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Abstract 
 
The Annual Survey of Local Government Finances (ALFIN) is conducted by the U.S. 
Census Bureau to collect data on state and local government financial activity. Every five 
years a full census of all local governments is taken, and approximately two years 
subsequent to that the Economic Statistical Methods Division (ESMD) designs and 
selects a new sample using the last census to create a frame. In the 2019 sample selection 
cycle ESMD introduced major changes to the sample design of ALFIN; new certainty 
criteria were added, optimal allocation was used for the first time, and a two-phase 
probability proportional-to-size design was replaced by a single phase stratified simple 
random sample. We show that while both the new and old sample design meet the initial 
requirements the new design gives superior performance along multiple dimensions. In 
particular the new design improves precision for key variables over the long term life of 
the sample, allows for unbiased estimation of the sampling variance, and allows for the 
easy incorporation of alternative estimators that are robust to influential units. Both 
sample designs are evaluated through a Monte Carlo simulation experiment using data 
from the 2012 and 2017 Census of Governments-Finance. 
 
Key Words: Government Statistics, Sample Design, Variance Estimation, Robust 
Estimation 
 

1 Introduction 

The Annual Survey of Local Government Finances (ALFIN) is conducted by the U.S. 
Census Bureau to collect data on state and local government financial activity. Published 
estimates for the ALFIN are aggregated from the five local government types: counties, 
cities, townships, special districts, and independent school districts, in conjunction with 
data collected from the Annual Survey of School Finances. The Census Bureau publishes 
local level aggregates from the ALFIN along with corresponding state level aggregates 
from the Annual Survey of State Government Finances for all 50 states and the District of 
Columbia at three levels of aggregation: local only, state only, and state & local combined. 
Statistics from these two surveys are used to estimate the government component of the 
Gross Domestic Product, allocate some federal grant funds, and provide information to 
assist in public policy research. For more information on published statistics see: 
https://www.census.gov/programs-surveys/gov-finances.html 

Every five years, in years ending in “2” and “7,” the Census Bureau conducts the Census 
of Governments (CoG). The finance component of the CoG, known as CoG-F, collects 
public financial data (expenditures, revenues, debts, and assets) for the approximately 
90,000 governments in the United States. About two years after every CoG-F, Census 
Bureau staff redesign and select a new sample of local governments. In survey years 
ALFIN consists of three parts: a census of the 50 state governments, a census of the 
approximately 14,000 independent school districts provided by the Annual Survey of 
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School Finances, and a probability sample of size 10,500 covering the approximately 
76,000 local general purpose and special district governments. Some data on expenditures, 
revenues, and financial assets related to public employee retirement systems and public 
insurance systems are also provided via the Annual Survey of Public Pensions (ASPP). 
The sample is designed to provide a CV of 3% or less for total expenditures, total revenues, 
and long-term debts for all states and at all levels of aggregation, and a CV of 5% or less 
for sales tax and property tax for all states at the combined state & local level of 
aggregation. Additionally due to its larger sample size ALFIN is used as a benchmark for 
non-property taxes (sales, personal income, and corporate income) in the local component 
of the Quarterly Summary of State and Local Tax Revenue (QTax) survey. It is therefore 
desirable that ALFIN deliver estimates of high precision for these taxes at the national level 
even though this is not a formal requirement. 

Prior samples had utilized a two-phase stratified probability proportional-to-size (πps) 
design with stratum sample sizes based on historical allocations. In order to improve 
estimate precision and to simplify estimation of variance the 2019 sample design 
introduced optimal allocation and the use of stratified simple random sampling (STSI). For 
this research, we conducted an evaluation utilizing data from the 2012 and 2017 CoG-F to 
compare the performance of the two sample designs. In the following sections we provide 
more details on the prior sample design and the new sample design, and the results of our 
simulation study. 

2 Competing Sample Designs 

In documenting the two sample designs and in subsequent sections we will make use of 
the following notation. Let 𝑈𝑈 be the universe of size 𝑁𝑁 which is studied via a sample 𝑆𝑆 ⊂
𝑈𝑈 of size 𝑛𝑛 ≤ 𝑁𝑁. Under a generalized single-phase sample design let 𝐼𝐼𝑘𝑘 denote the inclusion 
indicator for unit k, such that 𝐼𝐼𝑘𝑘 = 1 if 𝑘𝑘 ∈ 𝑆𝑆 and 𝐼𝐼𝑘𝑘 = 0 otherwise. The first order inclusion 
probabilities are then denoted by 𝜋𝜋𝑘𝑘 = 𝑃𝑃(𝐼𝐼𝑘𝑘 = 1), and the second order joint inclusion 
probability for units k and l are correspondingly denoted by 𝜋𝜋𝑘𝑘𝑘𝑘 = 𝑃𝑃(𝐼𝐼𝑘𝑘 = 1, 𝐼𝐼𝑙𝑙 = 1). 
Under a generalized two-phase sampling design we first draw 𝑆𝑆1 ⊂ 𝑈𝑈 and then 
subsequently draw 𝑆𝑆2 ⊂ 𝑆𝑆1. The first and second phase inclusion indicators are defined as 
𝐼𝐼1𝑘𝑘 = 1 if 𝑘𝑘 ∈ 𝑆𝑆1 and 𝐼𝐼1𝑘𝑘 = 0 otherwise, and 𝐼𝐼2𝑘𝑘 = 1 if 𝑘𝑘 ∈ 𝑆𝑆2and 𝐼𝐼2𝑘𝑘 = 0 otherwise. The 
first and second phase inclusion probabilities for unit k are 𝜋𝜋1𝑘𝑘 = 𝑃𝑃(𝐼𝐼1𝑘𝑘 = 1) and 𝜋𝜋2𝑘𝑘 =
𝑃𝑃(𝐼𝐼2𝑘𝑘 = 1|𝐼𝐼1𝑘𝑘 = 1), and the first and second phase joint inclusion probabilities for units k 
and l are denoted by 𝜋𝜋1𝑘𝑘𝑘𝑘 = 𝑃𝑃(𝐼𝐼1𝑘𝑘 = 1, 𝐼𝐼1𝑙𝑙 = 1) and 𝜋𝜋2𝑘𝑘𝑘𝑘 = 𝑃𝑃(𝐼𝐼2𝑘𝑘 = 1, 𝐼𝐼2𝑙𝑙 = 1|𝐼𝐼1𝑘𝑘 =
1, 𝐼𝐼1𝑙𝑙 = 1). Finally we define 𝜋𝜋𝑘𝑘∗ = 𝜋𝜋2𝑘𝑘𝜋𝜋1𝑘𝑘 = 𝑃𝑃(𝐼𝐼2𝑘𝑘 = 1|𝐼𝐼1𝑘𝑘 = 1)𝑃𝑃(𝐼𝐼1𝑘𝑘 = 1) and 𝜋𝜋𝑘𝑘𝑘𝑘∗ =
𝜋𝜋2𝑘𝑘𝑘𝑘𝜋𝜋1𝑘𝑘𝑘𝑘 = 𝑃𝑃(𝐼𝐼2𝑘𝑘 = 1, 𝐼𝐼2𝑙𝑙 = 1|𝐼𝐼1𝑘𝑘 = 1, 𝐼𝐼1𝑙𝑙 = 1) 𝑃𝑃(𝐼𝐼1𝑘𝑘 = 1, 𝐼𝐼1𝑙𝑙 = 1). 

