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Introduction 
This introductory section briefly summarizes our previous reporti, to set a starting 

point for discussing the longitudinal aspect of heterogeneity of the treatment process. In 
this report we considered the heterogeneity of the treatment process in terms of two 
similar yet distinct concepts - the treatment effect and treatment response. Hereafter, we 
will refer to this report as [*]. Below, we will use the same randomized controlled trial 
model and same definitions and same notation with a minimum of additions. 

Treatment effect. In the cited paper, a randomized controlled trial is considered 
as a statistical experiment examining the hypothesis that treatment 𝐴 is more effective than 
𝐵. The treatment effect is defined as the absolute or relative risk for the reduction of a 
negative outcome. Usually, the hypothesis of the study is generated based on preliminary 
observations, theoretical and experimental data. It is examined in accordance with laws of 
statistics, following an experimental design, under assumptions as follows: 
1. Subjects are anonymous and interchangeable.   
2. Two or more events co-occur by chance unless the contrary is proven.  
3. Numerous subjects are required for making valid inferences.  

The indices of risk reduction refer to the entire trial population.  It may or may not be 
possible to extrapolate these to a general population and a set of its subpopulations.  

Heterogeneity of the treatment effect is understood as “the nonrandom, 
explainable variability in the direction and magnitude of treatment effects for individuals 
within a population.”ii Subgroup analysis and more sophisticated methods of subgroup 
identification are procedures to analyze the relationships between the variables within the 
set of the data obtained in this experiment, e.g., to identify significant subgroups of 
patients with substantially higher or lower risk of the target disorder. Thus these methods 
explore the heterogeneity of the treatment effect.  

Treatment response. We define the treatment response as an individual 
reaction to a specified treatment. Depending on the factors determining this response, in 
response to the same treatment, various individuals can produce different outcomes; in 
response to two different treatments, various individuals can produce the same outcome or 
different outcomes. In the reference to a population, heterogeneity of treatment response 
can be defined as the qualitative and quantitative diversity of individual responses, as well 
as responses of small groups of patients, to specified treatments.  

Exploring the treatment response is not the equivalent to validating a pre-specified 
statistical hypothesis. Rather it is the development of the data driven hypotheses about the 
individual ways of reacting to a defined treatment. It is performed by identifying 
associations between the treatment, outcome, and conditions observed in individual 
patients and in small groups. Identification, analysis, and interpretation of these 
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associations (aggregations) stems from the set of assumptions designating the starting 
position of the explorations. 

Another way of generating hypotheses is exploring the data in the spirit of 
exploratory data analysis (EDA) suggested by John Tukeyiii in order to  

• Suggest hypotheses about the causes of observed phenomena 
• Assess assumptions on which statistical inference will be based 
• Support the selection of appropriate statistical tools and techniques 
• Provide a basis for further data collectioniv  

We apply this approach to explore a longitudinal aspect of the treatment response, 
using a virtual dataset of the randomized clinical trial as the model.  

Analysis of the treatment process in humans has specific features and 
requirements vis a vis agricultural or mechanical objects. It motivated us to revise the 
assumptions from which analysis of the treatment response should derive as opposed to 
analysis of the treatment effect, which is a purely statistical concept in the context of the 
clinical trial. 

I. Each subject is a unique individual.  
II. Two or more co-occurring events are related unless the contrary is 

proven.  
III. Valid inferences potentially can be made from single cases and small 

number of cases.  
In the cited paper [*] we discussed fundamental concepts and the methodology of 

analysis of the treatment response.  
Heterogeneity of the treatment effect is a rapidly developing area, but most studies 

in this area are focused on the cross-sectional aspect, while treatment of chronic diseases is 
usually a long-term process.  In contrast, the treatment response as we define it, i.e., 
individual ways of reacting to treatment, is not yet well studied. Treatment response 
analysis promises to be instrumental in complementing studies of the treatment effect in 
the area of their limitations. Below we consider the longitudinal aspect of heterogeneity in 
treatment response analysis.  

We consider a trial in which the outcome of interest in each of the compared 
cohorts over time is a summation of the binary individual outcomes (e.g., a case of MI, or 
first diagnosis of Alzheimer’s disease, or death from the target disorder, etc.). The 
individual outcome of interest (𝑌 = 1) can occur at any moment of time (𝑡𝑘) in the frame 
of the model. Analyzing other temporal patterns requires relevant adjustments.  

Longitudinal analysis of treatment effect: Some problems  
Below we refer to long-term clinical trials on age-related disorders, which are a 

large family of disorders including but not limited to hypertension, type 2 diabetes, 
cardiovascular and cerebrovascular disorders, COPD and interstitial lung disorders, 
cancer, Parkinson’s disease, Alzheimer’s disease, acute renal failure, rheumatoid arthritis, 
osteoporotic fracture, venous thromboembolism, cataract, glaucoma, and many more. 
Some of these disorders are among the leading causes of mortality. All these disorders 
debilitate those affected, worsen their quality of life, and create a severe burden on their 
families and on the nation’s health care system. These disorders affect primarily, although 
not exclusively, elderly people. 

Unless otherwise indicated, our speculations below refer to a longitudinal trial on 
the effect of treatment 𝑇𝑥 on the incidence of the age-related disorder (ARD), meaning 
absolute and relative risk reduction. However, with necessary adjustments, our 
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speculations apply to any stage of human life including childhood, pubertas, young 
adulthood, adulthood, so on. 

