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Abstract
Daily time series have increasingly appeared on the radar of official statistics in recent years, mostly
as a consequence of the exploration of new digital data sources for information that could be used
to augment established forecasting models for headline indicators, such as quarterly GDP. Many
of these daily series are seasonal and thus in need for seasonal adjustment. However, traditional
methods in official statistics often fail to model and seasonally adjust them appropriately. The main
reason is that granular daily data typically exhibit features that are not observable in monthly and
quarterly data. Prime examples include irregular spacing, coexistence of multiple seasonal patterns
with integer versus non-integer seasonal periods and potential cross-dependencies as well as small
sample issues, such as missing data. We provide an overview of recent modeling and seasonal ad-
justment approaches that are capable of handling these distinctive feature, or at least some of them,
and illustrate selected methods using daily realized electricity consumption in Germany. Special
attention is paid to the extended X-11 and ARIMA model-based approaches and to structural time
series models as implemented in a preliminary version of JDemetra+ 3.0 that is accessible via R.

Key Words: High-frequency data, JDemetra+, seasonality, signal extraction, time series decom-
position

1. Introduction

Official statistics have been concerned with the collection, seasonal adjustment and dis-
semination of monthly and quarterly time series for a long time. However, the recent emer-
gence of new information technologies, digital data sources and automated data collection
methods has led to an increased availability of daily and other types of high-frequency
time series observed at intra-monthly intervals. Although these time series typically have a
rather short history and sometimes a rather experimental character, several feasibility stud-
ies have explored ways of using them to complement established low-frequency surveys
in Germany by augmenting the calculation of early estimates and/or improving timeliness.
For example, Askitas and Zimmermann (2011) condense real-time truck toll data recorded
by the German GPS-based toll collection system into a monthly index and show that this
series is a good early indicator of the monthly German production index, which itself is a
well-known leading indicator of quarterly gross domestic product (GDP). More recently,
Dickopf et al. (2019) integrate daily energy production in Germany into a GDP nowcasting
model that provides first estimates already 10 days after the end of a reference quarter.

The recent outbreak of the COVID-19 pandemic additionally fueled the demand of
many data users for more timely, more frequent and more granular data to monitor the
disruptions to virtually all economic sectors, especially public health and traffic as well as
the labor market. In Germany, a weekly activity index (WAI) has been established that es-
sentially merges information from selected daily and weekly indicators as well as monthly
industrial production and quarterly GDP (Deutsche Bundesbank, 2020). In its current com-
position, the WAI contains six daily indicators (air pollution as measured by concentra-
tion of nitrogen dioxide, consumer confidence, number of pedestrians in selected shopping
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streets in major German cities, realized electricity consumption, truck toll mileage index,
worldwide numbers of passenger and cargo flights) and three weekly Google trends series
(search terms “short-time work”, “state support” and “unemployment”).1 Most of these
high-frequency time series contain seasonal fluctuations that need to be removed prior to
the WAI calculation.

In general, however, many daily and weekly economic time series exhibit stylized facts
that are often also inherent in but usually not directly measurable from monthly and quar-
terly data, making their modeling and seasonal adjustment much more challenging. The
main objective of this paper is thus to provide a brief overview of common features of daily
data (Section 2) and a review of some recent developments in the modeling and seasonal
adjustment of such data (Section 3), being somewhat similar in spirit to Findley (2005).
The approaches currently implemented in the JDemetra+ (JD+) software package are then
applied to daily realized electricity consumption in Germany for the purpose of illustration
(Section 4), followed by some final remarks and conclusions (Section 5).

2. Data Peculiarities

The stylized facts of daily economic time series are first exemplified (Section 2.1) and then
discussed from a more general perspective (Section 2.2). Afterwards, the key challenges in
modeling daily data are summarized (Section 2.3).

2.1 A Motivating WAI Example

Figure 1 reveals three facets of the seasonal profile of daily electricity consumption in Ger-
many, measured at terawatt hours (TWh). Panel (a) shows that electricity consumption
basically is higher in the winter and lower in the summer. Given usual temperature curves
and daylight hours in Germany, this pronounced U -shaped day-of-the-year (DOY) pattern
does not come as a surprise. However, it is interrupted every year by a deep spike trough
between Christmas and New Year and clearly affected by the start of the COVID-19 lock-
down on 23 March 2020, which also breaks the slight upward trend in the series.

Panel (b) depicts the intra-monthly dynamics with the aid of day-of-the-month (DOM)
boxplots. Although tending to be somewhat lower around the turn of the month and show-
ing some signs of time-varying volatility, electricity consumption has an almost constant
median level and an almost symmetric distribution for the majority of days and thus does
not exhibit a very distinct DOM pattern.

Panel (c) zooms in on the most recent observations, revealing a persistent day-of-the-
week (DOW) pattern. Electricity consumption is relatively high from Monday until Friday,
mostly because of commercial consumers being active. Then it drops on Saturday and even
more so on Sunday, where the share of private consumption is usually highest. However,
this stable pattern is out of play from Christmas until New Year and also visibly affected by
both fixed and moving holidays related to the German national calendar. Also, its volatility
seems to decrease in the wake of the COVID-19 lockdown.

Figure 2 provides further insights into the volatility dynamics of the DOW pattern. The
grouped DOW boxplots shown in Panel (a) indicate that the DOW volatility varies with the
level of the DOY pattern as it is lower in the summer (group “April to September”), espe-
cially on weekends, and higher in the winter (group “October to March”), while remaining

1The WAI is still work in progress and therefore constantly undergoing revision and, if necessary,
adjustment. Further methodological information as well as Excel data sheets can be obtained from
www.bundesbank.de/wai.
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(a) Day-of-the-year (DOY) pattern: 1 January 2015 to 30 August 2020

Start ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart ofStart of
COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19COVID−19


0.9

1.1

1.3

1.5

2015 2016 2017 2018 2019 2020

T
W

h

(b) Day-of-the-month (DOM) pattern: 1 January 2015 to 30 August 2020
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(c) Day-of-the-week (DOW) pattern: 1 December 2019 to 30 August 2020
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Figure 1: Seasonal profile of daily realized electricity consumption in Germany. Gray
verticals in Panel (c) correspond to fixed (solid) and moving (dashed) holidays.

 
1973



the pattern’s characteristic shape. Note that these joint dynamics violate the orthogonality
assumption about unobserved components that is often the default in the seasonal adjust-
ment approaches applied in official statistics.

In addition, DOW volatility received a noticeable exogenous shock from the start of the
COVID-19 lockdown. Panel (b) shows that the weekly ranges of electricity consumption
lie consistently between 0.3 and 0.4 TWh, except for some dips around the turn of the year
and some peaks in first half of the year, but sharply drop to 0.3 TWh and even below in
2020 W13. The weekly standard deviations also decrease visibly from their usual level
between 0.12 and 0.16 TWh, albeit more gradually. Both measures, however, regain their
normal level towards the end of the observation span.

The reason for the decline of DOW volatility is exemplified in Panel (c), using the
weekly ranges. Both the weekly minima and maxima diminish as a result of the COVID-
19 lockdown. The former, which usually occur on Sunday, decrease to around 1.0 TWh,
a level they have reached multiple times in past years, especially during the springs of
2015 and 2016. However, the weekly maxima, which usually occur between Monday and
Friday, experience a sudden drop to an unprecedented spring level of around 1.3 TWh.
This is most likely a result of the national counteractions against the regional spread of the
COVID-19 pandemic, such as temporary closing of production places and increased use of
short-time work and teleworking, which in sum shifted a major share of consumption from
the commercial to the private sector. Panel (c) also shows that the weekly means are smaller
than weekly medians almost the entire time, highlighting again the persistent left-skewed
nature of the DOW pattern.

Overall, daily electricity consumption contains a complex seasonal profile that is clearly
dominated by the DOW and DOY patterns, whereas the contribution of the DOM pattern is
relatively small. In addition, calendar effects of both fixed and moving holidays are directly
observable due to data granularity.