2.1 Prior Sample Design 

In 2014 ALFIN was sampled according to the following procedure: 

1) A frame was created using data from the most recent CoG-F (i.e. 2012). 
2) All units on the frame were assigned a measure of size as the maximum of total 

expenditures and a ratio adjusted second variable depending on sampling type 
(total taxes for counties, total revenue for cities and towns, and long-term debt for 
special districts). 

3) Any unit meeting one or more of the following criteria was included in the sample 
as an initial certainty: counties with a population of 500,000 or more, cities or 
towns with a population of 200,000 or more, and all local governments in Hawaii 
and the District of Columbia. Additional certainties were also taken on ad hoc basis 
in order to meet CV requirements for key variables. For example in 2014 all special 
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district governments in California that collected sales taxes in the 2012 Census of 
Governments were included as initial certainties. In 2014 258 sample units were 
included as initial certainty units under these criteria.  

4) All the remaining units were stratified by state and type, with cities and towns 
consolidated into a single sampling type. 

5) Initial sample sizes for primary strata were based on historic sampling rates, with 
adjustments made as needed in order to meet CV requirements. 

6) Any unit with a measure of size large enough such that its probability of selection 
would be greater than or equal to 1 under a proportional-to-size sampling scheme 
is included with certainty. That is if 𝑥𝑥𝑘𝑘ℎ is a unit’s measure of size and 𝑛𝑛ℎ is the 
stratum sample size as determined in step 5 any unit over the cutoff 𝑥𝑥𝑘𝑘 ≥
∑ 𝑥𝑥𝑘𝑘𝑘𝑘 𝑛𝑛ℎ  ⁄  is taken with certainty. These units are referred to as second certainties 
in order to distinguish them from initial certainties. 

7) The remaining units are sampled using systematic 𝜋𝜋ps sampling, with either 
population (for counties and municipalities) or a numeric code corresponding to 
government function (for special districts) as the control variable for ordering the 
frame. 

8) A cut-off point was calculated for the second phase of the design using the 
cumulative square root of the frequency method (Dalenius & Hodges, 1959), to 
distinguish between small and large government units in the municipal and special 
district strata. 

9) All units in the large cutoff stratum were retained in the second phase of the 
sample, while units in the small cutoff strata were subsampled at a rate of 60%. 
Simple random sampling was used to subsample general purpose municipal 
governments and systematic simple random sampling was used to subsample 
special district governments. 

10) A small number of governments (generally small special district governments that 
have neither expenditures nor long-term debts) have a measure of size of 0. Rather 
than being excluded via cutoff sampling these units are assigned to separate “non-
activity” strata and sampled using simple random sampling. 

The modified cutoff sampling procedure described in steps 7-9 is done in order to reduce 
the number of non-contributory sub-counties, and to reduce respondent burden on the 
smallest units while retaining estimate precision (Cheng 2012). 

2.2 Proposed Sample Design 

The 2019 ALFIN sample design was conducted according to the following modified 
sequence: 

1) A frame was created using data from the most recent CoG-F (i.e. 2017). 
2) Every unit on the frame was assigned a measure of size in the same manner as 

under the 2014 design. 
3) Any unit that met one or more of the following criteria was taken as an initial 

certainty: counties with a population of 500,000 or more, cities or towns with a 
population of 200,000 or more, all local governments in Hawaii and the District of 
Columbia, any unit that accounted for 10% or more of the state total for a key 
variable, and any unit which made the largest contribution in its state to a variable 
subject to macro editing. The last two criteria were added on the recommendation 
of subject matter experts. 
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4) All the remaining units were stratified by state and type, with cities and towns 
consolidated into a single sampling type. We refer to these state and type groups 
as primary strata. 

5) Initial sample sizes for primary strata were determined by power allocation 
(Bankier, 1988). 

6) Units over a size cutoff were taken with certainty as under the old design. This 
time we used the conservative cutoff point 𝑥𝑥𝑘𝑘 ≥ 0.8 ∗ (∑ 𝑥𝑥𝑘𝑘𝑘𝑘 𝑛𝑛ℎ ⁄ ). 

7) The remaining units within each primary stratum were substratified using the equal 
aggregate method (Wright 1983, Särndal et al 1992), subject to the constraints that 
a substratum must have at least 6 sample units, and no primary stratum could be 
divided into more than 7 size based substrata (see Chambers and Clark 2012, 
Cochran 1977). 

8) A simple random sample was selected in each substratum. 

The choice of power allocation in step (5) for determining sample sizes of primary strata 
is due to the need for estimates of adequate precision across all states. Under power 
allocation the sample size for the hth primary stratum is 𝑛𝑛ℎ = 𝑛𝑛

(𝑡𝑡𝑥𝑥ℎ)𝛼𝛼𝑐𝑐𝑣𝑣𝑦𝑦ℎ
∑ (𝑡𝑡𝑥𝑥ℎ)𝛼𝛼𝑐𝑐𝑣𝑣𝑦𝑦ℎ𝐻𝐻
ℎ=1

, where 𝛼𝛼 ∈

[0,1]  is a tuning constant, n is the total sample size, 𝑡𝑡𝑥𝑥ℎ is the total sum of the measure of 
size of all units in stratum h, 𝑐𝑐𝑣𝑣𝑦𝑦ℎ = 𝑆𝑆𝑦𝑦ℎ 𝑦𝑦�𝑈𝑈ℎ⁄ , and 𝑦𝑦ℎ𝑘𝑘 is a variable of interest (in the case 
of ALFIN a unit’s total revenues as of the last CoG-F were used). Setting 𝛼𝛼 = 1 and 𝑦𝑦ℎ𝑘𝑘 =
𝑥𝑥ℎ𝑘𝑘 gives the Neyman allocation whereas 𝛼𝛼 = 0 gives the uniform allocation; in creating 
the 2019 ALFIN sample we followed the common practice of setting 𝛼𝛼 = 1 3⁄ . Power 
allocation therefore represents a compromise between Neyman allocation (which is 
optimal for national level aggregates but at the cost of high sampling variances in small 
strata) and uniform allocation (which oversamples the smallest strata, increasing 
respondent burden for smaller units and decreasing precision in larger strata). For more 
details see Bankier, 1988. The choice of the equal aggregate method for determining 
substratum boundaries and allocations in (7) is due to the findings of Wright and others 
that a stratified design constructed in this manner will experience only a trivial loss of 
efficiency compared to a πps design (see Sӓrndal et al 1992). 

