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Abstract 

The following study shows how a reparameterization of the general linear model for regular 
regression can serve to quantify qualitative aspects of predictors. It uses data from the High 
School Longitudinal Study of 2009 on mathematics course-taking and achievement as an 
example. Results show that all mathematics courses are not equally predictive of math 
achievement. Thus, taking into account qualitative aspects of mathematics courses is 
useful. The study ends with a justification of quantifying qualitative aspects of predictors 
relative to a criterion with extensions to other linear models. 
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1. Introduction 

 
Davison and Davenport (2002) show a way to reparametrize a regression equation into two 
variables with inherent meaning. They called these two variables level and pattern. Level 
can be indexed by the mean 𝑋̅𝑝 =

1

𝑉
∑ 𝑋𝑝𝑣𝑣  or total X𝑝 = ∑ 𝑋𝑝𝑣𝑣  of the predictors for an 

observation. Pattern is the covariance, ∑ (𝑏𝑣−𝑏̅)(𝑋𝑣−𝑋)̅̅̅̅

𝑉
,𝑣  for the individual relative to the 

optimal pattern of regression weights for predicting performance on the criterion. Level is 
the quantitative information inherent in a sum or average of a set of predictors (it acts as if 
all predictors are the same relative to predictability). In contrast, Pattern is the covariance 
of an observation’s predictor scores to that of the optimal regression weights leading to 
higher expected scores on the criterion. It is our conjecture that Pattern allows one to 
quantify qualitative features of a set of predictors as they relate to a criterion. Thus, the 
approach forwarded in this paper allows one to consider both quantitative and qualitative 
aspects of a set of predictors as they relate to a criterion simultaneously. 
 
The goals of the current study are to: 1) show that qualitative aspects of predictors can be 
quantified, 2) show that Level and Pattern can be related to quantitative and qualitative 
aspects of the predictors relative to a criterion, respectively, 3) show that qualitative aspects 
of mathematics course-taking (type of courses) is more predictive of mathematics 
achievement than the quantitative aspects (amount of courses), and 4) generalize this idea 
to other linear models. 
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2. Literature Review 

 

The goal of science is parsimony; to explain the world in which we live as simply as 
possible. While both qualitative and quantitative approaches to research serve this goal; 
they do so from vastly differing philosophical bases (Smith, 1983; Smith & Heshusius, 
1986). While the histories of these two approaches have been contentious, the current view 
is to allow for the “two different, equally legitimate approaches to inquiry” (Smith & 
Heshusius, 1986, p.4). Moreover, there is some effort to present both approaches 
simultaneously (Leman, House, & Hoegh, 2015). While, the present manuscript presents 
both qualitative and quantitative aspects of data, it does not attempt to simultaneously 
combine qualitative and quantitative research. This paper is more in the framework of 
Young (1981) which attempts to quantify qualitative aspects of data so that qualitative data 
is more amenable to quantitative analyses. 
 
Mathematics is a unique field of study because courses form a quasi-hierarchy relative to 
content. Knowledge of the content of lower-level math courses is prerequisite for success 
in higher level math courses. Finkelstein et al. (2012) observed that students in the 
advanced math track in 7th grade are likely to take more advanced courses in high school 
(e.g. pre-calculus, calculus, AP Statistics). Students typically start high school (9th grade) 
taking geometry or algebra 1. Being in geometry, which is further along in the course-
taking sequence than algebra, is advantageous for high school freshmen seeking to go to 
college, since more advanced placement at the beginning of high school allows students to 
more readily take high-level courses such as AP Calculus and AP Statistics during high 
school. Taking these courses in high school is advantageous when applying for college 
admission (Lawyers’ Committee for Civil Rights of the San Francisco Bay Area, 2013). 
Few students from the general track catch up to students in the advanced math track 
because it involves completing extra math coursework and for students who are behind in 
mathematics course-work, the chances of them taking relatively more mathematics than 
the students with more math courses is slim. Moreover, some students experience 
continued difficulties in lower-level math courses. For example, students who were 
required by their school to repeat an algebra course still struggled to achieve proficiency 
during their second time through the course (Finkelstein et al., 2012). 
 