Statistical methods employed for analysis of the treatment effect in longitudinal 
studies have been comprehensively reviewed by Peduzzi et al. (2003),v described in 
numerous booksvi,vii ,viii,ix,x,xi and articles. 
Randomization  

Randomization is a fundamental concept for the RCT design. Usually, a 
population from which the patients suffering with the target disorder are recruited, is 
heterogeneous in many respects. The commonly recognized goal of randomization is to 
minimize allocation bias in the assignment of treatments, balancing both known and 
unknown prognostic factors. In the process of randomization, study participants are 
assigned randomly (by chance) to trial arms to minimize the differences between the 
distribution of patients with particular characteristics (conditions, co-variates). It is 
assumed that after baseline randomization, two (or more) groups of subjects are followed 
up in exactly the same way, with treatment being the only difference between the cohorts.  
Events, changes and developments 

The longitudinal analyses consider treatment as a process unfolding over time.  
Every component of the treatment process - the treatment, outcome, and co-variates - may 
undergo some events, changes, and developments. 
Treatment. Treatment may vary measurably in its intensity, or various discrete modalities 
of treatment are considered. Though treatment is intended to be the most standardized 
component of the clinical trial, the treatment might undergo substantial changes. Usually, 
a treatment protocol includes the possibility of some planned and some random changes in 
the treatment over time. It might foresee some changes in dosage, augmentation, 
omissions, etc., associated or not associated with the concomitant events, intercurrent 
disorders, adverse effects, etc. Also, changes in treatment might occur beyond the frame of 
a protocol, including poor adherence, dropout, accidents, and other influential events. 
Also, during the process, the potency of treatment might change for some physical or 
biological reasons, as well as sensitivity of a patient to the treatment, and/or the patient’s 
attitude towards the treatment. 
Outcome.  Our speculations refer to the individual outcome of interest (𝑌 = 1), which 
can occur at any moment of time (𝑡𝑘). The outcome for each of the compared cohorts is a 
summation of the individual outcomes (e.g., a number of cases case of MI, or first 
diagnoses of Alzheimer’s disease, or deaths from the target disorder, etc.). In numerous 
studies of the treatment effect, it is shown that the outcome can be empirically distributed 
unevenly across the comparison cohorts (which is the nature of the clinical trial) and 
across various clinically significant subgroups (which is the essence of the heterogeneity 
of the treatment effect). Also, randomly, and/or non-randomly, the outcome can occur at 
various moments of the treatment process, and is not necessarily distributed evenly over 
time. 
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Pretreatment Measurements or Baseline Characteristics (co-variates). These 
variables represent conditions (co-variates) of the study. Treatment is preceded by 
numerous events and factors potentially affecting an outcome of treatment.  These events 
and factors are also unevenly distributed across various segments of the population. The 
very idea of randomization stems from acknowledging this heterogeneity. Importantly, the 
set of co-variates under consideration is usually comprised of characteristics about which 
there is prior presumptive knowledge, empirical or based on theory, that they can 
potentially influence the outcome. In practical analysis, with rare exemptions, the temporal 
variation of baseline characteristics and pretreatment measurements is ignored.  That is, it 
is either implicitly assumed that, during treatment and the follow up period, they either 
remain constant, or it is assumed that the changes are rare or insignificant, or the 
association between the events and outcome is being assessed in toto, without considering 
the events and changes that may have occurred during the treatment and follow up.  

Only a few variables, such as blood type or genomic data, etc., are constant during 
the longitudinal trial. Most of the variables change over time, and these changes can be 
substantial. They can involve a quantitative expression of the covariates, e.g., during a 
long-term trial the patients are aging, duration of the disorder is increasing. Clinical, 
diagnostic, and laboratory data, demographic characteristics, the indices of a family and 
socio-economic status, or characteristics of environments, etc., can change over time – 
systematically (e.g., age, height) or occasionally, in either one or another direction (e.g., 
change in weight, severity of a condition, laboratory data), at various periods and moments 
of time. Even race and sex/gender, which are commonly used in RCTs as exemplary 
constant variables, might change due to the change in reporting of race/ethnicity and in 
cases of sex and gender identity change. 

Thus, in fact, most of the pretreatment characteristics included in the set of co-
variates undergo changes during the treatment and follow up period. There is no reason to 
believe that these events and changes occur synchronously, or that they are evenly 
distributed across the comparison cohorts. In the studies several years long, the developing 
imbalances between the cohorts might have substantial impact on the outcome. 
Time series      
The co-variates can have various distributional characteristics over time. Together they 
form a set of time series, both stationary and non-stationary, in which variables can 
associate with each other in different combinations over time. Analysis of multivariate 
time series appears to be an adequate approach to studying the treatment effect, although 
applying it to the format of the randomized controlled trial requires adjustments. We 
should note that multivariate time series analysis necessarily deals with known and 
measurable variables included in the set of co-variates.xii 
Beyond the set of co-variates. In real time, the duration of a clinical trial is longer than 
the designated duration of treatment and/or follow up. The time from randomization of the 
first subject to data lock is longer than the defined duration of the trial: the subjects do not 
enter the trial simultaneously, and for a large trial, or a trial on a rare disorder, this process 
can take years. Therefore, a trial with planned observation of 5-8-10 years, can in fact be 
several years longer, which essentially comprises an epoch in a human life. In part, this 
evolution can be reflected with the dynamics of the covariates. In addition, during a long-
term trial, material events and developments can occur which are either not related to these 
co-variates, or whose effect is beyond our prior or contemporaneous knowledge. 
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During the long-term treatment and/or follow up, the processes of human 
development, the progression of the disorder, environmental and social processes all 
progress following their own laws. Compared to the beginning of the trial, this can lead to 
the development of qualitatively new factors affecting the outcome. Also, the patients may 
experience potentially influential events, e.g., intercurrent disorders, emotionally 
significant events, accidents, adverse reactions to treatment, etc., as well as changes and 
developments in their physical, biological, social and medical status. They can undergo 
changes in their individual and family life associated with aging (e.g., change in marital 
and family status, employment, retirement, etc.), as well the changes related to a climax, 
menopause, changes in patients’ immunological status, their sensitivity to medicines and 
propensity to adverse reactions. The patients may experience consequences of concomitant 
and intercurrent disorders and their complications, debilitation, and changes in a style and 
quality of life. All these changes can be accompanied with the increase in age-related 
morbidity, severity of disorders, and mortality. 