In practice the two designs share many similarities. The size variable is defined in the same 
way under both designs. Additionally as we would expect in most economic surveys there 
are a large number of certainty cases due to the fact that a majority of most published totals 
are accounted for by a small number of very large units. In our simulation study the old 
design had 5,581 certainties while the new design had 5,835 certainties in total with a great 
degree of overlap between the two samples’ lists of certainty cases. While the old design 
had only 258 initial certainties and the new design had over 2,600 initial certainties due to 
the newly added certainty criteria, 70% of the new certainties would have been taken as 
either initial or second certainties under the old sample design. However the subtle 
differences between systematic πps sampling and stratified simple random sampling turn 
out to be highly consequential as we shall see. 

3 Evaluation 

3.1 Simulation Study 

Our initial evaluation uses data from the Finance components of the 2012 and 2017 Census 
of Governments. The universe is the intersection of 2012 data with 2017 data, including 
only the units surveyed during both census years, and hence ignores the effect of births and 
deaths over the life of the sample. The universe for this evaluation is comprised of 90,144 
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units. As mentioned in the introduction some data on expenditures, revenues, and assets of 
public insurance and retirement systems are provided via the Annual Survey of Public 
Pensions. However the contribution of pension systems to total expenditures and total 
revenues of all local governments in the United States were 2.82% and 4.58% respectively 
as of the 2017 Census of Governments, and in all individual states insurance and pension 
systems accounted for less than 10% of total revenue and expenditures of local 
governments. Between the minimal contributions made by these pension systems to the 
national and state totals and the high sampling rates of the Annual Survey of Public 
Pensions our analysis can safely ignore the effect of these items and the sample design of 
the ASPP. By way of comparison insurance trust funds accounted for 35.2% of total cash 
and securities held by all local governments in the United States, and in some individual 
states insurance and retirement systems account for more than 60% of total cash and 
security holdings. 

The 2012 CoG-F provides the auxiliary data, and serves as the sampling frame. The 2014 
and 2019 sampling designs are both applied to select 1,000 replicated samples from the 
frame created from the 2012 CoG-F data. For each sample replicate we estimate the 2012 
totals for all key variables and ensure that they meet initial precision requirements as we 
would when selecting our production sample, and in turn estimate the 2017 state totals for 
all key variables at all required levels of aggregation in order to see how well both sample 
designs perform several years after initial selection. In general we are interested in 
estimating a total of the pth key variable in state j, 𝑌𝑌𝑗𝑗𝑗𝑗 = ∑ 𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘∈𝑈𝑈𝑗𝑗 . For the proposed 
single-phase STSI design we will generally utilize the Horvitz-Thompson estimator 𝑌𝑌�𝑗𝑗𝑗𝑗𝐻𝐻𝐻𝐻 =
∑ 𝑦𝑦�𝑘𝑘𝑘𝑘𝑘𝑘∈𝑠𝑠𝑗𝑗 = ∑ 𝑦𝑦𝑘𝑘𝑝𝑝 𝜋𝜋𝑘𝑘⁄𝑘𝑘∈𝑠𝑠𝑗𝑗 , while for the two-phase πps design we will generally use the 
two phase analogue to the Horvitz-Thompson, the double expansion estimator 𝑌𝑌�𝑗𝑗𝑗𝑗𝐷𝐷𝐷𝐷 =
∑ 𝑦𝑦�𝑘𝑘𝑘𝑘𝑘𝑘∈𝑠𝑠𝑗𝑗 = ∑ 𝑦𝑦𝑘𝑘𝑘𝑘 𝜋𝜋𝑘𝑘𝑘𝑘∗ = ∑ 𝑦𝑦𝑘𝑘𝑘𝑘 (𝜋𝜋1𝑘𝑘𝜋𝜋2𝑘𝑘)⁄𝑘𝑘∈𝑠𝑠𝑗𝑗⁄𝑘𝑘∈𝑠𝑠𝑗𝑗 . During the analysis we computed the 
relative root mean squared error (RRMSE) and relative bias for the survey estimator under 
both designs. We also evaluated the relative efficiency of alternative survey estimators 
under both designs. 

3.1.1 Relative Root Mean Squared Error (RRMSE) 

We used the mean squared error (MSE) as a primary measure for evaluating estimator 
quality under the competing sample designs. In this study, we calculate MSE for the survey 
estimator of key totals under both designs over all sample replicates. The Monte Carlo 
MSE for an estimator in a tabulation cell is calculated as: 

𝑀𝑀𝑀𝑀𝑀𝑀�𝑀𝑀𝑀𝑀�𝑌𝑌�𝑗𝑗𝑗𝑗� =
1
𝑅𝑅
��𝑌𝑌�𝑗𝑗𝑗𝑗

(𝑟𝑟) − 𝑌𝑌𝑗𝑗𝑗𝑗�
2

𝑅𝑅

𝑟𝑟=1

 

where 𝑌𝑌�𝑗𝑗𝑗𝑗
(𝑟𝑟)is the estimated total of a variable of interest for one sample replicate (r), and 

𝑌𝑌𝑗𝑗𝑗𝑗 is the true total. As mentioned previously we take R= 1,000. In order to compare sample 
designs we normalize the MSE by its corresponding cell value, giving us the Relative Root 
Mean Squared Error (RRMSE): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅� 𝑀𝑀𝑀𝑀�𝑌𝑌�𝑗𝑗𝑗𝑗� = 100 ×

⎝
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�𝑀𝑀𝑀𝑀𝑀𝑀�𝑀𝑀𝑀𝑀�𝑌𝑌�𝑗𝑗𝑗𝑗�
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We want to see not only which design gives a lower mean squared error for the key 
variables, but also in particular how well each design performs at meeting CV requirements 
where possible. It is not expected that any sample design will meet the initial CV 
requirements in all tabulation cells in subsequent survey years. The sample selected in 
2019, for example, must cover the survey years 2019-2021 and 2023 (2022 being a census 
year), and over time the correlation between a unit’s measure of size and its reported values 
for key variables can decrease. Long-term debts in particular can be highly volatile from 
year to year. 