Ma and Wilkins (2007) observed that, while all math courses contribute towards increased 
math achievement, advanced math courses such as trigonometry, pre-calculus, and calculus 
“demonstrated the greatest regulatory power” for improving math achievement. The 
disparity in math performance relative to math courses taken was particularly apparent on 
the 2005 NAEP mathematics assessment. High school students who graduated with 
geometry or lower as their highest mathematics course had an average score below the 
Basic achievement level on the 2005 NAEP mathematics assessment, whereas, high school 
students who graduated with calculus or greater as their highest math course averaged 
scores at the Proficient level on the same assessment (Shettle et al., 2007). Implications of 
advanced math coursework extend beyond high school graduation. Researchers have 
shown that students who took more advanced math courses had a greater likelihood of 
attending college (Spielhagen, 2006; Byun et al., 2015) and graduating from college 
(Trusty & Niles, 2003). Thus, there appear to be qualitative differences between different 
mathematics courses relative to several criteria. 
 
The use of profiles to determine disease states, apprehend criminals, identify successful 
candidates for school or work, etc. has been a staple in many clinical and applied fields 

 
2041



(e.g. medicine, psychology, college admissions, human resources, etc.). Regardless of 
discipline, multiple measures are taken and the pattern of scores on these measures is 
compared to a prototypical pattern, where the prototypical pattern shows the pattern of 
scores indicative of a particular classification or diagnosis. An individual profile pattern is 
the arrangement of scores in a respondent’s vector of scores. Cronbach and Gleser (1953) 
discuss assessing the similarity between profiles and note three defining characteristics of 
a profile: elevation, scatter, and shape. They state that “Elevation is the mean of all scores 
for a given person. Scatter is the square root of the sum of squares of the individual's 
deviation scores about his own mean; that is, it is the standard deviation within the profile. 
Shape is the residual information in the score set after equating profiles for both elevation 
and scatter.” There has been much activity since the 1950’s to quantify profiles (Meehl, 
1950, Cronbach and Gleser, 1953). Most past methods yield profiles that may not have 
criterion-related validity as many rely only on the subtest variables within the profile with 
no link to an external criterion (e.g. cluster analysis [Glutting, McGrath, Kamphaus, & 
McDermott 1992; Glutting & McDermott, 1994; Konold, Glutting, McDermott, Kush, & 
Watkins, 1999; McDermott, Glutting, Jones, Watkins, & Kush, 1989], latent profile 
analysis [Gibson, 1959], modal profile analysis, MFA [Pritchard, Livingston, Reynolds, 
&, Moses, 2000; Skinner, 1977, 1979], profile analysis via multidimensional scaling, 
PAMS [Davison, 1994; Davison, Gasser, & Ding, 1996; Davison, Kuang, & Kim, 1999)], 
and configural frequency analysis, CFA [Stanton & Reynolds, 2000; von Eye, 1990, 
2002]). 
 
Davison and Davenport (2002) suggest a reparameterization of the normal regression 
equation that makes use of Cronbach and Gleser’s (1953) decomposition of an individual’s 
set of scores. Specifically, Davison and Davenport (2002) show that any regression 
equation can be reparametrized into two variables. The first representing Level in Cronbach 
and Gelser’s approach and the second representing a combination of scatter and shape 
(Pattern). Moreover, one can parse variance in the criterion related to Level or Pattern 
(individually, collectively, and incrementally). We maintain that Level is the quantitative 
information in the predictors, while Pattern is the qualitative information. Also, due to how 
it is defined (covariance of the optimal regression weights for predicting the criterion with 
the predictors with the observation’s scores on the predictors), Pattern has criterion validity 
in that those whose predictor profiles are more similar to the criterion-related pattern will 
have higher expected criterion scores. 
 
