, such that CΣ(ρ)C ′ = IT .
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Table 1: Comparison of different estimation methods with respect to bias and RMSE for the SV
model using simulated data. Bayes is the Bayesian estimator based on Markov Chain Monte Carlo
methods proposed by Jacquier et al. (1994). We used R package stochvol of Kastner (2016) for the
Bayesian estimation. Hybrid is the simple estimator proposed in Section 3.

T = 1000 T = 2000

ϕ µ σv ϕ µ σv

True value 0.98 0.25 0.25 0.98 0.25 0.25
Bias

Bayes 0.006 0.028 0.013 0.003 0.040 0.005
Hybrid (l = 1) 0.011 0.141 0.125 0.007 0.154 0.114
Hybrid (l = 3) 0.011 0.141 0.126 0.007 0.154 0.112
Hybrid (l = 5) 0.013 0.133 0.142 0.007 0.154 0.114
Hybrid (l = 10) 0.011 0.139 0.129 0.006 0.156 0.111

RMSE

Bayes 0.011 0.388 0.037 0.007 0.293 0.025
Hybrid (l = 1) 0.016 0.148 0.144 0.012 0.158 0.132
Hybrid (l = 3) 0.016 0.148 0.146 0.012 0.158 0.129
Hybrid (l = 5) 0.020 0.143 0.163 0.012 0.158 0.132
Hybrid (l = 10) 0.017 0.146 0.148 0.011 0.159 0.128

Since ξ = v+ ϵ−ϕϵ−1 = ϵ̃t−θϵ̃−1 ∼ N
[
0, σ2

ξΣ(ρ)
]
, we can fit an ARMA(1,1) model

in (10) and obtain an estimate of θ. It is easy to see that

ρ̂ =
−θ̂

1 + θ̂2
,

where θ̂ is the estimated MA average parameter. Given ρ̂, we can have CΣ(ρ̂)C ′ = IT and
we can consider the following transformed model:

Cy = µC1+ ϕCy−1 + Cξ (13)

Cy−1 = αC1+ ϕCZ−2 + Cη−1 (14)

where the variancecovariance matrix of ξ∗ := Cξ is now an i.i.d. N(0, σ2
ξIT ) distribution

and η−1 := ϵ−1 + u−1.
Given (13)(14), an IV/2SLS estimator of β̂H = (µ̂, ϕ̂)′ is as follows:

β̂H = (Z ′X)−1Z ′Y,

whereX = Cy−1, Y = Cy andZ = CZ̄−2. We are also interested in volatility of volatility
innovation parameter, which can be obtain as follows:

σ̂2
v =

π2

−2ρ̂
[ϕ̂+ (1 + ϕ̂2)ρ̂].

The asymptotic theory for the hybrid estimator is standard. However, for inference we
may consider the parametric bootstrap; see Andrews (1997), Bai (2003).

4. Simulation Study

In this section, we compare the statistical performance of the proposed hybrid estimator
with the Bayesian estimator based on the MCMC technique. We consider a standard SV
model where parameter values of (ϕ, µ, σv) areM = (0.98,−0.25, 0.25). The parameters
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Table 2: Hybrid estimates with different instruments. Ticker: IBM, January 2009  December
2013, T = 1258. The instrument set consists of a constant and lags of an instrument, l = 1, 3.
The average precision of an instrument set i over the proposed inference methods is measured by
d̄i,s := S−1

∑S
i=1 di, where s ∈ S and S is the set of identificationrobust inference methods, and

di := 1 − (ubi − lbi), where ub and lb are the upper and lower bound of the confidence set, and
ub− lb is the length of the confidence set.

l = 1 l = 3

Instruments d̄i,s ϕ̂ µ̂ σ̂v d̄i,s ϕ̂ µ̂ σ̂v

RSVN5mss 0.8860 0.9896 0.0003 0.1830 0.8618 0.9906 0.0003 0.1937
ImVCmean 0.8830 0.9972 0.0005 0.1851 0.8218 0.9936 0.0004 0.1946
MinRV5m 0.8828 0.9885 0.0003 0.1826 0.8493 0.9896 0.0003 0.1934
RV5mss 0.8825 0.9884 0.0003 0.1826 0.8560 0.9902 0.0003 0.1936
BV5mss 0.8823 0.9884 0.0003 0.1826 0.8508 0.9898 0.0003 0.1934
MedRV5m 0.8823 0.9882 0.0002 0.1825 0.8493 0.9895 0.0003 0.1933
1day 0.4255 0.9695 0.0002 0.1696 0.7490 0.9672 0.0002 0.1782

were selected to represent values often found in empirical applications of hourly or daily
returns. The simulations use 50 replications and we present results for two different sample
sizes (T = 1000, 2000). In simulations, the hybrid estimator uses past lags as instruments
(l = 1, 3, 5, 10).