3.1.2 Relative Bias 

The bias of an estimator is measured as the difference between its expected value and the 
true value of the parameter being estimated. In our evaluation, relative bias is calculated 
for a key variable as: 

𝑅𝑅𝑅𝑅�𝑀𝑀𝑀𝑀�𝑌𝑌�𝑗𝑗𝑗𝑗� = 100 × �
1
𝑅𝑅
�

𝑌𝑌�𝑗𝑗𝑗𝑗
(𝑟𝑟) − 𝑌𝑌𝑗𝑗𝑗𝑗
𝑌𝑌𝑗𝑗𝑗𝑗

𝑅𝑅

𝑟𝑟=1

�% 

In accordance with theory we expect the Horvitz-Thompson estimator and the double-
expansion estimator to be unbiased under both sample designs, that is 𝐸𝐸�𝑌𝑌�𝑗𝑗𝑗𝑗𝐻𝐻𝑇𝑇� = 𝑌𝑌𝑗𝑗𝑗𝑗. 
However a proposed alternative estimator that will be evaluated in this study is not 
necessarily unbiased. Additionally we are interested in the relative bias of standard 
estimators of variance under our two designs, defined as: 

𝑅𝑅𝑅𝑅�𝑀𝑀𝑀𝑀�𝑣𝑣��𝑌𝑌�𝑗𝑗𝑗𝑗�� = 100 × �
1
𝑅𝑅
�

𝑣𝑣�(𝑟𝑟) �𝑌𝑌�𝑗𝑗𝑗𝑗
(𝑟𝑟)� − 𝑉𝑉�𝑌𝑌�𝑗𝑗𝑗𝑗�

𝑉𝑉�𝑌𝑌�𝑗𝑗𝑗𝑗�

𝑅𝑅

𝑟𝑟=1

�% 

3.1.3 Relative Efficiency 

Suppose that two estimators 𝑌𝑌�𝑗𝑗𝑗𝑗1  and 𝑌𝑌�𝑗𝑗𝑗𝑗2  are used to estimate the same population 
parameter, 𝑌𝑌𝑗𝑗𝑗𝑗. These two estimators could be the survey estimator from two different 
sample designs, or the survey estimator and a robust estimator under the same sample 
design. The Monte Carlo relative efficiency of the 2nd estimator using the 1st as a 
reference is defined as the ratio of their Monte Carlo mean square errors: 

𝑅𝑅𝑅𝑅�𝑀𝑀𝑀𝑀�𝑌𝑌�𝑗𝑗𝑗𝑗1 ,𝑌𝑌�𝑗𝑗𝑗𝑗2 � = 100 × �
𝑀𝑀𝑀𝑀𝑀𝑀�𝑀𝑀𝑀𝑀�𝑌𝑌�𝑗𝑗𝑗𝑗2 �
𝑀𝑀𝑀𝑀𝑀𝑀�𝑀𝑀𝑀𝑀�𝑌𝑌�𝑗𝑗𝑗𝑗1 �

�% 

Note that a relative efficiency of less than 100% means that the second estimator is more 
efficient than the first.  

3.1.4 Sample Performance 

Figure 1 shows the distribution of RRMSEs under both designs at the time of selection 
from the frame created from the 2012 CoG-F. As previously mentioned design 
requirements stipulate that at the time of selection the sample must give a CV of 3% or 
less for the key variables of total expenditures (EXP), total revenues (REV), and long-
term debts (LTD) for all states at both the local only (level 3) and state & local (level 1) 
levels of aggregation, and a CV of 5% or less for property tax (T01) and sales tax (T09) 
for all states at the state & local level (level 1) of aggregation. Note that totals for state 
governments only (level 2) are based on a full census, and so by definition have no 
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sampling error; sampling variances for level 1 totals of a given variable will therefore 
always be less than or equal to those of level 3 totals for the same variable. As Figure 1 
shows both designs meet all CV requirements at the time of design, with the πps design 
giving on average a slightly lower RRMSE. In fact the STSI design gave a lower RRMSE 
for only 22% of cells that are subject to CV requirements at the time of sample design. 
However the loss of efficiency compared to probability proportional-to-size sampling is 
trivial—as can be seen by comparing the median RRMSE of both the πps and STSI 
designs.  

Figure 1. Distribution of RRMSEs for Sample Designs at Initial Selection 

 
Data Source: U.S. Census Bureau, 2012 Census of Governments: Finance 

As shown in Table 1 both designs also give excellent precision at the national level for 
three QTax variables at the time of design and selection: 

Table 1: Design RRMSEs of Key Tax Variables at Initial Selection 

Variable Level 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹� 𝑴𝑴𝑴𝑴�𝒀𝒀�𝝅𝝅𝝅𝝅𝝅𝝅𝑫𝑫𝑫𝑫 � 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹� 𝑴𝑴𝑴𝑴�𝒀𝒀�𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑯𝑯𝑯𝑯 � 
T09 (sales tax) 3 0.45% 0.36% 
T40 (income tax) 3 0.43% 0.62% 
T41 (corporate income tax) 3 0.30% 0.59% 

Data Source: U.S. Census Bureau, 2012 Census of Governments: Finance 

However, checking the performance of the two sample designs 5 years after the initial 
design gives a very different picture. As shown in Figure 2 the STSI design is much more 
efficient for all key variables when used to give estimates for 2017.  
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Figure 2. Distribution of RRMSEs for Sample Designs 5 Years After Selection 

 
Data Source: U.S. Census Bureau, 2012 and 2017 Census of Governments: Finance 

The πps design encounters particular problems with variables that are not always well 
correlated with a unit’s measure of size. As can be seen from the maximum RRMSE of 
over 200% for the variable of long-term debts at the local government only level this 
variable can have extremely high sampling variances under the old sample design in part 
because it is possible for small units with large survey weights to also report very large 
values for this variable in subsequent survey years. Consistent with theory stratified 
simple random sample designs are more resilient to changes in unit size over time. In 
fact, we find that for this variable the old sample design runs into problems even at the 
national level of aggregation as shown in Table 2. 

Table 2. RRMSEs of Key Variables at National Level of Aggregation Under Both 
Sample Designs 5 Years After Selection 

Variable Level 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹� 𝑴𝑴𝑴𝑴�𝒀𝒀�𝝅𝝅𝝅𝝅𝝅𝝅𝑫𝑫𝑫𝑫 � 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹� 𝑴𝑴𝑴𝑴�𝒀𝒀�𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑯𝑯𝑯𝑯 � 
EXP 1 0.29% 0.11% 
EXP 3 0.51% 0.20% 
LTD 1 5.73% 0.39% 
LTD 3 9.24% 0.63% 
REV 1 0.27% 0.09% 
REV 3 0.56% 0.20% 
T01 1 0.85% 0.33% 
T09 1 1.12% 0.15% 

Data Source: U.S. Census Bureau, 2012 and 2017 Census of Governments: Finance 
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Similarly the πps design offers much less precision for one of the variables necessary for 
benchmarking the QTax survey. Because most of the local governments that collect 
personal and corporate income taxes are relatively large and therefore much of the 
national total for these variables comes from certainty cases, it is expected that both 
designs will offer reasonable precision. By contrast governments of all sizes collect sales 
taxes and this variable is potentially vulnerable to high sampling variances as shown in 
Table 3. Even five years after the initial sample is drawn the STSI design maintains an 
RRMSE of less than 1% for the three benchmark totals, while the πps design has an 
RRMSE of nearly 5% for sales tax. 