Level of a profile refers to the height of that person’s scores described by the mean or sum 
of the scores in the profile (the mean and sum are equivalent for prediction purposes as one 
is just a linear combination of the other; the mean is the sum times a constant). For our 
purposes here we will use the mean: 𝑋̅𝑝 =  

1

𝑉
∑ 𝑋𝑣𝑣  as our Level value. Pattern can be 

described as the covariance of a vector of contrast coefficients (one for each 
variable),  𝑿𝑝

∗ = {(𝑋𝑝𝑣 − 𝑋̅𝑝 )} which represents the deviation of each score from the 
Level, 𝑋̅𝑝 with the corresponding deviation of the optimal regression coefficients for the 

corresponding predictors, COVp = ∑
(𝑏𝑣−𝑏̅)(𝑋𝑣−𝑋)̅̅̅̅

𝑉
.𝑣  This variable, computed for each 

student, is a criterion match statistic, representing the degree to which a student’s values 
on the predictors matches the optimal pattern leading to higher predicted scores on the 
criterion. The optimal pattern differentiates high performers from low performers. The 
higher an individual’s scores on the predictors with the higher regression weights, the 
higher their Pattern scores and the higher the predicted criterion score. Note, that the least 
squares regression weights constitute the “optimal criterion pattern;” one that maximizes 
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the variance accounted for in the criterion variable. Together, Level and Pattern predict the 
same amount of variation in the criterion as the original set of predictors. Thus, 𝑌̂ = 𝑏0 +
𝑏1𝑋1 +  𝑏2𝑋2 + 𝑏3𝑋3 +  … +  𝑏𝑉𝑋𝑉 can be represented by the two variables Pattern and 

Level (as we have defined them here): 𝑌̂ =  𝑏0 + 𝑏1
∑ (𝑏𝑣− 𝑏)(𝑋𝑣− 𝑋)𝐾

𝑘=1

𝑉
+  𝑏2𝑋. The proof 

of this assertion is given in the appendix of Davison and Davenport (2002). 
 
The degree to which Pattern will aid in the prediction is the degree to which the predictors 
are differentially related to the criterion. Pattern is useful to the extent that a one unit 
increase in one variable leads to differential predictability than a one unit increase in 
another. In other words, there are qualitative differences in the predictors relative to the 
criterion. One can see that one’s predicted score will be higher to the degree to which 
participants have higher scores on predictors with higher regression weights. Level 
represents the quantitative information of a one unit increase in the predictors, regardless 
of which predictor (strictly quantitative). 
 

3. Methods 

 

3.1 Data 

Data for this study come from the National Center for Education Statistics’ (NCES) High 
School Longitudinal Study of 2009 (HSLS:09) which contains mathematics test scores at 
9th and 11th grades and high school transcript data from a nationally representative cohort 
of students in ninth grade in 2009. There are over 23,000 students from 940 schools. 
Almost 22,000 students had partial or full transcripts (Ingels, Pratt, Herget, Bryan, Fritch, 
Ottem, Rogers, and Wilson, 2015). Students were chosen who have valid transcript data 
and both a mathematics test score at 9th and 11th grades. This leads to a sample of 15,750 
students. Analyses used transcript weights suitable for generalizing to the national 
population of ninth graders in 2009. We also used a design effect (Kish, 1965) to account 
for dependencies in the data caused by the cluster sample design. For HSLS: 09, the average 
design effects for students’ ethnicities are 4.0, 4.9, 3.7, 2.7, and 3.1 for Hispanic, Asian, 
Black, White, and more than one race, respectively (Ingels, et al. 2014, p.126), so 4.0 was 
used as a design effect for this study. Teitelbaum (2003) used a design effect when 
analyzing data similar to ours. Given our design effect, our effective sample size was 
approximately 3,940. 
 

3.2 Variables 

Information from high school transcripts was keyed and coded (Ingels et al., 2015). Cases 
with duplicate records in the transcript were deleted. Only courses taken in mathematics 
were selected; courses having a School Code for the Exchange of Data (SCED) from 02001 
to 02999. Moreover, only courses completed with a grade of D- or higher (passed) were 
selected. Since the data file for high school courses and transcripts is organized by course, 
credits earned for courses having the same SCED codes were summed to make course 
variables for each student. For instance, the ‘sum02001’ variable is calculated by summing 
all credits completed in courses having the SCED code of ‘02001’ for each student. 
Therefore, variables representing credits completed in each of 67 SCED math courses were 
obtained. 
 