This list of the factors potentially influencing the outcome of a longitudinal trial 
can on the extended indefinitely. A typology of the Influencing factors and possible 
changes during the trial is shown in Table 1.  

In the frame of the trial, it is not possible to compute and formally assess the 
influence of the factors acting beyond the scope of co-variates, but intuitively, it can be 
assumed that the influence of at least some of them on the outcome can be substantial. 
Attrition  
During the treatment and/or follow up, the trial population undergoes quantitative changes 
due to attrition, i.e., reducing the size of the trial population and potentially eliminating or 
reducing some segments of the heterogenous population (mortality, stop treatment, 
dropout by medicine, administrative, or behavioral reasons). xiii, xiv, xv  Within a stochastic 
model assuming random elimination of the subject from the population, the attrition does 
not affect the outcome of the trial, xvi but in real trials, the attrition is not necessarily at 
random. Among other factors, it can depend on the perceived or real effectiveness of 
treatment as well as on side effects, meaningfully biasing outcome metrics.  Indeed any 
form of imbalanced attrition might influence the outcome of the study. 
Competing risks.  
The factors of the attrition (mortality for concomitant or intercurrent disorder, stop 
treatment, dropout, etc.) can compete with the risk for the mortality from the target 
disorder. The consequences of effective treatment, or contrary severe side effects, can lead 
differences between the comparison cohorts in dropout, and therefore to a biased estimate 
of the treatment effect. 

Table 1. Influencing factors and possible changes 

 

 

Level Global, regional, local, group, individual

Locus of changes Internal and external environment

Sphere of changes Physical, biological, social, economic, political

Character of changes Developmental changes, crises, disasters

Type of changes Systematic, random, accidental

Structure of population
Deviation from initial balanced structure achieved via 

randomization

Distribution Uneven across cohorts and along the time of trial

Heterogeneity Cross-sectional, longitudinal
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Summarizing, a long-term clinical trial takes a significant period of any 

individual’s life, during which the patients are exposed to numerous influencing factors, 
and to changes in their medical, biological and psychological status, as well as external 
social, economic, and environmental factors, such that  
• each patient undergoes changes following natural laws of the human development and 

involution  
• the target disorder undergoes a process of recovery, or it evolves in severity, or the 

patient dies because of the target disorder or from not directly related causes  
• during a trial, the treatment might change, or the potency of the treatment might change, 

or the reaction of the patient to the treatment might change  
• age-related morbidity increases with numerous potential negative consequences 
• broadly, factors of non-random, random, and/or accidental nature in individual life 

continue to occur 
• these evolutions progress in the context of, or in (direct or indirect) relation to, local 

and global environmental and social processes and events (epidemics, disasters, crises, 
etc.) differently affecting various individuals. 

The factors can exercise their influence on the result of the trial in two ways: 
• direct or indirect influence differently affecting various individuals 
• changes in quantitative characteristics of the population (dropout, deaths due to the 

target disorder or ACD, stop treatment by medical or administrative reasons). 
The impact of some of these factors on the result of the trial can be synergetic, the 

others can cancel out each other, but there is no reason to expect that they are distributed 
evenly across the comparison cohorts and along the treatment process and follow up. 
There is no reason to expect that the influencing factors create a new balanced structure, 
with the treatment being the only difference between the cohorts. It is more likely that they 
be distributed unevenly across the trial arms and along the duration of the trial, which has 
important implications.   

“Intent-to-treat” 
Per R. Fisher,xvii a randomization procedure must be the last one before the 

initiation of treatment because the influential factor coming after the randomization might 
destroy the randomized structure of the experiment and, therefore, invalidate its result. In 
early randomized controlled trials, the treatment was considered during a single, aggregate 
segment of timexviii (Appendix I), and randomization was considered be sufficient to 
warrant an unbiased estimate of the treatment effect.  

Gradually, the problems related to the influencing factors entering the treatment 
and follow up process became apparent and led to the development of the concept of the 
“intent-to-treat.” xix, xx,xxi For instance, a portion of the patients randomized to the active 
arm of the trial refused, or for some reasons have not received, the treatment, or dropped 
out. It creates a problem with comparing the active and control arms and computing the 
treatment effect for the randomized population: if we account only for the patients who in 
fact have received treatment (“per-protocol”), the balance between the comparison cohort 
is broken. A result of the trial does not reflect the effect of the treatment on the population 
for which the trial was initially designed. Rather it reflects the effect of the treatment on 
the trial population which has been modified (reduced) by the new (or modified) factors. 
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If, to the contrary, we compute the effect of the treatment in all patients 
randomized to the cohorts then, in fact, we inflate the denominator in the calculation of 
treatment effect by including the patients who in fact did not receive the treatment. 

The intent-to-treat approach acknowledges that known and unknown factors enter 
the process after the randomization and that dealing with this issue requires stepping 
beyond the frame of the narrowly defined concept of the treatment effect. The intent-to-
treat approach declares that the trial is assessing not the treatment effect per se, but rather 
the effect of the implementation of the policy providing treatment.  