2.2 General Data Issues

The previous example already highlighted some characteristic features of daily data with
emphasis on seasonal dynamics. It also demonstrated that such data is likely to con-
tain structures that usually are either unobservable or assumable yet immeasurable at the
monthly and quarterly scales and thus may complicate modeling. This section therefore
categorizes and discusses key common properties of daily data from a broader perspective,
taking into account related research conducted by Cabrero et al. (2009), Cox et al. (2020),
De Livera et al. (2011), Hyndman and Fan (2010), Koopman and Ooms (2003, 2006),
Koopman et al. (2007), Ladiray et al. (2018), McElroy and Monsell (2017), McElroy et al.
(2018), Ollech (2018) and Weinberg et al. (2007), amongst others.

Unadjusted Data The number of days naturally varies across months, quarters and years
in most calendars and so does the number of observations in daily time series, leading
to irregularly spaced data. This effect is not limited to equidistant time series as it also
shows up quite often in monetary daily data recorded on non-equidistant banking days.
Daily time series may also suffer from various small sample issues, such as missing, zero
or close-to-zero observations and high sensitivity to outliers. The latter is not restricted to
types well-known from monthly and quarterly data, such as short-lived additive or pulse
outliers and long-lasting level breaks. Instead, daily time series are also prone to contain
new and more complex outlier types with, for example, pyramidal or wavy shapes. All
these issues potentially add up to irregular movements that are much more volatile and
therefore at higher risk of heteroskedasticity compared to monthly and quarterly data.
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(a) Time-variation: 1 January 2015 to 30 August 2020
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(b) Sensitivity to exogenous shocks (part I): 2015 W02 to 2020 W35
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(c) Sensitivity to exogenous shocks (part II): 2015 W02 to 2020 W35
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Figure 2: DOW volatility aspects of daily realized electricity consumption in Germany.
Lines in Panel (b) correspond to weekly ranges (solid) and standard deviations (dashed).
Lines in Panel (c) correspond to weekly maxima (top solid), medians (dotted), means
(dashed) and minima (bottom solid).
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Seasonal Variation The seasonal dynamics of daily time series are often generated by a
set of superimposed seasonal patterns with varying degrees of complexity. Each seasonal
pattern is composed of several seasonal cycles associated with the pattern’s chief seasonal
harmonic and its higher frequency aliases.2 For example, the DOW pattern contains three
seasonal cycles associated with movements that occur once, twice and thrice a week.

The seasonal patterns are directly affected by irregular spacing in two ways. First, each
seasonal period can be an integer or non-integer. For example, the DOW pattern always
consists of 7 days, whereas the DOM and DOY patterns have long-term average durations
of 30.4369 and 365.2425 days in the 400-year cycle of the Gregorian calendar. Second,
as a consequence, the chief harmonics of the seasonal patterns fail to be integer multiples
of each other and therefore the daily patterns (or, more precisely, the seasonal cycles of
different seasonal patterns) are not nested. Note that the underlying varying-length-of-
period effect is also inherent in monthly and quarterly data but removed as part of the
calendar variation.

Overall, the seasonal profile of daily time series is highly complex due to the coexis-
tence of multiple seasonal patterns. This complexity also increases the chances of cross-
dependencies between a seasonal pattern or cycle and any other unobserved component,
including other seasonal patterns.

Calendar Variation The granularity of daily time series enables direct observation and
measurement of calendar-related dynamics with pinpoint accuracy. This applies not only to
the effects of fixed and moving holidays, that are typically measured indirectly in monthly
and quarterly data, but also to the anticipatory and catch-up effects of related events, such
as bridging days. On the flip side, the granularity of daily data may pose a potential source
of interaction with the seasonal profile in general and the DOW pattern in particular. The
reason is that the effects of fixed holidays may depend on the particular days of the week
which the holidays fall onto. For example, Christmas effects may be noticeably different for
24 to 26 December falling onto Tuesday through Thursday versus Friday through Sunday.

The calendar-related dynamics may become even more complicated in countries where
secular and religious activities mainly follow different calendars. Economic time series,
especially those primarily driven by cultural and social events, such as private consumption,
may then be affected by the Gregorian calendar and, for example, the Hijri calendar, which
is approximately 11 days shorter. Such dual-calendar effects can also be created by the
Chinese, Hindu and Jewish calendars and are likely to introduce additional non-nested
seasonal patterns into the data.

2.3 Challenges In Model Building

The peculiarities highlighted in the previous sections make it extremely difficult to model
daily data, especially with approaches well-established in official statistics for monthly and
quarterly time series. This section therefore categorizes key steps in model building and
elaborates the challenges of modeling daily data. It also mentions solutions on occasion,
bearing in mind that these are usually not generic but depend on the particular problem at
hand.

Data Regularization The varying number of daily observations per month and quarter
raises the question if the data should be regularized prior to modeling, especially when the

2The reasoning behind this wording is formally explained by Equations (2) and (3). Note that it also applies
to monthly and quarterly time series as the latter, for example, contain a single yearly seasonal pattern made of
two seasonal cycles with two- and four-quarter durations.
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modeling approach is incapable of dealing with non-integer seasonal periods. For example,
Ollech (2018) uses cubic splines to stretch daily currency in circulation to 31 observations
in each month, if necessary. Similarly, Koopman and Ooms (2003, 2006) incorporate a
time transformation into a structural time series model for daily Dutch tax revenues and
introduce artificial mid-month missing values in order to obtain 23 banking days in each
month. The missing values are then imputed straightforwardly by the Kalman filter and
smoother during model estimation.

If missing values occur rather occasionally – for example, as a result of some deficiency
in the reporting process – simpler imputation methods may be sufficient. Examples include
carrying the last observation forward and linear interpolation.

Model Calibration Besides the usual suspects regarding appropriate specification of
unobserved components, the correct measurement of seasonal and especially calendar-
induced dynamics may pose additional difficulties for two reasons. First, finding (and
testing) appropriate regression variables for fixed and moving holidays including related
special days, such as bridging days, or longer pre- and post-holiday phases of interest can
quickly become a time-consuming task even when working only with dummy variables.
However, more nuanced regression variables are likely to improve modeling performance
and thus should be checked as well. Candidates include pyramidal variables that capture
linearly increasing and decreasing holidays effects, potentially with different slopes, and
non-linear versions with time-varying slopes. Note that a similar comment applies to out-
lier specification.

Second, calendar variation that originates from fixed holidays is closely entangled with
the seasonal DOY pattern. Disentangling the two dynamics once again requires appropriate
specification of either component. However, when aiming at seasonal adjustment, it could
also be postulated that such calendar variations belong to those calendar-induced effects
that are already captured by the DOY pattern. In this case, they will be extracted by the
respective seasonal filter at a later stage and therefore tailored regression variables are not
needed in the model.

Overall, the granularity of daily data enforces larger models with more parameters com-
pared to monthly and quarterly data. This directly raises the question of how to balance
model accuracy against model parsimony and flexibility. In this regard, it should also be
kept in mind that larger models bear a higher risk of violating the orthogonality assumption
that is often imposed on unobserved components by default. Given that models with non-
orthogonal components tend to be even more complex, the willingness to sacrifice some
accuracy seems inevitable.

Model Estimation Given model complexity in general and the coexistence of multi-
ple seasonal patterns alongside other granular dynamics in particular, the benefits of se-
quential versus simultaneous estimation of unobserved components should be weighed
up. Either way, another separability issue arises from the fact that annual seasonality
can be easily confused with trend behavior in daily data since the DOY chief harmonic
ωDOY = 2π/365.2425 ≈ 0.017 is very close to the trend frequency ω = 0. Utilizing
the concept of canonical atomic models, McElroy and Monsell (2017) and McElroy et al.
(2018) advocate the application of the Hodrick-Prescott filter to the combined component
in order to disentangle the two dynamics, which, however, is difficult even in fairly long
time series.

