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Abstract

Nonparametric regression with missing at random (MAR) response, univariate regression compo-
nent of interest, and the scale function depending on both the predictor and auxiliary covariates, is
considered. The asymptotic theory suggests that the heteroscedasticity and MAR affect the constant
of the sharp minimax MISE convergence. The sharp minimax procedure is based on estimation of
unknown nuisance scale function, design density and missing mechanism. The estimator is adap-
tive to the missing mechanism and unknown smoothness of the estimated regression function. The
procedure is tested on simulated data and real examples, and the results justify practical feasibility
of the proposed method for this complex regression setting.

Key Words: Adaptation, Availability likelihood, Curse of multidimensionality, Heteroscedasticity,
MAR, Sharp minimaxity

1. Introduction

Nonparametric regression analysis explores the association between response Y and pre-
dictor X with almost no assumption about shape of an underlying regression function,
which is defined by conditional expectation of response Y given predictor X , m(x) =
E{Y |X = x}. Consider a heteroscedastic regression model

Y = m(X) + σ(X)ε, (1)

where σ(x) is called scale or volatility function and ε independent of predicator is a mean
zero random error with unit variance. Without loss of generality, we assume predictor is
supported on unit interval. There is a vast literature devoted to nonparametric regression
using a variety of approaches such as local polynomial, kernel, spline, tree-based method,
wavelet and so on; see Efromovich (1999), Wasserman (2006) and Tsybakov (2009) for
more details. It is popular to study minmax risk of estimators for functions from Sobolev
class and one exciting result is that efficient nonparametric regression estimation is possible
even without estimating the scale function, that is, Efromovich and Pinsker (1996) proposed
such an estimator m̂ achieves optimal convergence in the sense of mean integrated squared
error (MISE), MISE(m̂,m) = E{

∫ 1
0 [m̂(x) −m(x)]2dx}. We can say the nonparametric

regression problem is not sensitive to heteroscedasticity. However, the situation is changing
drastically when volatility (scale function) is also driven by some auxiliary process besides
predictor of interest,

Y = m(X) + σ(X,Z)ε, (2)

where scale function also involves a D-dimensional random vector of covariates, Z :=
(Z1, Z2, . . . , ZD) independent of random error term. Then estimators ignoring heteroscedas-
ticity may still be rate optimal but will no longer be sharp minimax because optimal con-
stant of convergence is inflated. Using scale function in weights explicitly, Efromovich
(2013) proposed a data-driven estimator that preserves asymptotic efficiency.
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In this paper, we will study the above nonparametric regression problem in a more
general setting when response cannot be observed directly. Missing data is a common
challenge for statistical analysis, especially in social and health sciences. Enders (2010),
Molenberghs et al. (2014) and Little and Rubin (2019) give a nice discussion about con-
ventional approaches such as likelihood-based parametric inference and weighting based
semiparametric methods. However, nonparametric methods is not well developed for miss-
ing and modified data analysis and some attempts were made in kernel estimation, series
estimation and Bayesian inference in Chu and Cheng (1995), Boente et al. (2009), Mitra
and Müller (2015), Efromovich (2018) and Sun, Wang and Han (2019). In the seminal
paper of Rubin (1976), the classic hierarchy of missing mechanism is introduced, that is,
missing completely at random (MCAR) when missing is not related to observation, miss-
ing at random (MAR) when missing depends on observation and missing not at random
(MNAR) when missing is also related to unobserved sample. We will focus on the case of
response missing at random. Historically, missing data comes from controlled experiments
where design factors are fixed and data with missing response is of great interest. Under
certain assumption, MAR justifies complete-case approach in parametric estimation.

The main aim of this article is to study nonparametric regression estimation under
complication due to both heteroscedasticity and MAR mechanism. To be more specif-
ic, regression model (2) generates an underlying or hidden sample (H-sample) of size n,
{(Xl,Zl, Yl), l = 1, 2, . . . , n}, where continuous covariates (X,Z) are supported on unit
(D + 1)-dimensional cube. Instead of H-sample, we can only observe a M-sample with
missing response, {(Xl,Zl, AlYl, Al), l = 1, 2, . . . , n}, where realizations of Bernoulli
random variableA defining availability of response, that is, underlying response Y is avail-
able (observable) when A = 1 while it is missed when A = 0. Here, a continuous response
Y is considered so that we will not distinguish missing (A = 0) and zero-value response
(Y = 0) since P(Y = 0) = 0. Then the missing mechanism is characterized by suc-
cess probability of Bernoulli distribution depending only on always observable covariates,
P(A = 1|X = x,Z = z, Y = y) = P(A = 1|X = x,Z = z) =: w(x, z), where function
w(x, z) is referred to as availability likelihood. Then complete-case subsample only con-
sists of observations with A = 1, {(X(l),Z(l), A(l)Y(l), A(l) = 1), l = 1, 2, . . . , N}, where
N :=

∑n
l=1Al is the number of complete cases. Note that MCAR is just a special case

with constant availability likelihood, w(x, z) = w0 for some 0 < w0 < 1. The observed
quadruplet (X,Z, AY,A) has a mixed distribution with joint mixed density

fX,Z,AY,A(x, z, ay, a) = P(A = a|X = x,Z = z)fX,Z,AY (x, z, ay)

=
[
w(x, z)fX,Z(x, z)fY |X,Z(y|x, z)