Therefore, the intent-to-treat interpretation is a pragmatic compromise between 
the planned experiment and the result of its real-life implementation. It is an effort to 
explain the emerging paradoxical uncertainty with a theory acceptable from a position of 
common sense, and it should be acknowledged that to a certain extent it works.  However, 
with the increasing duration of the trial, the amount of the potentially influential factors 
grows along with increasing uncertainty, whether such factors are known or unknown, 
non-random, random, or accidental, considering they are unevenly distributed across the 
cohorts and along the timeline of the trial. 

For trials exceeding a certain duration we should find that the compromise ceases 
to be acceptable. As far as additional, influential factors enter the context of the trial, the 
boundaries of the alleged policy of the implementation of the treatment gradually become 
less certain, until they get washed out. From the beginning of the trial, the convention was 
that the result of the trail, specifically, the index of the treatment effect, does not assess the 
treatment effect, it assesses the policy. Beyond some moment, the policy cannot be 
satisfactory delineated.  

If we are true to the principles of experiment, we must answer the following 
questions: is there any reason to believe that this trial/policy could be replicated under 
identical or similar diversity of the conditions? Can the result of this trial be reproduced? 
Using terms like reproducibility broadly/generically, bypassing specialized definitions, xxii 
we must admit that it is not likely that conditions of the long-term trial can be repeated, 
replicated, and reproduced close enough to the condition of the original trial. In fact, the 
replica of the long-term trial, if possible, would be carried out in substantially different 
conditions. Under such conditions, we cannot expect the results of the trial to 
automatically generalize to the population. The assessment of the result of the trial then 
moves from the domain of the probability theory and statistics to the area of experience, 
intuition, and common sense.  

The problem is that there is no formal way to determine the cut-off point. This 
problem arises even if we try to estimate a cut-off point by comparing treatment effect 
measured at consecutive time segments of the completed trial. Most directly, we observe 
the number of outcome events for each segment, but the denominator (the number of 
treated cases) in each segment will be different because of attrition, which makes the 
segments not comparable. 

Longitudinal trials are of paramount necessity for medicine. Therefore, in 
planning new trials, the duration of the trial should be well justified, and new analytical 
approaches should be considered. In a long-term longitudinal trial, we achieve a global 
assessment of the treatment effect, referring to the entire trial population during the entire 
time of treatment and/or follow up. Beyond the global assessment, we seek to assess 
changes in the treatment process over time. As noted above, there are difficulties in such 
an assessment.  
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We have argued that analysis of the treatment effect, as defined in clinical trials, 
should be complemented with an approach allowing a more granular assessment of the 
results of treatment and factors involved at all stages of the treatment process. Below, we 
will explore the longitudinal aspect of the treatment response. This approach is primarily 
focused on an individual patient (or small groups) during short consecutive segments of 
time, under changing conditions. A summation of these elements leads to the integration 
of the picture of the entire process and to the assessment of the process, as well as the 
character and timing of the changes taking place during the process of treatment and 
follow up.  

Exploring treatment response  
Cross-sectionally, a population of a clinical trial is heterogeneous in terms of 

treatment effect and treatment response. During a long-term trial, the outcome events are, 
typically, distributed unevenly along the time axis, i.e., number of the events varies during 
various segments of time. Above we have argued that, at various moments/segments of 
time, the trial population, and each of its subgroups, can be exposed to diverse 
combinations of the potentially influential factors, both internal and external. As shown 
above, the potentially influencing factors also are distributed unevenly across the segments 
of the trial population and along the time of treatment and follow up. In the data, this 
uneven distribution gives rise to ‘nodes,’ or aggregations, created by the associated 
variables of the co-variates, treatment, and outcome, observable at some points in time. 

In our previous works we presented the analytical approach stemming from the 
assumption (not empirical assertion) that these nodes correspond to deterministic 
relationships between the of treatment, outcome, and conditions in subsets of the 
individuals. This approach naturally focuses on the individual way of reacting to the 
treatment, which we have defined as the treatment response, as distinct to the statistical 
concept of the treatment effect. 

 We present here an approach to the longitudinal aspect of heterogeneity of the 
treatment response. The definitions of the major concepts of analysis of the treatment 
response of the concepts “sensitivity to treatment,” “capacity for spontaneous recovery,” 
“treatment-outcome complex,” as well as a notation are in our previous reports [*]. The 
necessary additions are in the text below. Here we treat the simplest temporal pattern, 
assuming co-occurrence of the treatment, condition and outcome within one cycle. 
Treatment response in a longitudinal context 

In our model, in any individual, the event of the outcome of interest can occur at 
any moment of time during the trial. Most commonly, timing of the occurrence of the 
outcome is thought as a random process as studied in survival analysis. In Cox’s 
proportional hazard regression analysis, the timing of the occurrence of the outcome is a 
random variable conditioned on treatment and on a set of pre-treatment measurements and 
baseline characteristics as they are described above in the relevant section. 

The treatment response is defined as an individual’s way of reacting to the 
treatment. It was shown above that treatment in each individual patient can change during 
the trial, but for illustration of the approach towards analysis we assume it constant.  

Directly, we can consider only the factors represented by the set of covariates. 
Apparently, one can expect that the distribution of these factors both across the trial 
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subpopulations and along the treatment and follow up process will demonstrate 
heterogeneity of the treatment process in both these aspects. 