Table 3: RRMSEs of Key Tax Variables 5 Years After Initial Design 

Variable Level 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹� 𝑴𝑴𝑴𝑴�𝒀𝒀�𝝅𝝅𝝅𝝅𝝅𝝅𝑫𝑫𝑫𝑫 � 𝑹𝑹𝑹𝑹𝑴𝑴𝑺𝑺𝑺𝑺� 𝑴𝑴𝑴𝑴�𝒀𝒀�𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑯𝑯𝑯𝑯 � 
T09 (sales tax) 3 4.90% 0.63% 
T40 (income tax) 3 0.50% 0.69% 
T41 (corporate income tax) 3 0.32% 0.61% 

Data Source: U.S. Census Bureau, 2012 and 2017 Census of Governments: Finance 

As noted previously we do not expect any sample design to meet all CV constraints in 
years subsequent to initial selection. However it is desirable that the survey violate as few 
constraints as possible. Here again we find that the STSI design outperforms the πps 
design. Table 4 shows the number of constraint violations for each key variable at each 
relevant level of aggregation for both designs. Note that here there are 52 cells to 
consider at each level: the 50 states, the District of Columbia, and the national aggregate. 

Table 4. Number of Cells Where Each Design Exceeds CV Requirements in 5th 
Sample Year 

Variable Level Number of Cells Violations: 𝒀𝒀�𝝅𝝅𝝅𝝅𝝅𝝅𝑫𝑫𝑫𝑫  Violations: 𝒀𝒀�𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑯𝑯𝑯𝑯  
EXP 1 52 2 0 
EXP 3 52 9 4 
LTD 1 52 10 6 
LTD 3 52 22 23 
REV 1 52 3 0 
REV 3 52 11 6 
T01 1 52 14 6 
T09 1 52 2 0 
Total Total 416 73 45 

Data Source: U.S. Census Bureau, 2012 and 2017 Census of Governments: Finance 

In addition to the design constraints Census Bureau standards only allow the publication 
of totals with a CV of 30% or less. Under our old design based on the RRMSEs observed 
in our simulation study we would potentially be required to suppress 7 tabulation cells for 
the key variables as shown, a problem that the new sample design avoids entirely. 

Table 5. Required Suppressions of Key Variables 

Variable Level Suppressions: 𝒀𝒀�𝝅𝝅𝝅𝝅𝝅𝝅𝑫𝑫𝑫𝑫  Suppressions: 𝒀𝒀�𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑯𝑯𝑯𝑯  
LTD 1 2 0 
LTD 3 3 0 
T01 1 1 0 
T09 1 1 0 

Data Source: U.S. Census Bureau, 2012 and 2017 Census of Governments: Finance 
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3.1.5 Variance Estimation 

The 2014 sample design presents two challenges from the perspective of estimation of 
variance: the challenge of variance estimation for systematic sampling, and the challenge 
of estimating the additional variance due to the two phase design. Systematic πps 
sampling is widely used by survey practitioners because it allows the selection of a 
sample with optimal probabilities while avoiding the programming and computational 
difficulties of alternative methods of selecting a fixed-size without replacement sample 
where units have unequal probabilities of selection. Implemented properly the method 
affords the opportunity to combine the efficiency of proportional-to-size sampling 
(assuming the variables of interest are highly correlated with the size variable) and the 
ability of systematic sampling to exploit both hidden and explicit stratification in the 
population. (Wolter 2007)  In practice however systematic sampling generally suffers 
from the drawback that unbiased estimators for the sampling variance are not easily 
derived, with this problem becoming particularly acute when unequal selection 
probabilities are used. One possible solution to this problem is to use the Yates-Grundy-
Sen estimator of the variance for a (non-systematic) πps sample of fixed size: 

𝑣𝑣�𝑌𝑌𝑌𝑌𝑌𝑌�𝑌𝑌�𝐻𝐻𝐻𝐻� = −
1
2
���

𝜋𝜋𝑘𝑘𝑘𝑘−𝜋𝜋𝑘𝑘𝜋𝜋𝑙𝑙
𝜋𝜋𝑘𝑘𝑘𝑘

�
𝑙𝑙∈𝑆𝑆

�
𝑦𝑦𝑘𝑘
𝜋𝜋𝑘𝑘

−
𝑦𝑦𝑙𝑙
𝜋𝜋𝑙𝑙
�
2

𝑘𝑘∈𝑆𝑆

 

Unfortunately this estimator comes with several important caveats. In general standard 
variance estimators are not unbiased for systematic sampling and must be used with 
caution if at all. Additionally the double sum is cumbersome, and the joint selection 
probabilities (𝜋𝜋𝑘𝑘𝑘𝑘) may not be readily available and may therefore need to be 
approximated. Commonly used approximations of the second order selection 
probabilities (such as that of Hajek) often lead to variance estimators that are highly 
sensitive to the strength of the correlation between the measure of size and the study 
variable of interest (Haziza et al 2004). Kirk Wolter proposes several alternative 
estimators but concedes that no single estimator is optimal in all cases (Wolter, 2007). 
Bengt Rosén proposed an approach based on the heuristic of “successive” πps sampling 
as an alternative to the more commonly used heuristic of with replacement sampling 
(Rosén 1991). All the estimators mentioned so far would also need to be combined with 
additional methods in order to account for the two phase design (Beaumont et al 2015). In 
a typical survey year ALFIN must publish totals and CVs for thousands of tabulation 
cells and a simple variance estimator that is available via standard statistical software 
packages is therefore desirable. 

Many survey practitioners use the variance estimator for probability proportional-to-size 
with replacement (pps wr) sampling: 

𝑣𝑣�𝑊𝑊𝑊𝑊�𝑌𝑌�𝐻𝐻𝐻𝐻� =
1

𝑛𝑛(𝑛𝑛 − 1)��
𝑛𝑛𝑛𝑛𝑘𝑘
𝜋𝜋𝑘𝑘

− 𝑌𝑌�𝐻𝐻𝐻𝐻�
2

𝑘𝑘∈𝑆𝑆

 

This estimator of the sampling variance is conservative, that is 𝐸𝐸�𝑣𝑣�𝑊𝑊𝑊𝑊�𝑌𝑌�𝐻𝐻𝐻𝐻�� > 𝑉𝑉�𝑌𝑌�𝐻𝐻𝐻𝐻� 
and easy to compute due to the avoidance of double sums and second order inclusion 
probabilities, and therefore widely used in practice (Särndal et al 1992). It is easily 
implemented in SAS™ software using the SURVEYMEANS procedure. Of particular 
relevance it was assumed to be sufficiently conservative to account for the additional 
variance introduced by the two phase design utilized in 2014 (Cheng, 2012) and was used 
in survey years 2014-2018 to estimate the variance of published totals from ALFIN. 
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In contrast stratified simple random sampling encounters no such difficulties. The stratum 
variance is estimated unbiasedly by the standard formula for simple random sampling 
without replacement (where 𝑦𝑦�ℎ = 1