]a[
[1− w(x, z)]fX,Z(x, z)

]1−a
,

for (x, z) ∈ [0, 1]D+1, y ∈ R and a ∈ {0, 1}. Then the conditional density of complete-
case subsample

fY |X,Z,A(y|x, z, 1) =
fX,Z,Y |A(x, z, y, 1)

fX,Z(x, z)
=
w(x, z)fX,Z(x, z)fY |X,Z(y|x, z)

fX,Z(x, z)P(A = 1)

=
w(x, z)∫

[0,1]D+1 w(u,v)fX,Z(u,v)dudv
fY |X,Z(y|x, z), (3)

is biased from its underlying counterpart fY |X,Z(y|x, z) and so is the regression function
of interest based on complete cases (a conditional expectation with Z integrated out). For-
tunately, without auxiliary covariates Z, efficient complete-case nonparametric estimation
with MAR response is established for univariate model (1) in Efromovich (2011, 2012) and
we will use E-estimator of Efromovich (2018) as a pure univariate benchmark.
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The rest of this paper is organized as follows. In Section 2 we establish large sample
theory of minimax risk bound and then propose adaptive estimators that achieve asymptotic
efficiency. Section 3 is devoted to numerical studies. We suggest modified estimators for
sample data sets and compare them with univariate benchmarks in intensive Monte Carlo
simulations and real examples. Proofs are omitted due to space constraints.

Here, we briefly discuss the terminology of a minimax approach and related estimators
that will be used throughout the paper. We will develop asymptotic theory based on a min-
imax game with four players, that is, nature, the oracle, the dealer and the statistician. The
rules are defined by our regression model (2) with MAR mechanism, a class of regression
functions of interest, assumptions about nuisance functions and a risk criterion (specifical-
ly, MISE). In the minimax game, dealer shows nature the chosen parameters of functional
class and nuisance functions. Then nature picks a regression function from the dealt class
to maximize its payoff in terms of the risk criterion MISE and generates M-sample while
other players propose estimators based on M-sample to minimize MISE. The equilibrium
between dealer and nature gives the minimax risk and any estimator achieves this bound is
called efficient or sharp minimax. Our goal is a data driven sharp minimax procedure, that
is, a statistician’s estimator base solely on data without knowing nuisance functions and
parameters of considered class. Oracle even knows the chosen estimand besides everything
dealer knows and it can suggest a sharp estimator for statistician to mimic its performance.
Interested readers can refer to Berger (1985) and Lehmann and Casella (1998) for more
details about statistical decision theory and game theory.

2. Asymptotic Theory

Since minimax MISE convergence of a nonparametric estimator depends on the smooth-
ness of estimand function, Sobolev class or Sobolev ellipsoid is usually considered in non-
parametric literature,

E(α,Q) :=

{
m : m(x) =

∞∑
j=0

θjϕj(x),

∞∑
j=0

[1 + (πj)2α]θ2j ≤ Q

}
, (4)

where θj :=
∫ 1
0 m(x)ϕj(x)dx is the Fourier coefficient for regression function m(x) with

respect to jth cosine basis function on unit interval [0,1],

ϕ0(x) = 1, ϕj(x) = 21/2 cos(πjx), j = 1, 2, 3, ... (5)

The positive number Q bounds power or energy of member functions and parameter α > 1
determines their smoothness. Sometimes it may be reasonable to confine the estimation
problem in some vicinity of a particular functionm0 of interest instead of a global solution,
which is the so called local minimax approach introduced by Golubev (1991) or shrinking
class minimax if a sequence of local classes converges to the pivot function as we get more
observations. We introduce a more general family of function classes covering all the above
discussed classes,

F := F(m0, ρn,Mn, α,Q)

:=

{
m(x) : m(x) =

Mn−1∑
j=0

θ0,jϕj(x)I(Mn > 0) +
∑
j≥Mn

θjϕj(x), x ∈ [0, 1],

∑
j≥Mn

[1 + (πj)2α]θ2j ≤ Q <∞, sup
x∈[0,1]

∣∣∣∣∣ ∑
j≥Mn

θjϕj(x)

∣∣∣∣∣ < ρn

}
. (6)
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for a pivot function m0 satisfying squared integrability
∫ 1
0 m

2
0(x)dx < ∞ and finite sup

norm supx∈[0,1] |m0(x)| <∞, an integer lower frequency cutoff Mn ≤ n1/(2α+1)/ ln2(n)

and a tail bound ρn > n−1/(2α+1) ln(n). Here, θ0,j :=
∫ 1
0 m0(u)ϕj(u)du is the Fourier

coefficient of m0 and I(·) stands for indicator throughout the paper.
Let us make some comments about the above family of function classes. All the mem-

ber functions from this family share the same low-frequency part as the pivot regression
m0 in Fourier frequency domain. Further, the number (cardinality) of low frequencies Mn

controls L2 norm of tail series while parameter ρn controls its sup norm. It is also easy
to see that classic Sobolev class E(α,Q) corresponds to the case F(0,∞, 0, α,Q) without
pivot function and additional constraint on tail series.