Table 1 reports the estimation results for modelM . From this table, we see that the hy
brid method yields the smallest RMSE for µ and the Bayesian estimation yields the smallest
RMSEs for ϕ and σv. However, the hybrid estimator produces competitive parameter esti
mates in cases of ϕ and σv. Further, the hybrid method is consistent across different instru
ment sets and yields similar results. The results for the two sample sizes are qualitatively
similar (T = 1000, 2000) and indicate that estimator precision increases with the sample
size.

5. Applications to Stock Price Volatilities

We apply our proposed estimator to IBM’s price and option data (20092013, 1258 trading
days). The lowfrequency daily prices are obtained from the CRSP database. The raw series
pt is converted to returns by the transformation rt := 100[log(pt)− log(pt−1)] and the re
turns are converted to residual returns by st := rt−µ̂r, where µ̂r is the sample average of re
turns. The daily volatility proxy is constructed by the transformation yt = log(s2t )+1.2704.
IBM’s tick price data are taken from the TAQ (Trade andQuote) database and option (Amer
ican) data are sourced from the OptionMetrics database. Using these data, we construct
seven different instruments, these include: RSVN5mss (5minute realized negative semi
variance with 1minute subsampling, BarndorffNielsen et al. (2010)), ImVCmean (av
erage implied volatility extracted from call options), MinRV5m (5minute minimum RV,
Andersen et al. (2012)), RV5mss (5minute realized volatility with 1minute subsampling,
Andersen et al. (2001)), BV5mss (5minute bipower variation with 1minute subsampling,
BarndorffNielsen and Shephard (2004)), MedRV5m (5minute median RV, Andersen et al.
(2012)), 1day (1day realized volatility). In below, we analyze these instruments’ ability
to describe the lowfrequency volatility.

For empirical analysis, we consider the following model:

wt = µ+ ϕwt−1 + vt , yt = wt + ϵt , (15)
yt−1 = π̄0 + Z ′

t−2π̄1 + ηt−1 , ηt−1 := ϵt−1 + ut−1 , (16)
vt ∼ i.i.d. N(0, σ2

v) , ϵt ∼ N(0, σ2
ϵ ) , ut ∼ i.i.d. N(0, σ2

u) , (17)
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wherewt = log(σ2
t ), yt = log(s2t )+1.2704with st := rt−µr is residual return of an asset

with µr is the mean of return rt = 100[log(pt)−log(pt−1)] andZt−2 is the set of IV’s. Note
that the constant term π̄0 captures the bias in the RV estimate due to the nontrading hours
and microstructure noise. If the biascorrection term π̄0 is negative, RV has an upward bias
that may be due to the market microstructure noise; see Takahashi et al. (2009). Further, if
π̄0 is positive, RV has a downward bias due to the nontrading hours.

As pointed out by Dufour (1997), when IV’s are arbitrary weak, then confidence sets
with correct coverage probability must have an infinite length with positive probability.
As a result, the length of a weak instrument robust confidence interval can summarize the
identification strength of the corresponding instrument. If we restrict ϕ ∈ [0, 1], then an
irrelevant (no identification) instrument for the regressor should produce a confidence inter
val with length equal to 1. In our context, using the set of identificationrobust confidence
intervals, Ahsan (2020) define the notion of the average precision of an instrument set i
over the identificationrobust inference methods [AR, AR∗, SS, SS∗] by

d̄i,s :=
1

S

S∑
i=1

di (18)

where s ∈ S andS is the set of identificationrobust inferencemethods, and di := 1−(ubi−
lbi), where ub and lb are the upper and lower bound of the confidence set, and ub− lb is the
length of the confidence set. The definition d̄i,s implies that if i is a weak instrument then
it will produce d̄i,s close to 0 and if i is a strong instrument then it will produce d̄i,s close to
1. For example, a large value of d̄i,s implies that the corresponding instrument set is highly
informative about the parameter ϕ. For further details about the the identificationrobust
inference methods [AR, AR∗, SS, SS∗], see Ahsan (2020).

We estimate the model given in (15)(17) using the proposed hybrid estimator. In Ta
ble 2, we report the estimated parameters, where the instrument set includes a constant and
several lags of an instrument, l = 1, 3. Several conclusions emerge from the results. First,
in most cases, we find that the estimates of ϕ are close to unity, implying that the volatility
process is highly persistent. Second, all highfrequency instruments are highly informa
tive compare to the daily instrument. These highfrequency instruments produce similar
parameter estimates. This is consistent even when l = 3.

6. Conclusion

This paper has proposed a computationally simple hybrid estimator for a class of SVmodels,
which can utilize information from highfrequency data. Comparedwith existing alternative
procedures for a standard SV model, the proposed estimators enjoy a considerable advan
tage in computation time and match the standard Bayesian estimator in terms of bias and
RMSE. Due to its simplicity, the hybrid estimators allow one to build reliable simulation
based inference for SV models.

We fitted the SV model using our hybrid estimator to IBM stock return time series,
using various instruments. We found that the volatility process of IBM is highly persistent
and close to the unit root. Highfrequency realized volatility measures are more informative
compared to the lowfrequency volatility measures.
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