We are interested in exploring the factors potentially related to the type of the 
outcome, to the type of reaction of the patient to the treatment, as well as the factors 
related to the timing of the event of the outcome. Specifically, we are interested in learning 
why the outcome 𝑌+ in the patient 𝐼𝑔 treated with treatment 𝑇+ occurred at cycle 𝑡𝑘. 
Having explored these factors, we will better understand the nature of reaction of the 
individuals to the treatment, with the ultimate goal of finding opportunities to influence 
survival time. 
Sets and sequences of cycles 

Unlike the treatment effect, which should be considered only in the context of the 
entire study population (or in the context of the entire subgroup in subgroup analysis), 
analysis of the treatment response, i.e., the individual way of reacting to the treatment, 
focuses preferentially on   

• a single case 
• a small group  
• defined trial subpopulations  
• entire trial population 

All these variants can be considered during  
• a single or aggregate segment of time 
• a sequence of equally spaced segments of time 𝑡𝑖 (or “cycles”xxiii,xxiv), e.g., 

analysis of the selected or uncompleted set of the trial data 
• a set of cycles during the entire duration of the trial (analysis of the completed set 

of the trial data) 
• time periods from the population data on the incidence of the outcome of interest. 

The combination of a segment of the population with a segment of time creates a context 
determining the boundaries of possible inferences.  

Synchronization  
Typically, while studying the treatment effect, the clinical trial data are 

synchronized by the date of the beginning of treatment, or sometimes by the date of 
randomization. Then, the timing of the events and related outcomes (duration of treatment, 
duration of follow up, survival time, etc.) is computed relative to this index date.  

Another time frame is chronological. It means that the events of the trial are 
studied as they have occurred by calendar dates. A chronological approach is suitable 
primarily for analysis of logistical, organizational aspects and the trial monitoring and 
management. Also, it can be instrumental for studying of the external events and factors 
potentially influencing the trial population.  
 The time frame with synchronization by the date of the outcome of the study 
might suit best for studying the factors preceding the outcome and their potential impact 
on the treatment response and especially on the timing of its realization. 

Also, the synchronization by the date of the event of interest or by the date of the 
outcome can be used for analysis of incomplete longitudinal records, and limited subsets 
of individuals e.g., in safety monitoring of the clinical trial, in analysis of observational 
data, keeping in mind the natural limitations imposed by the nature of these datasets. 
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Asynchronous data sets can be used for various analytical purposes, where timing 
is not the issue. For instance, in subgroup analysis the sets of the patient records are 
defined by a clinically significant variable not necessarily with a reference to duration, 
chronology, etc.  
Aggregation in a longitudinal context 

Formally, a population of a longitudinal trial can be described as  

𝑃 = 𝑃 |

𝐼1,2,…,𝑖

𝑉1,2,…,𝑗

𝑡1,2,…,𝑘

| ; 

where at each moment of time 𝑡𝑖 the patient’s status can be described by a vector  
𝑉𝑡𝑖

= 𝑇𝑥𝑡𝑖
, 𝑌𝑡𝑖

, 𝑋𝑡𝑖
, 𝐸𝑡𝑖

, 𝑈𝑡𝑖
 . 

Each patient record is described longitudinally as a series of sets of conditions defined at 
each consecutive moment of time 𝑡𝑘 as a set of values of the vectors 𝑉𝑡𝑖

.   
Aggregation is a fundamental concept in analysis of the treatment response. In a 

longitudinal context the aggregation refers to a subset of variables, which is identical in a 
subset of individuals during a subset of sequential cycles (equally spaced increments of 
time).  

If, for instance, the aggregation 𝐴𝑔1 (from the study[*]) was observed 
during four cycles (𝑡1, 𝑡2, 𝑡3 𝑡4) it could be written as 𝐴𝑔1 =
𝐼2,7,14,15,18 𝑉(𝑇𝑥−𝑌−),𝐶+,𝐹−,𝐻+,𝐾+,𝑂+,𝑆+,𝑉+

𝑡1,2,3,…,4 or 

𝐴𝑔1 = 𝐴𝑔 |

𝐼2,7,14,15,18                            

𝑉(𝑇𝑥−𝑌−),𝐶+,𝐹−,𝐻+,𝐾+,𝑂+,𝑆+,𝑉+

𝑡1,2,3,…,4                                
| ; 

i.e., the aggregation presents as a multidimensional set of variables inscribed in 
the 3D space created by the axes of 𝐼 , 𝑉, and 𝑡.  
 The indices defining a size of the aggregation (𝑆𝑧𝐴𝑔𝑖

), the probability of random 
gathering of the elements of the aggregation (𝑃𝑟𝐴𝑔𝑖

), and “density” (𝐷𝑛𝐴𝑔𝑖
) of the 

aggregation are described in the cited article [*]. 
Population as a set of aggregations 

In this context, the population can be described as a set of aggregations. 
In the data matrix, which is a framework for our model, the aggregations can be 
observed apart, next to each other, overlap entirely or partially, can include one 
another, etc. Various programmatic and computational approaches to identify the 
aggregations can be considered. In some cases, primarily in small data sets, the 
aggregation can be observed directly, by reordering the observations to bring 
relevant rows together.  

Since the order of the members in the sets 𝐼 and 𝑉 does not matter 
(unless there are special considerations), the elements (lines, columns) of axes 𝐼 
and 𝑉 can be sorted in any order. However, if reordering of aggregations by time 
is performed for some analytical reason, it should be kept in mind that the natural 
space and time structure of the events and their relationships can be violated. 
This can have a substantial impact on the interpretation of the results of analysis.  