Then we can formally give the setting and assumptions for our regression model (2)
Y = m(X) + σ(X,Z)ε, where univariate nonparametric regression function m(x) is our
estimand of interest. The following moment conditions are imposed on error term,

E{ε|X,Z} = 0, E{ε2|X,Z} = 1, E{ε4|X,Z} < C <∞ a.s. (7)

Note that nonparametric approach relaxes distribution assumption about error term but fi-
nite fourth moment condition is required for adaptation. In order to obtain dealer’s lower
bound for minimax MISE risk, we employ stronger assumptions of normality and indepen-
dence in asymptotic analysis. Some mild regularity assumptions on nuisance functions are
also necessary.

Assumption 2.1. The error term ε follows standard normal distribution and is independent
of covariates (X,Z).

Assumption 2.2. The joint design density fX,Z(x, z) and availability likelihood w(x, z)
are supported on [0, 1]D+1. Nuisance functions fX,Z(x, z),w(x, z) and σ(x, z) are bound-
ed below from zero and also bounded above. In addition, w(x, z) can not exceed 1. The
quantity I(x) :=

∫
[0,1]D f

X,Z(x, z)w(x, z)σ−2(x, z)dz is Riemann integrable on [0, 1].

The above assumptions are not very restricted since dealer can directly use them to
establish lower bound. Additional assumptions about smoothness are required when we
consider statistician’s adaptation for unknown nuisance functions.

Denote M-sample (X,Z, AY,A)n := {(X1,Z1, A1Y1, A1), . . . , (Xn,Zn, AnYn, An)}
and introduce a notation

m̃∗(x) := m̃∗(x; (X,Z, AY,A)n,m0, ρn,Mn, α,Q, f
X,Z, σ, w) (8)

for a representative dealer’s estimator that exploit the privileged knowledge of the dealt
class F of regression functions and the chosen nuisance functions.

Theorem 2.1. Let Assumptions 2.1 and 2.2 hold for the regression model (2). Then we
have the following lower minimax bound for dealer’s estimators

inf
m̃∗

sup
m∈F(m0,ρn,Mn,α,Q)

MISE(m̃∗,m) ≥ P (α,Q)
(
n−1d

)2α/(2α+1)
(1 + on(1)), (9)

where the infimum is taken over all possible dealer’s estimator m̃∗, d is the coefficient of
difficulty

d :=

∫ 1

0

dx∫
[0,1]D f

X,Z(x, z)w(x, z)σ−2(x, z)dz
(10)

and Pinsker constant P (α,Q) := [α/π(α+ 1)]2α/(2α+1)[Q(2α+ 1)]1/(2α+1).
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Furthermore, there exists a dealer’s estimator m̌∗ that achieves the above lower bound,

sup
m∈F(m0,ρn,Mn,α,Q)

MISE(m̌∗,m) ≤ P (α,Q)
(
n−1d

)2α/(2α+1)
(1 + on(1)). (11)

Let us make some comments about the above result. The first part establishes a low-
er bound for minimax risk of dealer’s estimators and the second part verifies its sharpness,
which means certain dealer’s estimator indeed attains the lower bound. The factor 1+on(1)
indicates the sharp lower bound is an asymptotic result. The renown constant P (α,Q) is
discovered in the seminal work Pinsker (1980) and it is determined by the implied Sobolev
ellipsoid in class F while the coefficient of difficulty is a functional of only nuisance func-
tions of our regression model, d := d(fX,Z, w, σ) =

∫ 1
0 I
−1(x)dx, where exponent -1

denotes reciprocal of I(x). The form of lower bound is general over a variety of non-
parametric estimation problem and d characterizes the model setting. It is easy to show
that if we ignore its heteroscedasticity depending on auxiliary variable and estimate it as
univariate model (1), an actually inflated coefficient of difficulty implies a loss of efficiency.

Our goal is a data-driven estimation procedure adapted to unknown smoothness of re-
gression function of interest, missing mechanism and underlying nuisance functions. In
Theorem 2.1, we verify sharpness by a Pinsker type linear minimax estimator, which is
difficult for further adaptation. So we resort to a blockwise shrinkage procedure and begin
with an oracle one using the classic idea dating back to Efromovich and Pinsker (1984).
Let {Bk, k = 1, 2, . . .} denote the set of ordered blocks partitioning nonnegative integers
such that max{j : j ∈ Bk} < min{j : j ∈ Bk+1} and Lk denote its length (cardinality),
the number of frequencies in the block Bk. Our blockwise shrinkage oracle is a smoothed
series estimator using equal smoothing weight for frequencies in the same block, that is,

m̂∗(x) :=

Kn∑
k=1

µk
∑
j∈Bk

θ̂jϕj(x), (12)

where θ̂j estimates jth Fourier coefficient of the regression function θj =
∫ 1
0 m(x)ϕj ,

cutoff Kn is some nondecreasing positive sequence and smoothing coefficient

µk :=
Θk

Θk + dn−1
(13)

is defined by the coefficient of difficulty d (10) and the Sobolev functional

Θk := L−1k

∑
j∈Bk

θ2j . (14)

We can show the above oracle’s estimator (12) attains the dealer’s lower bound under some
assumptions about cutoffKn and θ̂j , which is reasonable since the use of underlying Fouri-
er coefficients reflects oracle’s privileged information.