Data availability brings up another dilemma. On the one hand, only a short history,
such as a few years, of daily observations is usually available nowadays but a long history
is needed to estimate reliably all effects, especially cross-dependencies. On the other hand,
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a long data history may complicate likelihood evaluation and make it even infeasible in
practice for some model-based approaches.

Model Stability The estimated parameters of a given model usually undergo revisions
if the model is re-estimated with updated data. These revisions can be quite large even if
only a few additional daily observations have become available. To foster model stability in
the long run, the inclusion of borderline significant effects should be avoided. This applies
especially to outliers and calendar regression variables. For that reason, default critical
values and thresholds employed, for example, in automatic outlier detection and routine
significance tests should be suited to daily data, as the established defaults for monthly and
quarterly time series are likely to be inappropriate.

3. Seasonal Adjustment Methods

Virtually all approaches designed for the seasonal adjustment of monthly and quarterly data
and used routinely in official statistics assume orthogonality of unobserved components and
the existence of a single seasonal pattern with an integer period. As a consequence, they are
not “ready for action” when working with daily data. To overcome the mismatch between
established default assumptions and daily data dynamics, the established approaches could
be modified accordingly or new approaches could be considered.

This section provides overviews of either strand of research. A general univariate
modeling framework and some basic terminology is introduced first (Section 3.1). After-
wards, current JD+ implementations of modified X-11 and ARIMA model-based (AMB)
approaches as well as structural time series (STS) models are presented (Section 3.2), fol-
lowed by a selection of new approaches that are probably applied less frequently in official
statistics (Section 3.3).

3.1 A General Additive Model

Let {yt} denote a daily time series and assume that it can be decomposed additively, maybe
after taking logs, into latent components according to

yt = tt + st + ct + it. (1)

The sequence {tt} covers trend behavior and periodic cyclical movements with a minimum
duration of one year. The two dynamics can form either a joint component, the trend-cycle,
or two separate components. The sequences {st} and {ct} capture seasonal and calendar
variation and {it} is the irregular component that absorbs stationary transient intra-year
fluctuations and will be white noise or some low-order MA process in most cases.

To further portray the seasonal component, we distinguish between three types of sea-
sonal dynamics:

• Stable seasonality refers to seasonal behavior that can be represented by a strictly
periodic function of time.

• Moving seasonality refers to seasonal behavior that is characterized by rather gradual
changes in seasonal amplitude and/or phase over time.

• Constrained seasonality refers to rather abrupt and potentially short-lived changes in
stable and/or moving seasonality over time.
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This nomenclature allows the seasonal component to be further decomposed into a set of
additive seasonal patterns according to

st =
∑
τi∈S

s
(τi)
t , (2)

where S is a general pattern index set, such as S = {7, 30.4369, 365.2425}, and {s(τi)
t }

is the seasonal pattern that captures stable, moving and constrained seasonality associated
with the seasonal period τi ∈ S.

Each seasonal pattern in (2) is associated with a set of seasonal frequencies λ(τi)
j =

2πj/τi for j ∈ {1, . . . , bτi/2c}, where bxc is the largest integer not exceeding x. It can
thus be further atomized according to

s
(τi)
t =

∑
j

s
(τi)
j,t , (3)

where {s(τi)
j,t } is the periodic swing that is generated by λ(τi)

j and therefore occurs j times
during a period of τi days. Since these atomic swings are technically cycles, they will be
referred to as seasonal cycles.

Finally, we briefly illustrate the nomenclature of seasonal dynamics. An unconstrained
stable seasonal pattern can be represented by (3) with the j-th seasonal cycles given by

s
(τi)
j,t = αj cos(2πjt/τi) + βj sin(2πjt/τi). (4)

In this case, unconstrained moving seasonality can be added by introducing time-variation
into the amplitudesαj and βj , e.g. by specifyingαj,t and βj,t as independent random walks,
or by switching to a stochastic trigonometric representation. Constrained seasonality can be
incorporated by decomposing the seasonal pattern, or selected seasonal cycles, according
to

s
(τi)
t = s

(τi)
t × 1C(t) + s

(τi)
t × 1C̄(t), (5)

where C is the set of dates where the constraint is in effect, 1C(·) is the indicator function
over this set, that is 1C(t) = 1 if t ∈ C and zero otherwise, and C̄ is the complement of C.
The specification of C may be driven by exogenous shocks or the endogenous dynamics of
other unobserved components, such as seasonal cycles belonging to other seasonal patterns
and the calendar component.

3.2 JD+ Approaches

JD+ implements the X-11 and AMB approaches to the seasonal adjustment of monthly and
quarterly time series, which can be accessed via the graphical user interface. However,
the Java source code also contains modified routines for daily (and weekly) data, including
a structural time series (STS) modeling framework. These routines are accessible via the
{rjdhf} and {rjdssf} R packages and some methodological details are described by
Ladiray et al. (2018).3

3The R packages can be downloaded from https://github.com/palatej/rjdhighfreq and
https://github.com/nbbrd/rjdssf. Alternative implementations of STS models are described by
Commandeur et al. (2011).
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3.2.1 Extended X-11 Approach

The modified X-11 approach sticks to the basic principle of the genuine X-11 method
(Shiskin et al., 1967). Being essentially a 9-step procedure, it sequentially applies linear
trend and seasonal filters to the linearized observations in order to extract estimates of the
trend-cyclical, seasonal and irregular components in (1). To this end, the extended X-11
approach relies on well-known tools, such as symmetricm×nmoving averages, Henderson
filters, 3 × k seasonal filters, asymmetric Musgrave variants and extreme value detection
based on lower and upper σ-limits. However, it differs noticeably from the genuine X-11
method in three respects.

The first key difference is the addition of various trend extraction filters derived from
reproducing kernel Hilbert spaces (RKHS). Basically, such a Hilbert space is characterized
by a kernel that reproduces every function of the space via an inner product. The RKHS
methodology thus enables the grouping of linear filters into hierarchies with respect to
polynomial degree and fidelity and smoothing criteria. Dagum and Bianconcini (2008,
2015) derive RKHS representations of the Henderson and Musgrave trend filters and show
that they outperform the original filters in terms of signal passing, noise suppression and
size of revisions. Dagum and Bianconcini (2016) discuss this topic in the broader context
of real-time trend-cycle estimation.

The second key difference is enforced by the coexistence of multiple seasonal pat-
terns in (2). Essentially, a global seasonal-irregular component is obtained after detrend-
ing the linearized observations. This component is then split into local seasonal-irregular
components, using simple moving averages of lengths dictated by the seasonal periods
τi ∈ S. Finally, estimates of the seasonal patterns in (2) are obtained from smoothing the
local seasonal-irregular components.4 To this end, the specified 3 × k seasonal filter with
k ∈ {1, 3, 5, 9, 15} is applied if τi ∈ N and a hybrid seasonal filter is automatically selected
if τi /∈ N. In the latter case, the selection is essentially based on the product of τi and half
the length of the specified filter.

The third key difference is triggered by irregular spacing. Recall that the actual number
of observations per seasonal period varies over time whenever τi /∈ N, leading to ragged
right edges in the famous X-11 tables and thus rendering column-wise smoothing impossi-
ble. This is especially burdensome for table D8, the matrix representation of the seasonal-
irregular component. For the DOM pattern, for instance, the row-wise number of missing
values at the end of the month will range from 0 in months with 31 days to 3 in non-leap-
year Februaries. The extended X-11 approach implements two imputation techniques for
handling this issue. Missing values can be either interpolated per column, which is advan-
tageous in case of strong DOM or DOY effects, or stretched within periods and interpolated
per row, which is advantageous in case of strong end-of-month or end-of-year effects. The
nature of the seasonal effect thus determines the appropriate imputation technique.