 
 
 
  

 
2092



 

 

Explorations and inferences  

Single case, one cycle  
In medicine, drug safety, litigation, and many other disciplines, causal assessment in 
single cases and small groups rather than populations or statistically significant samples, 
is one of the major areas of operations. Almost exclusively, such inferences employ the 
methods of qualitative analysis. The attempts of quantification of the causal assessment in 
these cases pose specific and difficult-to-solve methodological problems. The available 
literature does not appear to contain methods that would fit the practical needs for causal 
assessment in individual cases in the areas listed above. xxv, xxvi, xxvii, xxviii, xxix, xxx   

Yu Xie described a paradox in social science: “Whereas there is always variability 
at the individual level, causal inference always requires statistical analysis at an aggregate 
level overlooking individual-level variability.” A common notion among statisticians is 
that making causal valid inferences regarding the effect of treatment in a single case is 
impossible. xxxi  Some of them even state that “identifying individual causal effects is 
generally not possible, or even does not make sense.”xxxii 

D. Rubin defined a causal effect of treatment as follows: “Intuitively, the causal 
effect of one treatment, 𝐸, over another, 𝐶, for a particular unit and an interval of time 
from  𝑡1  to 𝑡2 is the difference between what would have happened at time 𝑡2 if the unit 
had been exposed to 𝐸 initiated at 𝑡1 and what would have happened at 𝑡2 if the unit had 
been exposed to 𝐶 initiated at 𝑡1: 'If an hour ago I had taken two aspirins instead of just a 
glass of water, my headache would now be gone,' or 'because an hour ago I took two 
aspirins instead of just a glass of water, my headache is now gone.' Our definition of the 
causal effect of the 𝐸 versus 𝐶 treatment will reflect this intuitive meaning." xxxiii  

One can see that this intuitive definition has at least two strong assumptions. It is 
assumed that if aspirin had been taken instead of water, the headache would be gone, 
which is not necessarily the case. Also, it is assumed that “my headache is now gone” 
because aspirin was taken, which is not necessarily true either. Therefore, the definition by 
D. Rubin still contains substantial uncertainty, which, however, is acceptable for statistical 
analysis of the treatment effect. 

We will not continue the attempts to define an individual case form a statistical or 
probabilistic position. Rather we will consider the inferences on a basis of exploring the 
conditions (properties) necessary for the development of this outcome, i.e., consider the 
situation from the position of the treatment response.  

Logically, the outcome of the treatment applied to the individual to is determined 
by 1) the ability of the treatment to exert its effect on the individual and 2) the ability of 
the individual react to the treatment with the development of the outcome. Therefore, we 
consider each of four possible combinations of the treatment and the outcome 
(𝑇𝑥+, 𝑇𝑥+;  𝑇𝑥+, 𝑇𝑥−;  𝑇𝑥− 𝑇𝑥+;  𝑇𝑥− 𝑇𝑥−) as the “treatment–outcome complex,” which 
provides limited but still substantial opportunity for causal inferences regarding the 
properties determining the individual’s response to the treatment. These categories were 
thoroughly considered from historical, clinical, epidemiological, and experimental 
positions.xxxiv 
 The infinitely numerous factors forming the individual treatment response can be 
generalized into two not mutually exclusive categories: the capacity (or a lack of capacity) 
of a subject to respond positively to the treatment, i.e., be sensitive or not sensitive to the 
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treatment [“Sensitive” (𝑆𝑡+) ], and the capacity (propensity, predisposition, readiness) to 
recover spontaneously, regardless of treatment [“Spontaneous” (𝑆𝑝+) ]. [*] 

Table 2 schematizes the relationships between the treatment and outcome using 
the categories of factors forming a response of the individual to the treatment 
(𝑆𝑡+, 𝑆𝑡−, 𝑆𝑝+ and  𝑆𝑝−). In our longitudinal model, the status on the categories 
𝑆𝑡+, 𝑆𝑡−, 𝑆𝑝+ and  𝑆𝑝− is considered for each cycle separately. 

Table 2. Relationships between the Categories of Treatment, Outcome, “Sensitive” and 
“Spontaneous” 

 
The left side of the table indicates a presence of the categories of “Spontaneous” and 
“Sensitive” in all possible combinations of the treatment and outcome. The right side of 
the table demonstrates the outcome prospectively expected in individuals having all 
possible combinations of the categories “Spontaneous” and “Sensitive.” 

Thus, the logical inferences regarding the categories of the treatment response are 
possible, although in some cases they are limited. In all cases, the negative options are 
indicted with certainty. The positive options in some cases are the only choice that can be 
logically made. In other cases, it can be a choice between two options (with or without a 
possibility that both are true), and in some special cases the inference regarding one of the 
categories cannot be made. 
Sequences in individual subject 

In the cited article, the approach towards exploring the treatment response was 
considered cross-sectionally, i.e., during a single aggregate period of time, within the 
entire trial population. [*] In the longitudinal context, the treatment process is being 
considered during a sequence of the equally spaced time segments (cycles). The 
relationship between treatment, outcome, and the categories of the treatment response, can 
be an instrument for logical analysis of sequences of cycles. 

Above, it was demonstrated that typically during a clinical trial, both treatment 
and conditions change over time. For simplicity, assume the treatment to be constant until 
the occurrence of the outcome or the end of the observation. Then, we can hypothesize 
that the time of the occurrence of the outcome depends on the change of the conditions. 
Unlike survival analysis, where the timing of the occurrence of the outcome is a random 
variable conditioned on treatment and on a set of the pre-treatment measurements and 
baseline characteristics as they are described above, we are interested in the association 
between the change of the conditions and the timing of the occurrence of the outcome of 
the named individual.  

A naïve question is: why did the outcome, which did not occur during any 
previous cycle, occur specifically at a given cycle, e.g., 𝑡4.  

Let us consider the simple sequence of the events in an individual patient.  
𝑡1;      𝑡2;      𝑡3;     𝑡4;     𝑡5;   … . ;  𝑡;   
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𝐶𝑛−

𝑌_
;
𝐶𝑛−

𝑌_
;
𝐶𝑛−

𝑌_
;
𝐶𝑛+

𝑌+
;
𝐶𝑛−

𝑌_
; … ;

𝐶𝑛−

𝑌_
; 

where 𝐶𝑛 is the condition. In this example, the patient was treated with 𝑇𝑥+ during the 
entire period of observation. 