For further adaptation, our strategy is to replace functionals of underlying model with
statistics and then analyze requirements for a sharp minimax adaptive estimator mimicking
oracle (12). Specifically, we will use a general blockwise shrinkage estimator framework

m̂(x) :=

Kn∑
k=1

Θ̂k

Θ̂k + d̂n−1
I(Θ̂k > (bnn)−1)

∑
j∈Bk

θ̂jϕj(x). (15)

Here, hardthresholding is also employed for better performance. Let us introduce some
notations for increasing sequence at different rates, bn := bln(n + 20)c, cn := bln(bn)c
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and r := bn/(7cn)c, where bxc denotes the greatest integer that is less than or equal to
x. From now on, it is assumed that n is large enough such that r > 3. Set block length
Lk := 1 for low frequency range k = 1, 2, . . . , bn and Lk := b(1 + b−1n )kc for k > bn.
It is also easy to show the total number of blocks Kn is of order O(ln2(n)). Now we can
propose sharp minimax estimators with different level of adaptation.

2.1 Known Design, Availability Likelihood and Scale

In this case, parameters of functional class F(m0, ρn,Mn, α,Q) are the only unknown
components of model setting. Note that it is weaker than the dealer’s information in Theo-
rem 2.1. The suggested estimator of this section can be regarded as an adaptive estimator
under controlled experiment. However, it is also an eligible dealer’s estimator when nui-
sance function are unknown for statistician. Later we will also use it as a benchmark in
numerical experiments. We begin with component estimates of blockwise shrinkage esti-
mator (15). Define a U-statistic to estimate Sobolev functional,

Θ̂k :=
2

r(r − 1)

∑
r+1≤l1<l2≤2r

L−1k

∑
j∈Bk

2∏
t=1

AltYltϕj(Xlt)

fX,Z(Xlt ,Zlt)w(Xlt ,Zlt)
, (16)

and a scale function weighted Fourier coefficient estimate,

θ̂j :=
1

n− 2r

n∑
l=2r+1

Al[Yl − m̃−j(Xl)]σ
−2(Xl,Zl)ϕj(Xl)

I(Xl)
, (17)

with underlying quantity I(x) :=
∫
[0,1]D f

X,Z(x, z)w(x, z)σ−2(x, z)dz and variation re-
duction term

m̃−j(x) := r−1
r∑
l=1

∑
i∈N−j

AlYlϕi(Xl)

fX,Z(Xl,Zl)w(Xl,Zl)
ϕi(x), (18)

where N−j = {0, 1, . . . , bn}\{j} is the set of irrelevant frequencies. Separate subsamples
are used for sequences θ̂j’s and Θ̂k’s, which would simplify proofs with the help of inde-
pendence. Note that major part of M-sample are used for Fourier coefficient estimates θ̂j’s,
the backbone of series estimator.

Proposition 2.1. Consider the regression model (2) with regression error satisfying (7).
Design density, scale and availability likelihood are given and Assumption 2.2 holds. Then
the blockwise shrinkage regression estimator (15) with estimated Fourier coefficient θ̂j de-
fined in (17), estimated Sobolev functional Θ̂k defined in (16) and the coefficient of dif-
ficulty with its underlying value (10), d̂ = d, is adaptive to the studied functional class
F(m0(x), ρn,Mn, α,Q) and sharp minimax, namely

sup
m∈F(m0,ρn,Mn,α,Q)

MISE(m̂,m) ≤ P (α,Q)(d/n)2α/(2α+1)(1 + on(1)). (19)

2.2 Unknown Nuisance Functions

Next we consider the case of fully adaptation, that is, a statistician’s estimator solely based
on data without knowing any nuisance functions. We will employ a standard plug-in tech-
nique for joint design density fX,Z(x, z), availability likelihood w(x, z), scale σ(x, z) and
related quantity I(x) and the coefficient of difficulty d based on the previous estimator.
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Before proposing estimates for multivariate nuisance functions, let’s introduce some
notations for multivariate series estimation. Define a tensor-product cosine basis on [0, 1]D,
ψs(v) :=

∏D
k=1 ϕsk(vk) for frequency index s := (s1, . . . , sD) ∈ {0, 1, . . .}D and v ∈

[0, 1]D. We also use sup norm notation to denote the max index ‖s‖∞ := max(s1, . . . , sD).
Although no assumption on smoothness of a underlying scale function σ(x, z) is im-

posed, boundedness is required in adaptation, c∗ ≤ σ2(x, z) ≤ c∗ for some postive
constants c∗ and c∗ known by statistician. To preserve the same upper bound of MIS-
E risk, we have to impose some regularity conditions on joint design density and avail-
ability likelihood. For example, let us introduce a (D + 1)-dimensional analytic class
A := A(β0, . . . , βD, Q) with finite positive numbers Q and βk, k = 0, 1, . . . , D,

A :=

{
f : f(x, z) :=

∑
(i,s)

θisϕi(x)ψs(z), |θis| ≤ Q
[
eβ0i +

D∑
k=1

eβksk
]−1}

. (20)

Then projection estimators for design density and availability likelihood from this analyt-
ic class will have good approximation properties. It puts a relative strong constraint on
Fourier coefficients of member functions for large D due to the curse of dimensionality
for multivariate function estimation. Let us introduce nine pairs of independent truncated
projection estimators, that is, for t = 1, . . . , 9,

f̂X,Zt (x, z) := r−1
tr∑

l=(t−1)r+1

∑
‖(i,s)‖∞≤Na

ϕi(Xl)ψs(Zl)ϕi(x)ψs(z), (21)

f̃X,Zt (x, z) := max(c−1n , f̂X,Zt (x, z)), (22)

and

ŵt(x, z) := r−1
(t+9)r∑

l=(t+8)r+1

∑
‖(i,s)‖≤Na

Alϕi(Xl)ψs(Zl)ϕi(x)ψs(z), (23)

w̃t(x, z) := max(c−1n , ŵt(x)), (24)

where Na := bbncnc is the cutoff for estimated frequencies. Truncation is used to avoid
divide-by-zero problem since joint design density and availability likelihood appear in the
denominator of many component statistics.