In addition to the 67 course-taking variables, NCES created X3THIMATH with 14 
categories to represent highest mathematics course taken. This variable was created based 
on the hierarchical nature of mathematics courses with higher numbers corresponding to 
more advanced mathematics content. This variable has 14 categories from No math to 
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AP/AB Calculus (0=No math, 1=Basic Math, 2=Other Math, 3=Pre-Algebra, 4=Algebra I, 
5= Geometry, 6=Algebra II, 7=Trigonometry, 8=Other advanced math, 9=Probability and 
statistics, 10=Other AP/IB math, 11=Precalculus, 12=Calculus, 13=AP/IB Calculus). 
Following this latter representation of mathematics course-taking, we created thirteen 
mutually exclusive course sequences using the sum of credits completed in the courses 
fitting into the above named course categories. For instance, to make the variable, 
Probability and statistics, the credits completed in the courses SCED 02201 (Probability 
and Statistics), 02202 (Inferential Probability and Statistics), 02204 (Particular Topics in 
Probability and Statistics), 02207 (Probability and Statistics—Independent Study), and 
02209 (Probability and Statistics—Other) were summed together. 
 
The remaining two independent variables in this study, Level and Pattern, were obtained 
from the 13 sequences of mathematics course-taking we created. Here, Level is the mean 
of credits completed in the 13 course sequences (1

𝑉
∑ 𝑋𝑝𝑣𝑣 ) and Pattern is the covariance 

of the regression weights for the 13 course sequences with the number of credits taken in 
each sequence, ∑ (𝑏𝑣−𝑏̅)(𝑋𝑣−𝑋̅)

𝑉
.𝑣  The regression weights necessary to calculate Pattern 

were obtained by regressing the 11th grade mathematics test score on the 13 course 
sequences. 
 

3.3 Analysis 

We first ran a regression of the 13 math course sequence variables predicting 11th grade 
mathematics test score. This returned the total variance explained by the courses and the 
regression weights necessary to calculate the Pattern scores. We next ran a correlation 
analysis for Level, Pattern, and the 11th grade mathematics test score. This gave us 
information on the inter-relationship of the variables as well as predictability of Level and 
Pattern (individually) to the 11th grade math test. We also ran a regression analysis 
predicting the 11th grade mathematics test score from Level and Pattern to show 
equivalency of the results in terms of variance accounted for. 
 

4. Results 

 

The first analysis is a regression using the 13 course-taking variables predicting 11th grade 
mathematics test score. The results are given in Table 1. One of the first things to notice is 
that the regression weights differ. If all weights were the same, then a one course increase 
(decrease) would have the same effect on predicted 11th grade mathematics test score 
irrespective of the course in which the one unit increase (decrease) occurred. The fact that 
they differ suggests that there are qualitative differences between the courses as they 
predict mathematics performance. The relationship between the regression weights and the 
courses are easily seen in Figure 1. Figure 1 contains a plot of the raw regression weights 
for the 13 course-taking variables as ordered by X3THIMATH. This plot gives credence 
to the fact that the courses differ qualitatively. Moreover, it helps justify the hierarchical 
ordering of the courses by NCES; as there is in general a monotonic relationship between 
the regression weights and the NCES ordering of the courses (Other Advanced being the 
only substantial exception to monotonicity). Given the regression weights, one can see that 
taking courses with a higher number in NCES’s hierarchy (more advanced course) in 
general leads to higher expected scores for the criterion (11th grade mathematics test). 
 

Table 1 
Raw Regression Weights for Predicting 11th Grade Test Score with the 13 Course 

Sequences 
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 Estimate SE* t* p* 
(Intercept) 56.75 0.84 67.45 0.00 
Basic Math -3.42 0.58 -5.93 0.00 
Other Math -2.21 0.47 -4.69 0.00 
Pre-Algebra -2.83 0.73 -3.89 0.00 

Algebra I -1.31 0.43 -3.04 0.00 
Geometry 0.86 0.57 1.53 0.13 
Algebra II 4.00 0.48 8.39 0.00 

Trigonometry 7.10 0.65 10.95 0.00 
Other Advanced 1.58 0.41 3.82 0.00 

Probability and Statistics 5.02 1.01 4.99 0.00 
Other AP/IB Math 8.23 1.03 8.00 0.00 