The condition 𝐶𝑛 (variable 𝐶𝑛) assumed independent from treatment. During the 
cycles preceding 𝐶𝑛+ the outcome was negative (𝑌_ ). The change of 𝐶𝑛− to 𝐶𝑛+ at the 
cycle 𝑡4 was followed by the change in the outcome from 𝑌_  to 𝑌+. There are several 
possible variants of interpretation. The simplest (and most natural, but not the only 
possible) interpretation is that the patient was not sensitive to the treatment 𝑇𝑥+ (did 
possess neither 𝑆𝑡+ nor 𝑆𝑝+); the condition 𝐶𝑛+  represents the property 𝑆𝑡+, 𝑆𝑝+, or both.  

More complex sequences with analogous interpretations are 
𝑡1;      𝑡2;      𝑡3;     𝑡4;     𝑡5;      𝑡6;      𝑡7;      𝑡8;     𝑡9;     𝑡10   

𝐶𝑛−

𝑌_
;
𝐶𝑛−

𝑌_
;
𝐶𝑛−

𝑌_
;
𝐶𝑛+ 

𝑌+
;
𝐶𝑛−

𝑌_
;
𝐶𝑛−

𝑌_
;
𝐶𝑛−

𝑌_
;
𝐶𝑛−

𝑌_
;
𝐶𝑛+ 

𝑌+
;
𝐶𝑛−

𝑌_
; 

or 
𝑡1;      𝑡2;      𝑡3;     𝑡4;     𝑡5;      𝑡6;      𝑡7;      𝑡8;     𝑡9;     𝑡10   

𝐶𝑛−

𝑌_
;
𝐶𝑛−

𝑌_
;
𝐶𝑛−

𝑌_
;
𝐶𝑛+ 

𝑌+
;
𝐶𝑛−

𝑌_
;
𝐶𝑛+ 

𝑌_
;
𝐶𝑛−

𝑌_
;
𝐶𝑛−

𝑌_
;
𝐶𝑛+ 

𝑌+
;
𝐶𝑛−

𝑌_
; 

 
𝑡1;      𝑡2;      𝑡3;     𝑡4;     𝑡5;      𝑡6;      𝑡7;      𝑡8;     𝑡9;     𝑡10   

𝐶𝑛−

𝑌_
;
𝐶𝑛−

𝑌+
;
𝐶𝑛−

𝑌_
;
𝐶𝑛+ 

𝑌+
;
𝐶𝑛−

𝑌_
;
𝐶𝑛+ 

𝑌_
;
𝐶𝑛−

𝑌_
;
𝐶𝑛−

𝑌_
;
𝐶𝑛+ 

𝑌+
;
𝐶𝑛−

𝑌_
; 

In accordance with the principle of maximum achievable certainty, the content 
and certainty of the conclusion from the explorations depend on the content, number and 
structure of the sequence available for analysis. The possibility of a causal assessment in 
quantitative terms depends substantially on the availability of temporal characteristics of 
the treatment process, such as the duration of the cycle and the incidence rate of the event. 
The appropriate duration of the cycle can be selected using theoretical, observational, and 
experimental data, or, for exploratory purposes, from available data. 
Challenge, de-challenge, re-challenge (CDR) 

The protocol “challenge, de-challenge, re-challenge” is one of the instruments 
used for causal assessment in individual cases in many areas. The sequences subject to the 
CDR protocol can be observed in analysis of the segments of the uncompleted trial (e.g., 
safety monitoring), or in post marketing surveillance, or in clinical practice.  

Schematically, the sequence subject to CRD looks like 
𝑡1;      𝑡2;      𝑡3;     𝑡4;     𝑡5;      𝑡6;      𝑡7;      𝑡8;     𝑡9;     𝑡10   
𝑇𝑥−

𝑌_
;
𝑇𝑥−

𝑌_
;
𝑇𝑥−

𝑌_
;
𝑇𝑥+

𝑌+
;
𝑇𝑥−

𝑌_
;
𝑇𝑥−

𝑌_
;
𝑇𝑥−

𝑌_
;
𝑇𝑥−

𝑌_
;
𝑇𝑥+

𝑌+
;
𝑇𝑥−

𝑌_
 

In the frame of the CDR protocol, the emergence of the outcome of interest or 
adverse event after the initiation of treatment, its disappearance after discontinuation of 
treatment, and reappearance after resuming the treatment is an intuitive argument in favor 
of the association between the treatment and the adverse event, but this intuition can rarely 
be supported with quantitative arguments. The influence of conditions (and moreover, 
changing conditions) is either not accounted for or considered in the same intuitive 
fashion. 
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Sequences in the context of co-variates 
The occurrence of the outcome of interest can be accompanied with the change in 

the set of conditions during one or several cycles in a single patient or in several patients. 
The simplest sequence of events can look as follows 

 
where the occurrence of the outcome  𝑌+ is accompanied with the change in the conditions 
𝐵−, 𝐹+, 𝑅+ to 𝐵+, 𝐹−, 𝑅−. In fact, we are considering here a sequence of aggregations. The 
possible sequences are as numerous as the sequences considered above without the context 
of the changing and unchanged conditions. 

Among the various sequences, the protocol CDR also can be considered in the 
context of changing multiple conditions. For instance, the CDR sequences also can be 
expected in trials designed for analysis of the disorders with a potentially repeated 
outcome, for instance, myocardial infarction, or seizure, etc. In such a case, with treatment 
assumed constant, conditions can change, which potentially can be related to the timing of 
the occurrence of the outcome. 

The series  

 
can then be considered in this context from a logical perspective, and the inference can be 
supported quantitatively in the context of available data.  