3.2.2 Extended AMB Approach

The extended AMB approach essentially translates the ARIMA model decomposition al-
gorithm developed by Burman (1980) to the case of fractional Airline models. Its key idea
can be summarized in four steps. First, an ARIMA model is fit to the linearized obser-
vations; second, the estimated model is decomposed into canonical ARIMA models for
the unobserved components in (1) – or, more generally, for the signal and noise – by em-
ploying a factorization of the (stationary and non-stationary) AR polynomials and a partial
fraction expansion of the MA part; third, the polynomials of the canonical ARIMA models

4In practice, a sequential extraction of seasonal patterns is often advocated, starting with the smallest sea-
sonal period.
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are rearranged to form the signal’s Wiener-Kolmogorov (WK) filter; fourth, the estimated
signal is obtained from applying the WK filter to the observations. Note that (fractional)
Airline models contain only non-stationary AR polynomials, the roots of which can al-
ways be allocated to the trend-cyclical and seasonal components. As a consequence, the
irregular component in (1) does not carry transitory movements and thus is white noise by
construction.

The fractional Airline model also lays the base for a TRAMO-like pretreatment routine
that includes estimation of user-defined regression effects and automatic outlier detection.
The full regARFIMA pretreatment model is given by

(1−B)
∏
τi∈S

(1−Bτi)
{
yt − x>t β

}
= (1− θ1B)

∏
τi∈S

(1− θτiBτi){εt}, (6)

where x>t = (c>t ,o
>
t ) is the vector of regression variables associated with calendar and

outlier effects,5 β> = (β>c ,β
>
o ) is the vector of unknown time-constant calendar and

outlier effects and B is the backshift operator. To define fractional differencing, note that
Bτi = BbτicBαi with αi = τi − bτic ∈ [0, 1) and Bαi ≈ (1 − αi) + αiB according to
the first-order Taylor approximation at 1. The fractional differencing operator can thus be
rewritten as

1−Bτi ≈ 1− (1− αi)Bbτic − αiBbτic+1. (7)

If τi ∈ N, then αi = 0 and (7) collapses to the ordinary differencing operator. This
Taylor logic also applies to the seasonal MA polynomials occurring on the right-hand side
of (6). For example, the fractional MA polynomial associated with the DOY pattern is
approximated by

1− θDOYB
365.2425 ≈ 1− 0.7575 θDOYB

365 − 0.2425 θDOYB
366.

For daily data, however, the Burman-like decomposition algorithm can become un-
stable quite quickly. For that reason, model (6) is put into state space form (Gomez and
Maravall, 1994) and estimated with a modified version of Koopman (1993)’s disturbance
smoother that includes polynomial reduction and diffuse square root initialization. Given
an estimator β̂ of the unknown regression effects, the estimated calendar and outlier com-
ponents of model (1) are given by ĉt = c>t β̂c and ôt = o>t β̂o in case of an additive
decomposition and by ĉt = exp {c>t β̂c} and ôt = exp {o>t β̂o} in case of a multiplicative
decomposition.

3.2.3 Structural Time Series Models

STS and state space models have been popularized by Harvey (1989) and JD+ adopts many
key concepts and routines from Durbin and Koopman (2012). The general idea is to spec-
ify a model for each unobserved component in (1) that reflects a priori beliefs about the
component’s dynamics. The component models then dictate the bottom-up model for the
observations and its state space representation which is finally estimated with some recur-
sive Kalman filtering and smoothing technique.

The trend-cyclical component is often given by

tt ≡ µt + ψt,

where {µt} is a time-varying level and {ψt} denotes a (rather optional) cycle associated
with some non-seasonal frequency λc ∈ (0, π/τ?) for some threshold τ? = τ?(S) that

5The current implementation enables automatic detection of additive outliers, level shifts and wave-like
outliers, which are defined by the sequence (0, 1,−1, 0) around the outlier date.
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depends on the seasonal periods actually occurring in (1). The level component is usually
specified in more detail. A prime model is the local linear trend

µt+1 = µt + βt + ηt,

βt+1 = βt + ζt,
(8)

where {ηt} and {ζt} are independent zero-mean Gaussian white noise processes with finite
variances σ2

η > 0 and σ2
ζ > 0. A local linear trend thus follows a random walk with a

time-varying drift, or slope, which itself is modeled as a random walk. Other popular level
models in the vein of (8) include the local level (absence of slope {βt}), the local level with
drift (σ2

η > 0 and σ2
ζ = 0) and the smooth trend (σ2

η = 0 and σ2
ζ > 0).

The cycle component is usually specified in autoregressive or trigonometric form. For
example, the latter is given by(

ψt
ψ?t

)
= ρ

(
cosλc sinλc
− sinλc cosλc

)(
ψt−1

ψ?t−1

)
+

(
κt
κ?t

)
, (9)

where ρ ∈ (0, 1) is a damping factor that controls the cycle’s persistence and {κt} and
{κ?t } are two mutually uncorrelated Gaussian white noise processes with common finite
variance σ2

κ > 0.
Assuming τi ∈ N for all τi ∈ S and switching to standard STS notation, each seasonal

pattern in (2) is modeled as s(τi)
t ≡ γ(τi)

t with

γ
(τi)
t = e>1,τiΦ

(τi)
t , (10)

where ek,n is the k-th unit vector of length n and Φ
(τi)
t is the column vector of the τi

seasonal effects. The latter is assumed to follow the model

Φ
(τi)
t = PΦ

(τi)
t−1 + ω

(τi)
t , ω

(τi)
t

iid∼ N
(
0, σ2

ω(τi)
×Ω(τi)

)
, (11)

where P is a known permutation matrix of appropriate dimensions that shuffles the first
element of Φ

(τi)
t−1 to the bottom of Φ

(τi)
t . Furthermore, σ2

ω(τi)
> 0 for all τi ∈ S and

each matrix Ω(τi) is constructed to assure that the seasonal effects will add up to zero over
any consecutive τi values. The representation (10) and (11) was introduced by West and
Harrison (1997). JD+ implements the crude, dummy, Harrison-Stevens and trigonometric
seasonal models. An in-depth description of these models is given by Proietti (2000),
including the exact specification of Ω(τi) in (11).

Calendar variation can again be taken into account with the aid of appropriate regres-
sion variables. This topic, however, is not discussed here as (6) will provide a common
pretreatment model in our applications. The trend and seasonal dynamics specified in (8)
to (11) are now put into a univariate linear Gaussian state space model. This model usually
reads

yt = Z>t αt + εt, (12)

αt+1 = Ttαt + Rtηt, (13)

where Zt ∈ Rm is the design vector,αt ∈ Rm is the state vector, Tt ∈ Rm×m is the transi-
tion matrix and Rt ∈ Rm×r is a selection matrix that picks the r ≤ m elements of the state
vector with non-zero disturbances. Furthermore, the observation and state disturbances are
distributed as εt

iid∼ N (0, σ2
ε) and ηt

id∼ N (0,Qt) with Qt ∈ Rr×r. Note that the former
disturbances replace the irregular component in (1).
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However, JD+ actually implements a state space framework which puts the observation
disturbances in the state vector. The standard model (12) and (13) thus becomes

yt = Z̃>t α̃t, (14)

α̃t+1 = T̃tα̃t + R̃tη̃t, (15)

with Z̃t = (Z>t , 1)>, α̃t = (α>t , εt)
>, η̃t = (η>t , εt+1)>

id∼ N (0, Q̃t) and

T̃t =

(
Tt 0m
0>m 0

)
, R̃t =

(
Rt 0m
0>r 1

)
, Q̃t =

(
Qt 0r
0>r σ2

ε

)
,

where 0n is a column vector of n zeros.
To give a brief example, assume we wish to specify a model for {yt} where the trend

follows the local level version of (8) and the seasonal component contains only a single
seasonal pattern with an integer seasonal period τ ∈ N. In this case, the observation
equation is given by (14) with Z̃t = (1, e>1,τ−1, 1)> and α̃t = (µt, γt, . . . , γt+τ−2, εt)

>

and the state equation is given by (15) with

T̃t =

 1 0>τ−1 0
0τ−1 Tγ 0τ−1

0 0>τ−1 0

 , R̃t =


e>1,3

1τ−2 ⊗ 0>3
e>2,3
e>3,3

 ,

η̃t =

 ηt
ωt
εt+1

 , Q̃t =

σ2
η 0 0

0 σ2
ω 0

0 0 σ2
ε

 ,

where 1n is a column vector of n ones, ⊗ denotes the Kronecker product and

Tγ =

(
0τ−2 Iτ−2

−1>τ−1

)
,

with In being the n-dimensional identity matrix. Note that the system matrices are now
invariant over time and that the inner block matrix Tγ essentially shuffles the τ seasonal
effects similar to the permutation matrix P in (11). Also, its bottom row guarantees that
(1 +B + · · ·+Bτ−1) γt = ωt holds for all t. In the case of multiple seasonal patterns, all
system vectors and matrices are extended appropriately. For example, the transition matrix
T̃t then contains multiple inner block matrices Tγ(τi) arranged in block-diagonal fashion.