Pre-Calculus 11.61 0.57 20.27 0.00 
Calculus 11.56 1.06 10.87 0.00 

AP/IB Calculus 14.13 0.70 20.29 0.00 
𝑅2 0.3994 

Adjusted 𝑅2* 0.3974 
AIC* 47253.889 
BIC* 47341.783 
Note. *after accounting for weights and the design effect of 4 

SOURCE: U.S. Department of Education, National Center for Education Statistics, 
High School Longitudinal Study of 2009 (HSLS:09) Base Year (2009), First Follow-up 

(2012, 2013), Transcript (2013, 2014). 
 

Table 2 provides information on the predictability of Level and Pattern when each is the 
sole predictor of the 11th grade math test. For this we simply take the squared correlation 
between each of these variables and the 11th grade mathematics score (see Table 4 which 
has this information in terms of variance accounted for). Results from this table answers 
one of the research goals of this study; to show that qualitative aspects of course taking 
(type of course) is more predictive of mathematics performance than the quantitative aspect 
of course-taking (amount of courses). The correlation of Pattern with the math test score 
is higher than the corresponding correlation of Level. Thus, simply counting courses 
without attention to the type (qualitative difference in the course) is not as predictive. This 
result concurs with Davenport et al. (2013) where they found little difference in number of 
mathematics courses taken by Black versus White students, but substantial difference in 
the types of courses taken as well as mathematics achievement. 
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SOURCE: U.S. Department of Education, National Center for Education Statistics, 

High School Longitudinal Study of 2009 (HSLS:09) Base Year (2009), First Follow-up 
(2012, 2013), Transcript (2013, 2014). 

 
Table 2 

Correlations among mathematics achievement, Level, and Pattern 

 
11th Grade 

Achievement Level Pattern 

11th Grade 
Achievement 

1.00   

Level 0.30 1.00  
Pattern 0.58 0.07 1.00 

SOURCE: U.S. Department of Education, National Center for Education Statistics, 
High School Longitudinal Study of 2009 (HSLS:09) Base Year (2009), First Follow-up 

(2012, 2013), Transcript (2013, 2014). 
 
Table 3 is included to illustrate the qualitative quantification of courses taken via Pattern. 
If the predictive power of courses differ, one can see that treating all courses the same (and 
simply adding them) will not be as predictive as finding a way to quantify the differences 
in types of course-work. We maintain that this is done via the Pattern variable as it is a 
function of the covariance between the actual courses taken and relationship to the criterion 
(as indexed by the regression weights). Students who take more courses with higher 
regression weights should have higher expected test score values. We believe that both 
Level and Pattern will be predictive, but that Pattern will be more so (as seen in Table 2). 
We also believe that Level and Pattern ought to be correlated because as students take more 
math courses, they should take higher level courses, but this is not always the case. The 
correlation of 0.07 given in Table 2 for Level and Pattern is significant at P < 0.0001 (with 
the adjustment for the design effect). 
 

Table 3 
Number of Carnegie Units in Each Sequence and Other Scores for Five Students 

Course Sequence Student1 Student2 Student3 Student4 Student5 
Basic Math - - - 2.00 - 
Other Math 2.00 - - - - 
Pre-Algebra - 1.00 - 1.00 - 

-6
-4
-2
0
2
4
6
8

10
12
14
16
Figure 1

Raw Regression weights for predicting Grade 11 Math Test with the 13 Math Course Sequence

13 sequences of  course-taking
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Algebra I 1.00 - - 1.00 - 
Geometry 1.00 1.00 1.00 1.00 - 
Algebra II - 1.00 1.00 1.00 - 

Trigonometry - - - - 2.00 
Other Advanced - - - - - 

Probability and Statistics - - - - - 
Other AP/IB Math - - - - - 

Pre-Calculus - 1.00 1.00 - - 
Calculus - - 1.00 - - 

AP/IB Calculus - - - - 1.00 
 - - - - - 

Level 0.31 0.31 0.31 0.46 0.23 
Pattern* -1.66 -0.24 0.87 -2.40 1.22 

11th Grade Test 56.46 78.19 82.99 48.44 99.51 
* Pattern values here are 13*COV = Corrected Sums of Squares and Cross-Products. 
SOURCE: U.S. Department of Education, National Center for Education Statistics, 

High School Longitudinal Study of 2009 (HSLS:09) Base Year (2009), First Follow-up 
(2012, 2013), Transcript (2013, 2014). 