Then we can propose an estimate for the coefficient of difficulty d,

d̃ :=

∫ 1

0

dx∫
[0,1]D f̃

X,Z
3 (x, z)w̃3(x, z)σ̃−21 (x, z)dz

(25)

with truncated projection estimator of squared scale function

σ̃21(x, z) := max

(
c∗,min

(
c∗,

∑
‖(i,s)‖∞<bn

σ̃1isϕi(x)ψs(z)

))
, (26)

where σ̃1is is a sample mean estimate for Fourier coefficient of σ2(x, z)

σ̃1is := r−1
20r∑

l=19r+1

Al(Yl − m̃1(Xl))
2

f̃X,Z2 (Xl,Zl)w̃2(Xl,Zl)
ϕi(Xl)ψs(Zl),
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with a truncated estimate for regression function

m̃1(x) := max

(
− bn,min

(
bn, r

−1
19r∑

l=18r+1

bn−1∑
i=0

AlYlϕi(Xl)

f̃X,Z1 (Xl,Zl)w̃1(Xl, Zl)
ϕi(x)

))
.

For Sobolev functional in the smoothing coefficient, we have a plug-in estimate

Θ̂k :=
2

r(r − 1)

∑
20r+1≤l1<l2≤21r

L−1k

∑
j∈Bk

2∏
t=1

AltYltϕj(Xlt)

f̃X,Z3+t (Xlt ,Zlt)w̃3+t(Xlt ,Zlt)
. (27)

Then we consider adaptation of estimated Fourier coefficient θ̂j . The term (18) for
variation reduction in θ̂j becomes

m̃−j(x) := r−1
22r∑

l=21r+1

∑
i∈Na,−j

AlYlϕi(Xl)

f̃X,Z6 (Xl,Zl)w̃6(Xl,Zl)
ϕi(x), (28)

where index set Na,−j = {0, 1, . . . , bn}\{j} with subscript ‘a’ for the setting using ana-
lytic density and availability likelihood. We also need another estimate σ̃2(x, z) for scale
function independent of that in d̃ following the steps of σ̃21(x, z). Since Fourier coefficien-
t estimates θ̂j’s deserve better accuracy, Fejér approximation is employed to improve the
smoothness of estimated inverse squared scale, which is defined by

σ̃−2bn (x, z) := b−1n

bn−1∑
t=0

∑
‖(i,s)‖∞≤t

[∫
[0,1]D+1

σ̃−2(u,v)ϕi(u)ψs(v)dudv

]
ϕi(x)ψs(z).

Similarly, the quantity I(x) in the denominator also uses this improved scale estimate,

Ĩbn(x) :=

∫
[0,1]D

f̃X,Z9 (x, z)w̃9(x, z)σ̃−2bn (x, z)dz.

Finally, we can propose our adaptive estimators for Fourier coefficient θj

θ̂j :=
1

n− 24r

n∑
l=24r+1

Al[Yl − m̃−j(Xl)]σ̃
−2
bn

(Xl,Zl)ϕj(Xl)

Ĩbn(Xl)
. (29)

Proposition 2.2. Consider the regression model (2) with regression error satisfying (7).
Assumption 2.2 holds and both joint design density fX,Z(x, z) and availability likelihood
w(x, z) belong to analytic classA (20). In addition, there are two finite positive constants,
c∗ and c∗, such that c∗ ≤ σ2(x, z) ≤ c∗. Then the blockwise shrinkage regression estimator
(15) with Θ̂k defined in (27), θ̂j in (29) and d̂ = d̃ defined in (25) is adaptive and sharp
minimax.

Besides the above analytic class (20) assumption for both joint design density and avail-
ability likelihood function, multivariate Sobolev class is also popular in nonparametric s-
tudies. Let’s introduce a Sobolev class for k-variate functions with isotropic smoothness
coefficient k and a finite constant Q > 0,

S := S(k,Q) :=

{
f : f(x1, x2, . . . , xk) :=

∞∑
j1,j2,...,jk=0

θj1,j2,...,jk

k∏
s=1

ϕjs(xs),

∞∑
j1,j2,...,jk=0

[
1 +

k∑
s=1

(2πjs)
2k
]
θ2j1,j2,...,jk ≤ Q

}
. (30)
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Here, smoothness in each coordinate matches the number of variables in order to preserve
proper approximation result due to curse of dimensionality. However, it is still a much
weaker assumption than analytic class A (20). Specifically, we assume a joint design den-
sity and an availability likelihood function w(x, z) belong to (D+ 1)-varaite Sobolev class
S(D+1, Q). Then with some modifications such as larger cutoffs in component statistics to
compensate slow convergence rate about Sobolev class and variation reduction in Sobolev
functional estimate Θ̂k, we can also establish sharp minimaxity for our data-driven block-
wise shrinkage estimator (15) under Sobolev design density and availability likelihood.