Kalman filtering and smoothing techniques are used to estimate the state space model
(14) and (15). JD+ implements the standard algorithms (Durbin and Koopman, 2012) as
well as faster variants, such as Chandrasekhar-type recursions for time-invariant models
and array filters (Morf et al., 1974; Morf and Kailath, 1975), alongside diffuse (Ansley and
Kohn, 1990; Koopman and Durbin, 2003) and augmented initializations (de Jong, 1991; de
Jong and Chu-Chun-Lin, 2003) and square root versions thereof.

3.3 Other Approaches

Besides the JD+ approaches, several other methods are qualified to model daily and other
types of high-frequency data, even if they have not been designed primarily for this partic-
ular purpose. Focusing on the specification of seasonal dynamics, this section discusses the
key ideas and concepts of selected alternative approaches.
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3.3.1 Unobserved Component Models

The approaches presented in this section follow the same bottom-up modeling strategy as
the STS approach: the latent component models are specified first and then aggregated to
form the model for the observed time series. Conceptual overlaps with STS models are
thus inevitable.

Exponential Smoothing Exponential smoothing is a forecasting technique based on mov-
ing averages with exponentially decaying weights. Examples include the Holt-Winters
method (Holt, 1957; Winters, 1960) and the double and triple seasonal methods (Taylor,
2003, 2010). As demonstrated by Ord et al. (1997) and Hyndman et al. (2002), a common
theoretical foundation for exponential smoothing methods is provided by the innovations
state space framework, which also admits the general representation (12) and (13) but has
the key difference that the observations and all unobserved components are driven by the
exact same disturbances. For that reason, such models are sometimes referred to as single-
source-of-error models.

Some efforts have been made recently to increase model flexibility in general and to
incorporate a wider variety of seasonal patterns in particular. Gould et al. (2008) and
Hyndman et al. (2008)6 extend the double seasonal model to the case of |S| > 2 under
the restriction that the seasonal patterns are nested and associated with integer seasonal
periods. De Livera et al. (2011) further generalize this approach by developing the BATS
and TBATS models that can handle multiple nested and non-nested seasonal patterns with
integer and non-integer seasonal periods. Here, TBATS is an acronym for the model’s key
features: trigonometric seasonal representation, Box-Cox transformation, ARMA distur-
bances, trend and seasonal components. Being similar to (9), the trigonometric representa-
tion of each seasonal cycle in (3) is given by(

s
(τi)
j,t

s
(τi),?
j,t

)
=

(
cosλ

(τi)
j sinλ

(τi)
j

− sinλ
(τi)
j cosλ

(τi)
j

)(
s

(τi)
j,t−1

s
(τi),?
j,t−1

)
+

(
γ

(τi)
1

γ
(τi)
2

)
ωt, (16)

where γ(τi)
1 and γ(τi)

2 are pattern-specific smoothing parameters and {ωt} is the common
single-source-of-error ARMA disturbance driven by Gaussian white noise.

The TBATS model is extendable in a variety of ways. For example, the Box-Cox
transformation could be replaced with the inverse hyperbolic sine transformation to fit time
series with zero or negative observations. Non-Gaussian disturbances and modifications
for multivariate time series could also be implemented within the general framework.

Atomic Seasonal Models Note that (16) specifies the same model for seasonal cycles
that belong the same seasonal pattern. Atomic seasonal models suggested by McElroy
(2017)7 are similar in spirit but differ from the single-source-of-error approach in two re-
spects: first, latent components are driven by individual uncorrelated innovations, as in
traditional STS models; second, each seasonal cycle within a given pattern follows a sepa-
rate model. Adopting the multivariate framework of McElroy (2017), the atomic model for
each seasonal cycle in (3) is given by

δλ
(τi)
j (B) s

(τi)
j,t = ε

(τi)
j,t , (17)

6Ox code is available under URL https://robjhyndman.com/publications/multiple-
seasonal-patterns. The {forecast} R package also implements some exponential smoothing meth-
ods.

7The {sigex} R package can be downloaded from https://github.com/tuckermcelroy/
sigex.
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where δω(B) = 1 − 2 cos(ω)B + B2 is a differencing operator at frequency ω ∈ [0, π],
{s(τi)
j,t } is a vector of seasonal cycles and {ε(τi)

j,t } is multivariate Gaussian white noise with

covariance matrix Σ
(τi)
j . Note that δω(B) yields a complete factorization of seasonal unit

root differencing polynomials. For example, 1−B7 = δ2π/7(B) δ4π/7(B) δ6π/7(B).
The atomic nature of (17) increases model flexibility as it allows the widths and heights

of spectral peaks to be controlled by multiple parameters and thus to be different within
each seasonal pattern. This especially facilitates coverage of rapidly moving seasonality,
which can be advantageous in times of strong economic changes. The multivariate nature of
the entire framework adds further flexibility as the latent components can be common, re-
lated or unrelated across original series, depending on whether their white noise is collinear
or, if not, has a non-diagonal versus diagonal covariance matrix. The generalized Cholesky
decomposition of the potentially rank-reduced covariance matrices also allows the latent
components to be interpreted as dynamic factor processes.

Model estimation can be done by OLS, method of moments (MOM) or maximum like-
lihood, which is evaluated with the Durbin-Levinson algorithm. Multivariate signal extrac-
tion is done with generalized Wiener-Kolmogorov (WK) matrix formulas that have been
derived by McElroy and Trimbur (2015) as a generalization of the univariate case studied
by McElroy (2008).

However, some refinements and modifications are needed to make atomic models and
the direct matrix formulas for signal extraction (McElroy and Trimbur, 2015) feasible for
daily data, or large data sets in general. McElroy and Monsell (2017) introduce canonical
atomic models for which it is impossible to extract any additional (additive) white noise.
As a consequence, the differenced canonical or stabilized latent components have MA-like
structures instead of being white noise. Utilizing the generalized Cholesky decomposition,
McElroy and Monsell (2017) also derive invertible MOM estimators that ensure positive
definiteness of the estimated covariance matrices. Finally, they advocate the application of
the generalized WK filter to the forecast-extended original series in combination with the
Hodrick-Prescott filter that eventually separates trend and DOY seasonality. The forecasts
are obtained from the invertible MOM estimates, using recursive one-step ahead predictions
provided by the Durbin-Levinson algorithm. An additional application of canonical atomic
models to daily data is given by McElroy et al. (2018).

3.3.2 Extended STL Approach

Cleveland et al. (1990) have propagated a seasonal-trend decomposition routine based on
LOESS regressions (STL)8 as an alternative to the X-11 method. Their procedure follows
the same iterative philosophy but can handle any single integer seasonal period greater
than one and missing values. STL essentially consists of an inner and outer loop, with
the former being responsible for sequential estimation of latent components and the latter
achieving extreme value correction, if necessary. Two variants have been developed re-
cently and implemented in R, each of which facilitates sequential extraction of multiple
seasonal patterns, an idea already alluded to by Cleveland et al. (1990).

The {rjdhf} package This package basically provides access to the Java translation
of the original STL procedure. The regARFIMA pretreatment model (6) can be used for
data linearization as well as the outer loop as a robust alternative for outlier treatment. The
user can also choose between an additive or multiplicative form of the latent component

8The original Fortran code has been translated to R via the stl() function of the {stats} package. An
enhanced version is available in the {stlplus} package.
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model (1) and – calling the STL routine |S| times – specify the number of neighboring
observations to be considered in the inner-loop local regressions for trend and seasonal
smoothing. Non-integer seasonal periods are automatically rounded down to the nearest
integer.