 
Table 3 shows scores for 5 students on the variables of interest for this study. The first three 
students have the same number of math credits. Each has the same Level score, 0.31 (4/13). 
Thus, they are quantitatively the same relative to their amount of mathematics course-work. 
Note, however, that the students take different courses. As the Student number increases 
(from 1-3), the student takes more advanced courses. Note, too, that the students Pattern 
scores rise as does their 11th grade mathematics test score as we go from Student1 to 
Student3. Our Pattern score appears to align itself well with course content (and 
achievement). Student4 has the most course credits, but most of their coursework is in 
lower-level classes. Their Pattern score is lowest of the 5 students listed here as is their 
11th grade math test score. Finally, Student5 has the fewest number of math credits for 
courses, but has credits in the most advanced math course listed (AP/IB Calculus). Student5 
has the highest Pattern score and the highest test score of the 5 students listed here. 
 
Table 4 shows the variance in 11th grade math test score accounted for by Level and Pattern, 
solo, jointly, and incrementally. As a sole predictor, Level accounts for 9% of the variance 
of the test score, while Pattern by itself accounts for 33.6%. Both variables together (as 
does the 13 predictors in Table 1) account for 39.9% of the variance in the 11th grade math 
score (39.94%). Finally, if Level is already in the model Pattern accounts for an additional 
30.9%. In contrast, if Pattern is already in the model Level accounts for an additional 6.3%. 
 

Table 4 
Variance Accounted for by Level and Pattern Relative to the 11th Grade Math Test 

As Sole   Unique 
Predictor  Variance 

Level     9.0%     6.3% 
Pattern  33.6%     30.9% 

 
Total Variance 39.9% 

 
SOURCE: U.S. Department of Education, National Center for Education Statistics, 

High School Longitudinal Study of 2009 (HSLS:09) Base Year (2009), First Follow-up 
(2012, 2013), Transcript (2013, 2014). 
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5. Discussion 

 

Davenport and Davison (2002) give a procedure that allows one to quantify qualitative 
aspects of a set of predictors relative to a criterion. This works because Pattern is a profile 
match statistic that accesses the match (covariance) of the profile of the individual’s scores 
to the optimal regression weights predicting success for the criterion. It quantifies the 
relationship of the pattern of scores in the predictors with the optimal pattern of the 
predictors as determined by their regression weights. If a student’s profile of scores is 
similar to what is optimal (e.g. advanced mathematics courses), their Pattern score is 
higher. Moreover, we showed in Table 3 the relationship between quantification of the 
types of math courses taken (as represented by Pattern) and the actual courses taken by 
students. 
 
We also used Level and Pattern to show that type of mathematics course taken was more 
predictive than amount of mathematics courses taken. Note that if there is no additional 
qualitative information in the predictors Level will be a sufficient predictor of the criterion. 
To the extent that the predictors are differentially predictive, Pattern will add predictability 
incrementally over Level (see Table 4). 
 
The procedure given is general and will work for any set of predictors. Thus, we can always 
parse degree of predictability due to quantitative versus qualitative aspects of the 
predictors. While Davison & Davenport (2002) discussed only regression models, the 
approach can be extended. The analysis  has been extended to generalized linear probit and 
logit analyses with maximum likelihood estimation (Booth, Murray, Overdun, Matthews, 
& Furnham, 2015; Davison, Jew, & Davenport, 2014; Morse, Daegling, McGraw, & 
Pompish, 2013), to latent variable regression models in structural equations modeling 
(Davison, Chang, & Davenport, 2014), to canonical regression analysis (Aragon, 
Culpepper, McKee, & Perkins, 2014), and to meta-analyses (Wiernik, Wilmot, Davison, 
& Ones, in press).  
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