2.3 Extension: A General Additive Model

Let us consider a natural extension of the regression model (2), a general additive model

Y = m(X) + g(Z) + σ(X,Z)ε, (31)

where nuisance additive term g(z) is integrated to zero on [0, 1]D for identification issue.
However, it digresses a little from the topic since loss of efficiency using univariate proce-
dure also comes from omitted variable problem when X is not independent of Z. Since or-
acle and dealer know underlying nuisance functions, they actually estimate the pivot model
(2) by subtracting the known g(Z) from observed response Y and previous results (The-
orem 2.1 and Proposition 2.1) still hold for general additive model (31). For statistician’s
estimator, the standard plug-in technique is used in adaptation for g(z) under some reg-
ularity conditions such as additive component g(z) belonging to D-variate Sobolev class
S (30). Then we can propose sample mean series estimate for g(z) and subtract it in the
Fourier coefficient estimate for σis’s and θj’s in addition to estimates m̃−j or m̃. We can
show that the blockwise shrinkage estimator modified for additive component g(z) asymp-
totically achieves the dealer’s lower bound for minimax risk under this general additive
model. In next section, the impact of nuisance additive component on the performance of
statistician’s estimator will also be tested in numerical experiments.

3. Numerical Studies

Asymptotic theory indicates that a data-driven estimator can mimic the performance of a
dealer’s estimator for both the basic regression model (2) and a general additive model (31)
under response missing at random. In this section we want to use intensive Monte Carlo
study to shed light on its feasibility for small data sets. Scenarios with different sample
sizes and levels of heteoscedasticity and missing severity are considered in the numerical
experiments. We will modify our estimator for better small sample performance with some
corrections for cutoff and estimating component statistics based on whole sample instead of
subsamples. Then we denote D-estimator and S-estimator as small sample counterpart of
dealer’s and statistician’s estimator in asymptotic analysis. Simulation results are also com-
pared with two good estimators for pure univariate model (1) under both directly observed
data and missing data. We choose E-estimator of Efromovich (2018) as orthogonal series
benchmark and Nadaraya-Watson type estimator of Chu and Cheng (1995) (K-estimator) as
kernel benchmark. Both are only rate optimal in large sample because of ignoring auxiliary
covariates in scale function from previous analysis about the coefficient of difficulty.

Let us describe the specific statistical experiments. We consider just one auxiliary
covariate (D = 1) in model Y = m(X) + σ(X,Z)ε. We use two candidate regression
functions form(x) supported on unit interval [0,1], a bell shaped “Normal” corner function
and a more complicated “Bimodal” corner of Efromovich (2018). The error term consists of
a standard normal error ε independent of (X,Z) and a scale function σ(x, z) = exp(λz/2),
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where λ ∈ {1, 2, 3} controls the level of heteroscedasticity. Mutually independent predictor
X and auxiliary covariate Z follow a joint uniform distribution on the unit square with joint
density fX,Z(x, z) = I((x, z) ∈ [0, 1]2). The missing at random mechanism is assumed to
be driven by the predictor of interest only and define three linear candidates for availability
likelihood,w1(x) = 0.5+0.4x,w2(x) = 0.4+0.4x,w3(x) = 0.3+0.4x, to test robustness
of our results under different missing severity.

Figure 1 gives a particular simulation for “Normal” regression function with sam-
ple size n = 100, scale function σ(x, z) = exp(z) and availability likelihood function
w2(x) = 0.4 + 0.4x defined above. Top diagrams show scattergrams of the underlying H-
sample and the corresponding M-sample. It is not easy to imagine the regression function
without the guide of the solid curve of underlying “Normal” corner function. Some points
look like outliers in the leftXY -scattergram, for example, the point near top left corner. But
we know there is no outliers and heteroscedasticity driven by auxiliary covariate causes this
illusion. From the middle ZY -scattergram, the highest point around Z = 0.8 corresponds
the top left suspect outlier in the XY -scattergram and its high value is reasonable since
scale function is increasing in Z. So ignoring volatility from auxiliary covariate will harm
those good univariate estimation procedures. Comparing the three scattergrams, we can see
the impact of missing may be two edged. On the one hand missing mechanism reduces the
available sample size for estimation, but on the other hand it may also remove those mis-
leading fake outliers for univariate procedure. Note that N = 61 complete cases shown by
circles is a very small sample size for nonparametric estimation but our estimators still did a
good job. Two scattergrams in the bottom of Figure 1 are overlaid by underlying regression
function and its estimates (see the description of line type for each estimate in the caption).
Subtitles exhibit their integrated squared errors (ISE), calculated as

∫ 1
0 [m̃(x)−m(x)]2dx,

where m̃(x) is a particular estimate for the underlying regression function m(x). For this
particular simulation, all the estimates succeed to catch the symmetric bell shape of “Nor-
mal” corner function. The dot-dashed curve of S-estimate closely follows the long dashed
curve of D-estimate. We can also see heteroscedasticity from auxiliary covariate inflates
left tails of E-estimate and K-estimate. In the right diagram for M-sample, we add one more
long-short dashed curve for S-estimate based on complete cases, which is clearly shifted to
right to match the available data. We want to remind readers of randomness in simulation
and a large variability in outcomes can be expected for small samples.