The {dsa} package Ollech (2018) embeds classical regARIMA pretreatment in a 4-
step STL-based procedure that utilizes (2) with S = {7, 31, 365}.9 In the first step, the
DOW pattern is extracted from the original series. In a second step, outlier and calendar
effects are estimated from the DOW-adjusted series. To this end, a non-seasonal regARIMA
model with deterministic trigonometric seasonal terms or a seasonal regARIMA model can
be used. Either way, built-in routines for automatic outlier detection and generation of
calendar regression variables and forecasts are readily available. In a third step, the DOM
pattern is extracted from the linearized DOW-adjusted series. Cubic splines are employed
to temporarily stretch shorter months to 31 days. In a fourth step, the DOY pattern is
estimated from the linearized DOM and DOW-adjusted series. Leap-year Februaries are
temporarily shortened by skipping the last day so that each year has 365 days. Empty spots
in the seasonally adjusted series related to skipped observations are finally filled with spline
interpolations.

3.3.3 STR Approach

Motivated by the STL philosophy, Dokumentov and Hyndman (2015) discuss a related
procedure in which the LOESS regression is essentially replaced with a more general ridge-
or LASSO-type regression model (STR).10 The trend component in (1) is assumed to evolve
smoothly over time, such as an I(2) process. The key difference, however, to all approaches
discussed so far is that the seasonal component is thought of as a two-dimensional array
that carries both visible and invisible seasonal dynamics. To elaborate this idea, assume
that the observed time series has a finite length T in (1), written as yT , and all seasonal
periods in (2) are integers. Then, each seasonal pattern can be expressed in matrix form as

S(τi) = [sk,l]
(τi)
k,l ∈ Rτi×T , (18)

where each column stores τi elements of the seasonal pattern at time t. Only one of those
elements is actually in play and the others are hidden. Thus, (18) connects to (2) via

s
(τi)
t = S

(τi)
τ?i (t),t

for some mapping τ?i : N 7→ {1, . . . , τi} that picks the pattern’s correct season at time t.
The STR approach also enables a more nuanced specification of the calendar compo-

nent as it explicitly distinguishes between three types of calendar regression variables ct.
The first type, called static predictors, has constant effects, as in (6); the second and third
types, called flexible and seasonal predictors, have time-varying effects that evolve in a
non-seasonal and seasonal manner, respectively.

The entire STR equivalent of model (1) can be recast as a linear regression model
that has the same likelihood function. The latter takes the form yext = Xβ + ε, where
yext = (y>T ,0

>
n )> for some proper choice of n and ε ∼ N (0, σ2

ε Σ) with Σ being a block
matrix that carries IT in the upper left block and zeros everywhere else. The STR model can
thus be estimated by some maximum likelihood technique. The underlying optimization
problem is expressed in terms of discrete second-order derivatives of the latent components,

9The {dsa} package is available for download on CRAN.
10The {stR} package is available for download on CRAN.
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which has two consequences. First, smoothness restrictions can be imposed on the seasonal
component in three dimensions: the time, time-season and season dimensions. Second,
fractional seasonal periods can be incorporated quite naturally. To see this, note that the
seasonal patterns (and all other latent components) can again be rewritten as functional
components, that is as linear combinations of smooth basis functions, such as Fourier terms,
splines or wavelets. This results in a valid reparametrization of the second-order derivative
matrices and ultimately a substantial reduction of computation time.

Depending on the optimization problem at hand, OLS-based techniques or numerical
solutions apply alongside an evaluation of cross-validated residuals to obtain estimates of
the smoothing parameters contained in the design matrix X and of σ2

ε. A robust STR
method is also available. In this case, the residuals ε are assumed to be Laplacian which
leads to an optimization problem of a quantile regression that can be solved only numeri-
cally.

3.3.4 Regularized Singular Value Decomposition

Lin et al. (2020) suggest a novel approach based on regularized singular value decompo-
sition (RSVD) that has been developed by Huang et al. (2008, 2009).11 Like the STR
approach, the RSVD method reorganizes the observations and latent components in matrix
form. The seasonal matrix, however, stores only the visible elements of (18). Assume that
the observations are again given by a finite sequence of length T and contain only a sin-
gle seasonal pattern with an integer seasonal period τ such that n = T/τ ∈ N. Ignoring
temporarily the calendar component, we may then rewrite (1) as Y = S + N, where

S = [sk,l]k,l ∈ Rn×τ (19)

is the seasonal matrix that stores the seasonal pattern related to the i-th subspan (week,
year, etc.) in its i-th row, and Y and N denote the observation and non-seasonal matrices
defined analogously. Accordingly, (19) is linked to (2) via

s
(τi)
t ≡ st = Sdt/τe,t−bt/τcτ ,

where dxe is the smallest integer not less than x. The seasonal matrix is further decomposed
according to

S = 1nf
> + UV>, (20)

where f = (f1, . . . , fτ )> is the vector of τ fixed seasonal effects and U ∈ Rn×r and
V ∈ Rτ×r are the matrices of left and right singular vectors of S that satisfy U>1n = 0n
and V>V = Ir for some r ≤ τ to ensure identifiability. Thus, (20) provides an explicit
modeling of stable and moving seasonality where the latter is actually represented as a
linear combination of r moving patterns, or layers, stored in V with corresponding span-
varying coefficients, or magnitudes, stored in U.

After selecting r, which can be achieved via the Bayesian Information Criterion, model
estimation proceeds in three steps. The first step aims at obtaining an estimate Û via a
loop-like sequential application of the RSVD method under a zero-sum restriction on the
layers in V. RSVD is applied to the column-wise demeaned observation matrix Y in the
first loop, which eliminates f , and to residual matrices in the next r−1 loops. If N contains
non-stationary dynamics, such as I(1) trends, then first-order column-differenced matrices
are considered and thus the zero-sum restriction on V is not needed. The second step aims
at jointly obtaining estimates f̂ and V̂. This is achieved by solving a least squares problem

11R code is available for download as part of the paper’s online appendix.
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that uses Û as a plug-in estimator and is subject to the zero-sum constraints f>1τ = 0 and
V>1τ = 0r. The estimates f̂ , Û and V̂ then yield Ŝ via (20). The third (rather optional)
step aims at obtaining parameter estimates of the non-seasonal component’s model.

The first step of this procedure can be slightly modified to incorporate constrained
moving seasonality. The RSVD method imposes a roughness penalty on each column of U
that includes a smoothing parameter determined by generalized cross-validation. Abrupt
changes in the seasonal layer coefficients can thus be taken into account by using different
smoothing parameters for different parts of the corresponding columns of U. An automatic
break detection routine has been implemented, which is based on minimizing the squared
differences between the first-order differenced observations and estimated seasonal com-
ponent.

Calendar effects have been ignored so far but could be easily integrated into the RSVD
approach as well by including regression variables in the constrained least squares problem
that is solved in the second step. Multiple seasonal patterns could also be dealt with by
reorganizing the observations into a |S|-dimensional array in place of Y.

The RSVD approach performs particularly well in the presence of strong seasonal-
ity and/or seasonal breaks according to a simulation study for monthly time series. This
study, however, also revealed that the X-11 and AMB approaches, as implemented in
X-13ARIMA-SEATS, tend to be superior in cases of weak seasonality.

3.3.5 Prophet

Prophet is an open-source Bayesian forecasting procedure implemented in Python and R
and released by Facebook’s Core Data Science team.12 Claiming that several popular time
series models, including ARIMA and TBATS, generally struggle to produce high-quality
forecasts of business time series, its primary aim is to provide a flexible and reliable fore-
casting tool based on component models that can be configured, interpreted and evaluated
by subject-matter experts and analysts without expertise in time series modeling.