𝑛𝑛ℎ
∑ 𝑦𝑦𝑘𝑘𝑘𝑘∈𝑠𝑠ℎ  is the stratum sample mean): 

𝑣𝑣�ℎ�𝑌𝑌�ℎ� =
𝑁𝑁ℎ2

𝑛𝑛ℎ
�1 −

𝑛𝑛ℎ
𝑁𝑁ℎ
�

1
𝑛𝑛ℎ − 1

� (𝑦𝑦𝑘𝑘 − 𝑦𝑦�ℎ)2
𝑘𝑘∈𝑠𝑠ℎ

 

And in turn the variance for a given total is estimated by the sum of stratum variance 
estimators: 

𝑣𝑣�𝑆𝑆𝑆𝑆�𝑌𝑌�𝐻𝐻𝐻𝐻� = � 𝑣𝑣�ℎ�𝑌𝑌�ℎ�
𝐻𝐻

ℎ=1
 

This estimator is also easily implemented via the SURVEYMEANS procedure in the 
SAS™ programming language. While many other options are available for estimating the 
sampling variance of a stratified simple random sample (again see Wolter 2007) for this 
analysis we will use the standard formula. 

Figure 3 shows the distribution of the relative bias of variance estimators across 
tabulation cells that are checked against CV requirements. In some cases 𝑣𝑣�𝑊𝑊𝑊𝑊 is 
punishingly conservative, with a maximum relative bias of over 700% for the key 
variable of sales tax (T09). Even the median value of the relative bias for the estimated 
variance of sales tax is over 40% while as expected the mean and median relative bias for 
𝑣𝑣�𝑆𝑆𝑆𝑆 are approximately 0%. But in many cases 𝑣𝑣�𝑊𝑊𝑊𝑊 is also more likely to underestimate 
the sampling variance as well. 

Figure 3. Relative Bias of Standard Variance Estimators Under Both Designs 

Data Source: U.S. Census Bureau, 2012 and 2017 Census of Governments: Finance 
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Retaining the old sample design would therefore likely require further research on a 
suitable method for estimation of variances. 

3.1.6 Robust Survey Estimators 

One further motivation for the use of stratified simple random sampling is that it 
facilitates the introduction of estimators that are robust to influential units. If 𝑌𝑌 is a total 
of interest and 𝑌𝑌�𝐻𝐻𝐻𝐻 the Horvitz-Thompson estimator of the total under a generalized 
design, we measure the influence of the kth unit on the estimated total by its conditional 
bias, where 𝐼𝐼𝑘𝑘 is the inclusion indicator: 

𝐵𝐵𝑘𝑘𝐻𝐻𝐻𝐻(𝐼𝐼𝑘𝑘 = 1) = 𝐸𝐸𝑝𝑝�𝑌𝑌�𝐻𝐻𝐻𝐻 − 𝑌𝑌|𝐼𝐼𝑘𝑘 = 1� = �
1
𝜋𝜋𝑘𝑘

− 1� 𝑦𝑦𝑘𝑘 + ��
𝜋𝜋𝑘𝑘𝑘𝑘−𝜋𝜋𝑘𝑘𝜋𝜋𝑙𝑙
𝜋𝜋𝑘𝑘𝜋𝜋𝑙𝑙

� 𝑦𝑦𝑙𝑙
𝑙𝑙≠𝑘𝑘
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𝜋𝜋𝑘𝑘𝑘𝑘−𝜋𝜋𝑘𝑘𝜋𝜋𝑙𝑙
𝜋𝜋𝑘𝑘𝜋𝜋𝑙𝑙

� 𝑦𝑦𝑙𝑙
𝑙𝑙∈𝑈𝑈

 

Recall that the sampling variance of the Horvitz-Thompson estimator under a generalized 
design can be written as: 

𝑉𝑉𝑝𝑝�𝑌𝑌�𝐻𝐻𝐻𝐻� = ���
𝜋𝜋𝑘𝑘𝑘𝑘−𝜋𝜋𝑘𝑘𝜋𝜋𝑙𝑙
𝜋𝜋𝑘𝑘𝜋𝜋𝑙𝑙

� 𝑦𝑦𝑘𝑘𝑦𝑦𝑙𝑙
𝑙𝑙∈𝑈𝑈𝑘𝑘∈𝑈𝑈

= �𝐵𝐵𝑘𝑘𝐻𝐻𝐻𝐻
𝑘𝑘∈𝑈𝑈

(𝐼𝐼𝑘𝑘 = 1)𝑦𝑦𝑘𝑘 

That is the sampling variance of the Horvitz-Thompson estimator of a population total 
can be thought of as a weighted sum of each population unit’s influence function, or 
conversely a unit’s influence can be thought of as its contribution to the sampling 
variance with more influential units contributing more to the total sampling variance. 
Certainty units (that is units with 𝜋𝜋𝑘𝑘 = 1) can be shown to have a conditional influence 
of 0. 

In practice a unit’s influence function depends on unknown quantities (namely variables 
of interest for non-sampled units) and must be estimated for each sample unit. One 
common estimator of a sample unit’s conditional bias is: 

𝐵𝐵�𝑘𝑘𝐻𝐻𝐻𝐻(𝐼𝐼𝑘𝑘 = 1) = ��
𝜋𝜋𝑘𝑘𝑘𝑘−𝜋𝜋𝑘𝑘𝜋𝜋𝑙𝑙
𝜋𝜋𝑘𝑘𝜋𝜋𝑙𝑙

� 𝑦𝑦𝑙𝑙
𝑙𝑙∈𝑠𝑠

 

Note that the determination of a unit’s influence requires the joint inclusion probabilities, 
𝜋𝜋𝑘𝑘𝑘𝑘 . As mentioned in the previous section, these are not always readily available under 
many sample designs, including the two-phase πps design utilized in 2014, and would 
have to be estimated or approximated. However the joint selection probabilities are easily 
available under a stratified simple random sampling design and a unit’s estimated 
influence function can be shown to be: 

𝐵𝐵�𝑘𝑘𝐻𝐻𝐻𝐻(𝐼𝐼𝑘𝑘 = 1) =
𝑛𝑛ℎ

𝑛𝑛ℎ − 1
�
𝑁𝑁ℎ
𝑛𝑛ℎ

− 1� (𝑦𝑦𝑘𝑘 − 𝑦𝑦�ℎ) 

That is a unit will be influential if its reported value is far from the stratum sample mean. 