Figure 2 presents a similar experiment for “Bimodal” corner function, which is even
more challenging to visualize the underlying curve from the data. In this particular sim-
ulation, all estimates successfully identify the pattern of two modes. However, it’s very
common to obtain a high left mode or just an oversmoothed single modal curve in simula-
tion since nonparametric estimator can only learn what data tell us. The relative locations
of estimated curves and their changes under missing data are more complicated. We can
see D-estimate and S-estimate give a little higher and more accurate left mode under H-
sample while those missed points help all estimates to locate the left mode. It is surprising
that nonparametric estimates can recover such a complicated bimodal function with just
N = 58 complete cases.

Those diagrams shed some light on the excellent performance of our shrinkage esti-
mators but the relative performance of considered estimates may change drastically during
simulations. So we want to use intensive Monte Carlo studies to test the performance of
above defined four pseudo or adaptive estimates (D-estimate, S-estimate, E-estimate, K-
estimate) under five sample sizes n ∈ {100, 200, 400, 600, 800} for underlying H-samples
and corresponding modified samples with MAR mechanism. Relative performance are
measured by average ratios of their ISEs over 1000 simulations. Table 1 presents results
for “Normal” regression function. According to combinations of sample sizes, scale func-
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tions and availability likelihood function including the case of no missing mechanism, there
are 60 scenario blocks with number of observations given on the top, where we have un-
derlying sample size n for H-sample and average number of complete cases N for three
M-samples below its H-sample from the case with slight missing introduced by availability
likelihood w1(x) to severer missing case with w3(x). The first cell in each block is the ra-
tio of S-estimate with respect to D-estimate and it decreases as sample size increases along
each row, which supports previous asymptotic analysis that statistician’s estimator mim-
ics the performance of dealer’s estimator. The remaining two numbers in the first row of
each block are average ratios of pure univariate procedures, series E-estimator and kernel
K-estimator over S-estimate. Our S-estimate dominates both univariate estimates and those
ratios seem to increase with sample size since more observations can be used to improve
accuracy of its complicated component statistics and then present its advantage of taking
into account heteroscedasticity from auxiliary covariate. For corresponding ratios under d-
ifferent λ, heteroscedasticity mitigates relative performance of E-estimate and K-estimate,
which also supports our asymptotic theory. The relation between relative efficiency and
severity of missing is not clear since S-estimate has more component statistics exposed to
missing mechanism than simpler univariate estimates but the slight loss of relative efficien-
cy indicates that S-estimate does a good job in adaptation to missing mechanism.

In Section 2.3 we extend the efficient statistician’s estimator for a general additive mod-
el (31), Y = m(X) + g(Z) + σ(X,Z)ε and the second row in each block of Table 1
corresponds results of S-estimator with respect to D-estimate for nuisance additive com-
ponents, g1(z) = z − 1/2, g2(z) = z2 − 1/3 and g3(z) = z3 + z − 3/4, which are
polynomials integrated to zero on [0,1] with degree one to three. Three ratios in the second
row of each block also indicate the desired trend and we can say S-estimator succeeds to
adapt to unknown nuisance additive component in spite of their larger values due to errors
from additional estimation steps about g(z). The ratios increase as heteroscedasticity gets
severe, which shows that dealer’s knowledge of nuisance functions is really valuable in
more complicated scenarios under small sample. It is not easy to quantitatively explain the
effect of different availability likelihood functions because of their indirect impact on data
generation process through random error term and Bernouli availability variable.

Table 2 gives similar results for estimating a “Bimodal” regression function. From pre-
vious graphic example, we know it is a more difficult problem for nonparametric estimator.
The underlying curve has two closely located modes and a random sample may pronounce
the left mode or even present a single mode pattern. We can see all the ratios in Table 2 are
smaller than those in Table 1, which indicates it is a challenge even for dealer’s estimator.
The overall results still support the efficiency of our estimation procedure that estimates
scale function when auxiliary covariate affects heteroscedasticity and adaptive S-estimator
succeeds to mimic good performance of D-estimator.

In the last part of numerical studies, let us consider application of the proposed method-
ology for the analysis of a real data with missing response and scale function depending on
auxiliary covariate. Ozone is an important trace gas in the atmosphere. While stratosphere
ozone (the ozone layer) helps to protect the earth’s surface by absorbing most of harmful
ultraviolet radiation of the sun, low level ozone (tropospheric ozone) is a harmful pollutant
involved in the chemical reaction of photochemical smog. So monitoring and controlling
ozone level is a hot environmental topic in both mass media and scientific researches. We
will analyze a small data set of ozone level at 147 sites in the midwestern region from Hare-
zlak, Ruppert and Wand (2018), which is a subset of data used in the cooperative research
program of the National Institute of Statistical Sciences (NISS) and the U.S. Environmental
Protection Agency (EPA); see Nychka, Piegorsch and Cox (1998). Interested readers may
check the EPA air quality data base for more data and information. We will model the data
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by (2), where the predictor of interest X is the latitude of an agency station and auxiliary
covariate Z is the corresponding longitude. Response Y is the 8-hour (from 9AM-4PM)
average (surface) ozone concentration measured in parts per billion (PPB). The top left dia-
gram in Figure 3 presents the distribution of observations {(Xl, Zl, Yl), l = 1, 2, . . . , 147}.
We can see ozone level roughly increases towards north, which also justifies our model set-
ting. The top right diagram exhibits a scattergram of (X,Y ) overlaid by univariate linear
regression estimate, E-estimate and S-estimate. We also give 95% pointwise and simulta-
neous confidence bands of Efromovich (2018) for S-estimate by dashed and dotted curves,
respectively. The result supports higher latitude region has a higher ozone level and all es-
timate are acceptable with respect to simultaneous confidence band. Because of data points
spreading out in the high latitude region, the right tail behavior of E-estimate differs from
our heteroscedasticity corrected S-estimate and even moves out of pointwise confidence
band while the their left tails in the low latitude region are almost the same.