Taylor and Letham (2018) describe the Prophet approach and its latent component
model, which coincides with (1), in detail. The trend can be driven by a saturating piecewise
logistic or a piecewise constant growth model. Either way, changepoints in the trend can
be specified by the user or detected automatically using a Laplacian prior for the changes
in growth rate at the changepoints.

The seasonal component is composed of stable patterns in which a Gaussian prior is
imposed on the amplitudes of the seasonal cycles in (4). Let

s
(τi)
t =

[
cos

(
2πt

τi

)
, sin

(
2πt

τi

)
, · · · , cos

(
2πJt

τi

)
, sin

(
2πJt

τi

)]
and γ = (α1, β1, . . . , αJ , βJ)>, where J = J(τi) is the pattern-specific number of sea-
sonal cycles. Then, each stable seasonal pattern is modeled as

s
(τi)
t = s

(τi)
t × γ, γ ∼ N (02J , σ

2
γ × I2J).

Prophet can thus deal with non-nested and non-integer seasonal periods. Furthermore, it
also allows for the inclusion of constraints according to (5).

The calendar component is essentially modeled in the same ways as in (6), that is
ct = c>t βc. The elements of ct are dummy indicators that can be defined via built-in
lists of national and international holiday dates or specified by the user. The regression

12The {fbprophet} and {prophet} packages are available for download on PyPI and CRAN, respec-
tively. An online documentation is available under URL https://facebook.github.io/prophet.
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Figure 3: Estimated AR spectrum of logged (solid) and differenced logged (dashed) elec-
tricity consumption, scaled by 2π. Gray verticals correspond to selected seasonal harmon-
ics of the DOY (dotted), DOM (dashed) and DOW (solid) patterns.

effects βc are then assumed to have a Gaussian prior, which is also the case for the irregular
component. Finally, model estimation is carried out in Stan using the L-BFGS optimization
algorithm to find the maximum a posteriori estimates.

4. Daily Electricity Consumption in Germany

This section illustrates the capabilities of selected seasonal adjustment approaches, using
daily realized electricity consumption in Germany as of 1 January 2015 up to 30 August
2020.13 The linearization of electricity consumption is described first (Section 4.1). The
unconstrained stable and moving seasonal patterns are then extracted from the linearized
series with the three JD+ approaches (Section 4.2). Finally, a stable DOW pattern is esti-
mated with Prophet, imposing a constraint on each year’s period between Christmas and
New Year (Section 4.3).

4.1 Pretreatment

The seasonal and calendar profiles of daily electricity consumption have already been
shown in Figure 1 and described in Section 2.1. In particular, the DOW and DOY patterns
were shown to clearly dominate the seasonal profile, whereas the DOM pattern turned out
to be less pronounced. The estimated autoregressive spectra displayed in Figure 3 immedi-
ately confirm this first impression.

We therefore dismiss the DOM pattern and fit the regARFIMA pretreatment model (6)
to logged electricity consumption with S = {7, 365.2425}. Dummy regression variables
are used to account for standard fixed and moving holidays in Germany, excluding Sundays.
Dummies for regional holidays are weighted based on the regional employee structure and
dummies for moving holidays are centered around their daily means. We also run automatic
detection of additive outliers, level shifts and wave outliers and eventually keep all calendar
and outlier regression variables with absolute t-values larger than 4.5.14

13This series as well as other daily data on forecasted and realized electricity consumption and pro-
duction in Germany is freely available from the “Bundesnetzagentur | SMARD.de” provider under URL
https://www.smard.de/en.

14Being slightly higher than the defaults used typically for monthly and quarterly data, this threshold suc-
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Figure 4: Estimated calendar (black) and outlier (gray) components of daily electricity
consumption.

Table 1 summarizes the estimated regARFIMA pretreatment model (6). The estimated
seasonal MA parameters exceed 0.85 and thus reflect nicely the stability of the DOW and
DOY patterns. Some bridging days effects also turned out to be significantly different from
zero. Note that this granular information also shows up in monthly and quarterly data but is
not removed in official statistics, in line with international recommendations. Two additive
outliers have been detected by the automatic search routine, the dates of which coincide
with the Saturdays of Christmas and New Year’s Eve 2016. This underlines the difficulty
of estimating reliably time-constant regression effects of rare events in general and may also
indicate the presence of cross-dependencies between the DOW pattern and fixed holidays.
The latter issues could be solved in theory with regression variables accounting for such
cross-effects. In practice, however, this is currently infeasible as the sample size is shorter
than six years. Figure 4 shows the estimated calendar and outliers components.

4.2 Seasonal Adjustment

The DOW and DOY patterns are now extracted sequentially from linearized electricity
consumption with the (extended) AMB, STS and X-11 approaches implemented in JD+.
More precisely, the DOW pattern is estimated in the first step and the DOY pattern is
extracted from the DOW-adjusted linearized series in a second step. Table 2 summarizes
the key model specifications for each of the three approaches.

The extended AMB approach decomposes the pretreatment model (6) into the trend,
seasonal and irregular component models according to a set of predefined rules and there-
fore only the seasonal periods in S need to be specified.

The STS approach demands integer seasonal periods and further specification of the
component models. In the first step, the trend is modeled as a local level with drift and the
trigonometric seasonal representation is used for the DOW pattern. In the second step, the
seasonal period is rounded down to 365 days, the trend is modeled as a local level and the
DOY pattern is represented by a persistent trigonometric cycle swinging at the (non-

cessfully prevents borderline significant effects from showing up in the model according to test calculations
based on quasi real-time data vintages. It also accounts nicely for the number of observations during automatic
outlier detection as it is very close to 4.4 which is the X-13 default critical value at the 5% level of significance
according to the implemented modified formula of Ljung (1993).
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Table 1: Estimated regARFIMA pretreatment model (6) for daily electricity consumption.

Event Date Weight Estimate SD t-value
FIXED HOLIDAYS

New Year’s Day 1 Jan 1.0 −0.222 0.011 −20.701
Epiphany 6 Jan 0.4 −0.120 0.024 −4.968
Labor Day 1 May 1.0 −0.217 0.010 −22.580
German Unification Day 3 Oct 1.0 −0.157 0.010 −15.791
500th Reformation Day 31 Oct 2017 1.0 −0.212 0.021 −10.096
All Saints’ Day 1 Nov 0.7 −0.153 0.016 −9.391
Christmas Eve 24 Dec 1.0 −0.178 0.013 −13.752
Christmas Day 25 Dec 1.0 −0.225 0.012 −18.370
Boxing Day 26 Dec 1.0 −0.153 0.011 −14.237
New Year’s Eve 31 Dec 1.0 −0.138 0.013 −10.886

MOVING HOLIDAYS

Good Friday 1.0 −0.195 0.009 −22.564
Easter Monday 1.0 −0.235 0.009 −27.193
Ascension 1.0 −0.241 0.009 −26.885
Pentecost Monday 1.0 −0.250 0.009 −28.861
Corpus Christi 0.7 −0.225 0.013 −17.484

BRIDGING DAYS

Ascension Friday 1.0 −0.112 0.009 −12.423
Corpus Christi Friday 0.7 −0.095 0.013 −7.409
500th Reformation Day 30 Oct 2017 1.0 −0.118 0.021 −5.687

ADDITIVE OUTLIERS

Christmas Eve 2016 24 Dec 2016 0.180 0.023 7.971
New Year’s Eve 2016 31 Dec 2016 0.191 0.023 8.462

MA PARAMETERS

θ1 0.417 0.037 11.334
θ7 0.875 0.014 61.041
θ365.2425 0.864 0.017 50.253

Remarks: National events are given a weight of 1.0. Regional events are weighted according to the approximate
share of employees working in the federal states where the event is actually celebrated. Regression variables
for moving holidays and associated bridging days have been centered by removing daily means calculated over
the entire sample.

Table 2: Key specifications for seasonal adjustment of daily electricity consumption.