Once we have estimated each sample unit’s influence function we are able to estimate the 
robust HT of Beaumont, Haziza, and Ruiz-Gazen: 

𝑌𝑌�𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑌𝑌�𝐻𝐻𝐻𝐻 −
1
2
�𝐵𝐵�𝑚𝑚𝑚𝑚𝑚𝑚𝐻𝐻𝐻𝐻 + 𝐵𝐵�𝑚𝑚𝑚𝑚𝑚𝑚𝐻𝐻𝐻𝐻 � 
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𝐵𝐵�𝑚𝑚𝑚𝑚𝑚𝑚𝐻𝐻𝐻𝐻 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘∈𝑠𝑠 �𝐵𝐵�𝑘𝑘𝐻𝐻𝐻𝐻(𝐼𝐼𝑘𝑘 = 1)� ,𝐵𝐵�𝑚𝑚𝑚𝑚𝑚𝑚𝐻𝐻𝐻𝐻 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘∈𝑠𝑠 �𝐵𝐵�𝑘𝑘𝐻𝐻𝐻𝐻(𝐼𝐼𝑘𝑘 = 1)� 

Under regularity conditions this estimator is design consistent, with 𝑌𝑌�𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑌𝑌 =
𝑂𝑂𝑝𝑝�𝑁𝑁𝑁𝑁−1 2⁄ �. For more information on influence in finite population inference and robust 
survey estimation see Beaumont, Haziza, and Ruiz-Gazen, 2013. 

Implementation of a similar robust estimator under the two-phase πps design presents a 
more formidable challenge. Using the results of Favre-Martinoz, Haziza, and Beaumont 
(2016), we note that under a two phase design the optimal robust survey estimator is 
similarly defined as (where DE denotes the double-expansion estimator): 

𝑌𝑌�𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑌𝑌�𝐷𝐷𝐷𝐷 −
1
2
�𝐵𝐵�𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷𝐷𝐷 + 𝐵𝐵�𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷𝐷𝐷 � 
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𝐷𝐷𝐷𝐷(𝐼𝐼1𝑘𝑘 = 1, 𝐼𝐼2𝑘𝑘 = 1)� ,𝐵𝐵�𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷𝐷𝐷 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘∈𝑆𝑆2 �𝐵𝐵�𝑘𝑘
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However we do not have a simple expression for the unit level influence functions as 
under the STSI design. Instead we have: 

𝐵𝐵�𝑘𝑘𝐷𝐷𝐸𝐸(𝐼𝐼1𝑘𝑘 = 1, 𝐼𝐼2𝑘𝑘 = 1) = �
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𝑦𝑦𝑙𝑙 

Second order selection probabilities at the first phase would need to be obtained via an 
approximation such as that of Hartley and Rao, 1962: 
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For this particular sample design the robust estimator would in practice be difficult to 
automate and implement in a production setting. It is worth noting that Favre-Martinoz et 
al generally apply their results to an arbitrary design in the first phase followed by an 
implicit Poisson sample at the second phase as a way of conducting robust estimation in 
the presence of unit non-response, and in this setting the estimator is much more 
tractable. In particular their simulation study examines the case of a simple random 
sample in the first phase and a Poisson sample (with probabilities obtained via a 
propensity score method) in the second. For more details about robust estimation in two 
phase sampling see Favre-Martinoz et al 2016. 

In our simulation study we applied the relevant robust estimator to cells where either 
sample design encountered variances over initial CV requirements for the variable of 
long-term debts at the local level of aggregation in the 2017 survey year. This set of cells 
were chosen because as seen previously this variable is the most likely to give high 
sampling variances at both the design and estimation phases. In all cases where the STSI 
design encounters a high sampling variance the robust estimator produces modest to large 
reductions in the mean squared error with only modest downward bias.  
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Table 6. Robust Estimator for Long-Term Debts in Problem States, STSI Design 

State 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹� 𝑴𝑴𝑴𝑴�𝒀𝒀�𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑯𝑯𝑯𝑯 � 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹� 𝑴𝑴𝑴𝑴�𝒀𝒀�𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑹𝑹𝑹𝑹𝑹𝑹� 𝑹𝑹𝑹𝑹� 𝑴𝑴𝑴𝑴�𝒀𝒀�𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑯𝑯𝑯𝑯 � 𝑹𝑹𝑹𝑹�𝑴𝑴𝑴𝑴�𝒀𝒀�𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑯𝑯𝑯𝑯 ,𝒀𝒀�𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑹𝑹𝑹𝑹𝑹𝑹� 
AL 4.19% 3.06% -0.63% 53.48% 
AR 4.37% 3.53% -0.98% 65.20% 
CO 5.19% 4.60% -1.49% 78.62% 
GA 3.04% 2.42% -0.49% 62.97% 
ID 4.66% 3.88% -0.93% 69.26% 
IA 3.50% 3.19% -0.66% 83.06% 
KS 3.02% 2.34% -0.52% 60.06% 
KY 4.13% 3.76% -0.96% 83.03% 
LA 3.20% 2.77% -0.70% 75.37% 
ME 3.09% 2.97% -0.51% 91.94% 
MA 3.09% 2.41% -0.30% 61.21% 
MS 3.75% 3.03% -0.54% 65.35% 
MO 25.80% 15.81% -2.29% 37.57% 
MT 5.97% 4.72% -0.63% 62.46% 
NH 8.36% 6.72% -1.32% 64.54% 
NJ 3.74% 3.02% -0.49% 65.05% 
ND 4.62% 3.82% -1.08% 68.52% 
PA 3.28% 2.51% -0.47% 58.42% 
SC 20.71% 13.75% -1.06% 44.09% 
SD 12.28% 9.16% -1.51% 55.59% 
VT 3.72% 3.54% -0.71% 90.78% 
WV 5.82% 5.67% -0.91% 95.00% 
WY 17.65% 13.80% -2.93% 61.15% 

Data Source: U.S. Census Bureau, 2012 and 2017 Census of Governments: Finance 

By contrast while the robust double-expansion estimator does produce major gains in 
efficiency in some states (such as Pennsylvania and Wyoming) it does not always 
produce a more efficient estimate, and in extreme cases (such as Colorado and 
Oklahoma) produces a much higher mean squared error than the simple non-robust 
survey estimator. Additionally while the robust survey estimator under the STSI design 
does not produce any tabulation cell with an absolute relative bias of more than 3%, 
under the πps design we encounter 4 cells where the absolute relative bias of the robust 
estimator is larger than 3% (Colorado, Oklahoma, Pennsylvania, and Wyoming). Extreme 
caution would need to be applied if using this estimator under the old sample design. 