The changes in treatment and outcome during this period, and co-occurrence of 
the events of treatment and outcome become the object of logical analysis, which can then 
be complemented with quantitative arguments.  
Steps of exploration 

The first step of the exploration is an intuitive and logical assessment of the 
association between the change in the condition and in the outcome. The next step is the 
estimation of the probability of the random association between the change of the 
condition (in the case of a steady treatment) and the occurrence of the outcome. Deriving 
from the assumption that the probability of the occurrence of the outcome of interest at the 
cycle 𝑡𝑖 is satisfactory described, for instance, by the exponential distribution 

𝑃𝑟(𝑡) = 𝑎𝑒𝑏𝑡; 
one can assess risk (chance) for the outcome of interest during a segment of time 
(or a combination of separate cycles) during the known sequence or during the 
entire trial.  

The third step is the identification of the properties determining the treatment 
response (𝑆𝑡+, 𝑆𝑝+, 𝑆𝑡−, 𝑆𝑝−) in sequential cycles. The complexity of the logical analysis 
depends on the structure of the analyzed sequence and on number and the character of the 
accepted assumptions. Algorithmic assistance might be required including big data 
approaches.  

The quantitative assessment of the sequence of aggregations derives from the 
assessment of a single aggregation. The latter, i.e., computing the probability of random 
occurrence of the set of elements comprising the aggregation, is described in [*]. 

 

𝐴𝑔𝑖 |

𝐼7,19,34                 

𝑉(𝑇𝑥+𝑌−),𝐵−,𝐹+,𝑅+ 

𝑡𝑘−4,𝑘−4,𝑘−4      
| ;  𝐴𝑔𝑖+1 |

𝐼2,15,18                   

𝑉(𝑇𝑥+𝑌+),𝐵+,𝐹−,𝑅− 

𝑡𝑘+1                      
| ; 
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Summary 
A randomized controlled trial is a statistical experiment to examine a hypothesis, 

typically about the higher efficacy of one treatment over placebo. The process of 
generating the hypothesis involves analysis of numerous theoretical, observational, and 
experimental data.  

The exploration of the treatment response is the process of generation of the data 
driven hypotheses. It stems from the assumptions that 

I. Each subject is a unique individual.  
II. Two or more co-occurring events are related unless the contrary is 

proven.  
III. Valid inferences potentially can be made from single cases and small 

number of cases. 
These are the assumptions (not empirical assertions) designating a starting position of the 
exploratory analysis – the same way as the assumption about the by chance co-occurrence 
of the events designates a starting position (null hypothesis) of examining a statistical 
hypothesis. 

Treatment is a process. Even when our knowledge is limited to information that 
“treatment was effective (or not effective) in the patient A,” it implies that 1) there was a 
baseline status of the patient, 2) the treatment was applied; 3) the outcome has developed. 
These events unfolded during some time required for the development of the outcome, or 
for ascertaining that the outcome has not developed.  

Treatment is an experiment. In our example, there was a baseline status; there was 
a hypothesis that the treatment 𝑇𝑥 can change the status in a desirable way. The treatment 
has been applied. The status after the treatment is compared with the status before the 
treatment. There is an outcome – positive or negative. The outcome depends on the ability 
of the treatment to exercise a desirable effect – not on everyone (a panacea does not exist), 
but rather on the patients capable to positively react to the treatment. To determine 
whether these two factors were or were not in agreement is a matter of inference.   

Changes in conditions and outcome can be basis for inferences. At the next cycle, 
the experiment can be repeated, and it can be re-iterated a number of times. The object of 
the experiment remains generally the same, but some changes in the internal and/or 
external properties (conditions) can change over time. A reaction of the patient to the 
treatment under changing conditions can be a basis for logical and quantitative assessment 
of the properties determining a reaction of the individual to the treatment.  

Time limitation for inferences on treatment effect. Some changes in conditions are 
either not known to the investigator or cannot be accounted for. Also, sometime several 
conditions change simultaneously, and is difficult (if possible) to assess an individual 
contribution of each of them. An amount of the unaccounted and unknown, potentially 
influential factors entering to the play is growing over time. There is no reason to believe 
that these factors are distributed evenly across the cohorts and by the trial time. Thus, the 
inferences regarding the treatment effect (as it is defined in clinical trials) can be 
reasonably considered valid during the time period in which it is acceptable to assume – 
based on experience, intuition and common sense - that the influence of the unaccounted 
changes is not substantial. There is no formal way to determine the cut-off point, because 
of a fundamental difficulty in assessing the temporal changes. Substantial attrition, which 
is a common factor for virtually any long-term trial, makes comparing sequential segments 
of time by risk for the negative outcome practically impossible. 
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Monitoring treatment response. In contrast, a step by step, cycle by cycle 
exploration the factors (conditions) affecting the timing of the occurrence of the outcome 
allows for monitoring the treatment response. The timing of these events and changes in 
the individuals does not depend on the assessment of the entire population and on entire 
duration of the trial (as it is in the case of the treatment effect). Therefore, these data can 
be analyzed individually and be integrated at any moment/segment of time. Analysis 
should be focused on the dynamics of the categories of the treatment response.  

Apparently, the treatment process should be monitored for both positions. The 
dynamic of risk should be monitored from the position of the treatment effect, and it 
should be complemented with monitoring on the individual treatment response under 
changing conditions. With all limitations of each approach, these explorations can provide 
an important information potentially helpful in efforts to influence the survival time.  

*** 
Apparently, analysis of the treatment response requires the development of the 

conceptual and mathematical apparatus not less voluminous and thorough than analysis of 
the treatment effect. Our task here was limited only to designating the area and indicating 
the direction in which, in our opinion, the further development should go.  
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