Pattern Element AMB STS X-11
DOW τi 7 7 7

TREND Derived (8) with σ2
ζ = 0 9-term Henderson

SEASONAL from (6) (11) with trigonometric 3× 9 filter
DOY τi 365.2425 365 365.2425

TREND Derived (8) without {βt} 371-term Henderson
SEASONAL from (6) (9) with ρ = 0.95 3× 1 filter

and λc = 2π/365.2425

Remark: Options not mentioned here are used in default mode.
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(a) Day-of-the-week (DOW) pattern: 1 January to 30 August 2020
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(b) Day-of-the-year (DOY) pattern: 1 January 2019 to 30 August 2020
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Figure 5: Seasonal patterns estimated with the extended X-11 (black), extended AMB
(gray) and STS (white) approaches.

integer) DOY chief harmonic. The latter sparse specification15 is chosen since any standard
model of the DOY pattern turned out to be prohibitive in terms of computation time and
thus infeasible in practice due to the high dimensions of the derived state space model,
which is initialized with the diffuse square root algorithm in either step.

The extended X-11 approach requires further specification of trend and seasonal fil-
ters and σ-limits for detection of extremes in the detrended series. In general, we use
the third-order exact Henderson kernel and default σ-limits given by (1.5, 2.5). Asym-
metric filters are obtained from cutting symmetric out-of-sample weights and normalizing
in-sample weights, noting that the pretreatment model (6) does not provide forecasts of the
unadjusted series. In the first step, the Henderson filter covers 9 days and thus is slightly
longer than the DOW seasonal period to ensure that DOY dynamics remain in the trend-
cycle and are passed on to the next step. Also, a longer seasonal filter is applied in line with
the DOW pattern’s stability. In the second step, the Henderson filter is again slightly longer
than the seasonal period but an application of the short 3 × 1 seasonal filter is dictated by
the availability of just five observations for each day in the final trimester of the calendar
year in combination with the fractional seasonal period.

15This approach is similar to McElroy and Monsell (2017) who assign DOY dynamics to the trend-cycle,
estimate the joint component and then wash out the annual seasonal cycle with the Hodrick-Prescott filter.
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(a) Time series plot
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(b) Estimated periodogram (logged series)
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Figure 6: Seasonally adjusted electricity consumption obtained from the extended X-11
(black), extended AMB (gray) and STS (white) approaches. Dashed gray line in Panel
(a) corresponds to unadjusted series. Gray verticals in Panel (b) correspond to selected
seasonal harmonics of the DOY (dotted), DOM (dashed) and DOW (solid) patterns.

Figure 5 shows the seasonal patterns estimated with the three approaches. The esti-
mated DOW patterns displayed in Panel (a) are stable and very similar in size and shape
with the notable exception of more moving seasonality in the X-11 estimates, especially
around the COVID-19-related phase from March to June 2020. The estimated DOY pat-
terns shown in Panel (b) capture nicely the characteristic U -shaped intra-yearly dynamics
and spike year-end troughs of electricity consumption. However, the STS estimates remain
somewhat higher during the summer and deviate markedly from the AMB and X-11 esti-
mates in and after the COVID-19-lockdown phase. The three approaches also differ visibly
in terms of volatility. Whereas the AMB estimates are canonically smooth by construc-
tion, the X-11 and especially the STS estimates fluctuate much more rapidly. For the latter
approach, this might be the price to be paid for specifying the sparse trigonometric cycle
instead of a more traditional seasonal model.

Figure 6 displays information about the respective versions of seasonally adjusted elec-
tricity consumption. Panel (a) shows that, overall, each approach manages to remove the
most distinct repetitive features of the raw series. However, the STS version seems to con-
tain too much residual periodic annual structures and too little irregular movements. Panel
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Figure 7: Prophet estimates of the stable DOW pattern without constraints (solid) and with
constraints to W01 through W51 (dashed) and W52 through W53 (dotted).

(b) confirms this impression as the estimated periodogram of the STS version still peaks at
the DOY chief harmonic, as opposed to the other approaches.

4.3 Constrained DOW Pattern

Each of the three JD+ approaches estimated DOW and DOY patterns that cover uncon-
strained stable and moving seasonality. However, Figure 1 (c) already provided visual
evidence that the DOW pattern between Christmas and New Year (C2NY) looks notice-
ably different from the rest of the year. This motivates a brief comparison between uncon-
strained and constrained estimates. To this end, we extract stable DOW and DOY patterns
from linearized electricity consumption with Prophet and use (5) with C = {W52,W53}
to impose the C2NY constraint on the former pattern. Three seasonal cycles are included
in the DOW pattern as before and ten in the DOY pattern. Also, a piecewise linear trend is
specified alongside automatic changepoint selection.

Figure 7 shows the estimated unconstrained and constrained stable DOW pattern. Com-
pared to the unconstrained estimates, the constrained C2NY estimates are lower from Mon-
day to Friday and higher on Saturday and Sunday, resulting in a lower weekend drop-off
and a flatter overall shape. In contrast, the estimates constrained to the rest of the year are
almost indistinguishable from the unconstrained estimates.

5. Summary

Both the emergence of new digital data sources and the recent outbreak of the COVID-19
pandemic have increased the interest in and demand for more timely and more granular
data. As a particular consequence, more daily macroeconomic time series have become
available in official statistics. These series are often seasonal but exhibit common fea-
tures that are usually not observable in monthly and quarterly time series so that traditional
modeling and seasonal adjustment approaches in official statistics are not applicable. We
discussed peculiarities of daily data and highlighted structural differences from monthly
and quarterly time series. Key aspects included irregular spacing, coexistence of multiple
seasonal patterns with integer versus non-integer seasonal periods and a high chance of
cross-dependencies. We also addressed a broad range of modeling issues associated with
those peculiarities and used a unified additive latent component model to give an overview

 
1994



of modeling and seasonal adjustment approaches that have been developed mostly within
the last ten years and are capable of handling a fair amount of them. We finally illustrated
the capabilities of selected approaches, in particular of those implemented in a preliminary
version of JDemetra+ 3.0, using daily realized electricity consumption in Germany.

These developments provide a solid foundation for future research that could head in a
variety of directions, ranging from interactive graphical tools that facilitate visualization of
granular data over time series models that balance flexibility in dynamics against sparse-
ness in parameters to seasonal adjustment approaches that work in mass production. Each
of these directions will face its own challenges. New graphical and other explorative tools,
such as tailored seasonality tests, should be well-prepared for time series that contain a
more complex seasonal profile and often noticeably more noise than monthly and quarterly
data. Flexible and potentially multivariate modeling approaches should enable straightfor-
ward incorporation of additional daily data facets, such as correlated latent components
(e.g. McElroy and Maravall, 2014) or GARCH-type heteroskedasticity (e.g. Koopman et
al., 2007). Fast algorithms and parallel computing could be used to speed up model esti-
mation in such increasingly complex cases. Modeling approaches, however, should also
take into account that finding proper latent component models, especially for complex sea-
sonal and calendar variations, can quickly turn into a time-consuming task even for a single
time series. Functional component approaches seem promising in terms of flexible yet
sparse models and some basis functions, such as splines, are directly applicable to irregu-
larly spaced data (e.g. Rodrı́guez and Hernández, 2010). Dimension reduction techniques
could also be used in general to control model complexity. Functional data analysis and
continuous-time models could be another interesting strand of research, especially when
studying data at higher intra-daily frequencies.

These elaborated or even new modeling approaches for daily data will naturally pave
the way for new developments in the field of seasonal adjustment. Existing approaches,
however, could also be developed further. For example, the extended AMB approach could
be generalized to (non-Airline) ARFIMA models. Hybrid approaches that combine model-
based and ad hoc filters (e.g. McElroy and Monsell, 2017) seem promising as well. As-
suming that the availability of and demand for daily and other types of high-frequency time
series will continue to increase, mass production of seasonally adjusted data may become
another challenge at some point. In this case, automatic detection and selection procedures,
such as I/C and I/S ratio-based filter selection in the extended X-11 approach, are needed
more than ever given the high degree of individuality of daily time series.
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