Table 7. Robust Estimator for Long-Term Debts in Problem States, πps Design 

State 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹� 𝑴𝑴𝑴𝑴�𝒀𝒀�𝝅𝝅𝝅𝝅𝝅𝝅𝑫𝑫𝑫𝑫 � 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹� 𝑴𝑴𝑴𝑴�𝒀𝒀�𝝅𝝅𝝅𝝅𝝅𝝅𝑹𝑹𝑹𝑹𝑹𝑹� 𝑹𝑹𝑹𝑹� 𝑴𝑴𝑴𝑴�𝒀𝒀�𝝅𝝅𝝅𝝅𝝅𝝅𝑹𝑹𝑹𝑹𝑹𝑹� 𝑹𝑹𝑹𝑹�𝑴𝑴𝑴𝑴�𝒀𝒀�𝝅𝝅𝝅𝝅𝝅𝝅𝑫𝑫𝑫𝑫 ,𝒀𝒀�𝝅𝝅𝝅𝝅𝝅𝝅𝑹𝑹𝑹𝑹𝑹𝑹� 
AL 9.50% 11.24% 1.24% 139.90% 
CO 8.61% 83.96% -6.05% 9516.04% 
FL 4.74% 8.60% -1.09% 328.31% 
ID 4.01% 3.93% -0.42% 95.76% 
KY 3.65% 3.86% 0.28% 111.67% 
ME 3.18% 2.35% -0.69% 54.49% 
MA 11.54% 5.80% -0.33% 25.28% 
MS 4.31% 2.62% -0.72% 37.01% 
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State 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹� 𝑴𝑴𝑴𝑴�𝒀𝒀�𝝅𝝅𝝅𝝅𝝅𝝅𝑫𝑫𝑫𝑫 � 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹� 𝑴𝑴𝑴𝑴�𝒀𝒀�𝝅𝝅𝝅𝝅𝝅𝝅𝑹𝑹𝑹𝑹𝑹𝑹� 𝑹𝑹𝑹𝑹� 𝑴𝑴𝑴𝑴�𝒀𝒀�𝝅𝝅𝝅𝝅𝝅𝝅𝑹𝑹𝑹𝑹𝑹𝑹� 𝑹𝑹𝑹𝑹�𝑴𝑴𝑴𝑴�𝒀𝒀�𝝅𝝅𝝅𝝅𝝅𝝅𝑫𝑫𝑫𝑫 ,𝒀𝒀�𝝅𝝅𝝅𝝅𝝅𝝅𝑹𝑹𝑹𝑹𝑹𝑹� 
MO 44.24% 43.37% 0.72% 96.12% 
MT 5.70% 1.88% -1.88% 10.82% 
NJ 6.04% 5.31% -1.10% 77.28% 
ND 12.51% 13.80% -1.77% 121.60% 
OH 4.23% 7.30% -2.48% 297.31% 
OK 3.71% 28.47% 4.43% 5888.93% 
PA 229.24% 114.79% 3.11% 25.07% 
SC 5.07% 5.13% -0.22% 102.49% 
SD 14.91% 14.96% 0.18% 100.64% 
VT 3.51% 2.62% -0.84% 55.57% 
VA 3.18% 1.82% -0.57% 32.81% 
WV 5.66% 7.34% 0.65% 167.97% 
WY 56.56% 29.56% -3.10% 27.32% 

Data Source: U.S. Census Bureau, 2012 and 2017 Census of Governments: Finance 

4 Overview of the 2019 Production Sample 

In evaluating the new sampling design a simulation study was also performed using the 
frame created from the 2017 CoG-F, with the distribution of RRMSEs for key variables 
from the simulation study shown in Figure 4. 

Figure 4. Distribution of RRMSEs for Key Variables at Time of 2019 Sample Design 

 
Data Source: U.S. Census Bureau, 2017 Census of Governments: Finance 

As can be seen from the median RRMSE across all states and consistent with our previous 
simulation study the STSI design’s loss of efficiency at the time of initial sampling 
compared to the πps design is trivial. Additionally under the 2014 stratum allocations the 
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πps design does not meet all CV constraints for long-term debts and property taxes, and 
would have required subsequent adjustments in sampling rates for underperforming states 
in order to meet these initial requirements. 

Table 8. CV Requirement Violations at Time of 2019 Sample Design Research 

Variable Level Violations: 
πps Design 

Violations: 
STSI Design 

EXP 1 0 0 
EXP 3 0 0 
LTD 1 1 0 
LTD 3 1 0 
REV 1 0 0 
REV 3 0 0 
T01 1 7 0 
T09 1 0 0 

Data Source: U.S. Census Bureau, 2017 Census of Governments: Finance 

At the time of sample selection there were also 1,058 birth units, defined as governments 
that were discovered or created since the 2017 CoG freeze. Because these units were not 
active at the time of the 2017 CoG-F there was little to no auxiliary information available 
for them, and other selection methods were needed. A birth sample of 350 units was 
selected. All counties, cities, towns, and independent school districts were taken with 
certainty. Additionally, any special district with long-term debts in the 2018-2019 period 
based on administrative records was also taken with certainty, along with special districts 
in states with 3 or fewer special district births. The remaining units were stratified by state, 
with allocations determined by a hybrid method that took the maximum of (a) the 
proportion of the national total measure of size contributed by that state in 2017 and (b) 
simple proportional allocation based on the number of special districts in that state. In prior 
years most birth units have been extremely small, and contributed very little to key 
aggregates. 

5. Conclusions and Future Research 

As shown in our simulation study the new 2019 sample design outperforms the old 2014 
sample design according to multiple criteria: precision of survey estimators for key 
variables over time, ease of obtaining an unbiased estimate of the sampling variance, and 
the ability to troubleshoot tabulation cells with high variances with estimators that are 
reliably robust to influential units and simple to implement in a production environment. 
The difficulties inherent in variance estimation and robust estimation for the two-phase πps 
design might be justified if the design resulted in increased estimate precision compared to 
a less complicated design, but in fact we found the opposite to be the case. In all areas 
where further research is called for the simplicity of stratified simple random sampling and 
the existence of a large literature on this design make further improvements possible as 
well. While 𝑣𝑣�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is not unbiased for all cells in our analysis we believe the availability of 
alternative estimators of sampling variance in addition to the standard formula for simple 
random sampling without replacement will allow us to continue improving variance 
estimation in future research. 

Many areas for future study remain. As mentioned in previous sections the two-phase 
design was implemented in 2014 in order to increase unit response rates and reduce 
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respondent burden by cutting the number of small units in the sample. We believe that 
direct control over the number of small units via stratification by size will achieve the same 
goals, but response rates in future survey years will need to be monitored carefully in order 
to ensure that this objective is achieved. The new sample design gives us the ability to 
estimate variances via the standard estimator for simple random sampling without 
replacement, but it may be worth investigating alternative estimators such as BRR and the 
stratified jackknife to see if they can offer further improvements. Of the five key variables 
that are subject to CV requirements three (total revenues, total expenditures, and long term 
debts) are derived items. Long-term debts for example are a sum of the items 44T (Long-
term Debt Outstanding, End Of Fiscal Year, Public Debt For Private Purposes) and 49U 
(Long-term Debt Outstanding, End of Fiscal Year, Unspecified Public Purposes) for which 
estimated totals are also published. Any attempt at introducing a robust survey estimator 
for long-term debts must therefore ensure that estimates for individual states are consistent 
with estimates of the national total, and that estimates of individual items are consistent 
with estimates for derived items. An estimator of the mean squared error will also have to 
be investigated for robust survey estimators, with the generalized bootstrap as the most 
promising method (Beaumont et al 2013). 
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