Next, we consider the impact of missing mechanism on regression estimation. In the
bottom diagrams, we consider two scenarios modifying response by Bernoulli availability
variable with availability likelihood w(x) = 0.3 + 0.6x and w(x) = 0.6, which will imply
the same expected number of complete cases when predictor X is uniformly distributed.
Here, MAR sample has 94 complete cases while MCAR sample has 95 complete cases, that
is, about 40% observations are not available. According to missed cases shown by crosses,
MAR setting suffers severer missing in the low latitude region than the MCAR one in the
right as suggested by availability likelihood. For this particular MAR realization, it seems
that missing mitigates heteroscedasticity and E-estimate and S-estimate agree on a larg-
er interval in the low availability likelihood region comparing with the top right H-sample
diagram. Note that MCAR is a special case of MAR and complete-case estimator is recom-
mended in practice and theory analysis under MCAR. We can see S-estimate does a good
job and the three curves in the bottom diagrams look almost the same, which indicates a
successful adaptation to missing mechanism and also supports complete-case practice for
MCAR setting. You can check the slight change of S-estimate in the two diagrams of the
MCAR sample keeping mind that data points and other estimates are fixed. Althought ran-
domness affects particular realization, Figure 3 reflects nice performance of asymptotically
efficient statistician’s estimator in small sample.

4. Conclusion and Future Work

In this paper, we consider a nonparametric regression problem with complexity due to both
heteroscedasticity and missing at random response. It is known that efficient nonparametric
estimator for univariate regression does not require knowledge of scale function and there
also exists a corresponding sharp minimax complete-case estimator for the MAR response
setting. However, the use of scale function is indispensable for sharp minimax estimation
procedure when heteroscedasticity involves auxiliary covariates, that is, a univariate regres-
sion with a multivariate scale function. MAR response also introduces additional bias in
data and asymptotic theory is developed with a lower bound of minimax risk for this het-
eroscedastic regression setting with missing data, which also shows univariate procedure
ignoring this complicated heteroscedasticity can not be optimal. We show that it is still
possible to propose a data-driven sharp minimax estimator adapted to heteroscedasticity
and missing mechanism that mimics the performance of efficient pseudo estimators. A
general additive model (31) is also considered as an extension and a data-driven estimator
adapted to unknown additive component succeeds to attain the same sharp minimax risk
bound as model (2) under some mild regularity assumptions on nuisance functions. Monte
Carlo simulations and real data examples shed light on the feasibility of asymptotic theory
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for small sample data sets. It would also be of great interest to consider a more challenging
problem of MAR predictor for this auxiliary covariate involved heteroscedastic regression
in the future, where consistent complete-case approach is impossible even for the pure
univariate setting.
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Figure 1: Analysis of a data simulated according to model (2) with “Normal” regression
function. Scale function σ(x, z) = ez , joint design density fX,Z(x, z) = I((x, z) ∈
[0, 1]2) and availability likelihood w(x, z) = 0.4 + 0.4x. The top left diagram shows
the XY -scattergram for underlying hidden sample (H-sample) of size n = 100 while the
top right shows the corresponding XY -scattergram for M-sample with N = 61 complete
cases. Observations are shown by circles and missed incomplete cases (Xl, Zl, AlYl, Al)
with Al = 0 are shown by crosses for M-sample. The underlying regression function m(x)
is also shown by a solid line. The middle diagram gives ZY -scattergram. The bottom
scattergrams are overlaid by corresponding estimation results of D-estimate by (purple)
long dashed lines, S-estimate by (red) dot-dashed lines, E-estimate by (green) dotted lines,
K-estimate by (blue) short dashed lines and an additional S-estimate based on complete-
case (Scc) by a (cyan) long-short dashed line for M-sample. Subtitles under diagrams give
corresponding intergrated squared errors (ISE).

 
1960



●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4
6

H−Sample  (n = 100)

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4
6

ZY − Scattergram  (n = 100, N = 58)

Z

Y ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4
6

M−Sample  (n = 100, N = 58)

X

Y ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4
6

H−Sample  (n = 100)

ISE =  0.136 (D), 0.217 (S), 0.31 (E), 0.246 (K).
X

Y ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4
6

M−Sample  (n = 100, N = 58)

ISE =  0.15 (D), 0.283 (S), 0.587 (E), 0.39 (K), 0.355 (Scc).
X

Y ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

Figure 2: Analysis of a data simulated according to model (2) with “Bimodal” regression
function. Scale function σ(x, z) = ez , joint design density fX,Z(x, z) = I((x, z) ∈
[0, 1]2) and availability likelihood w(x, z) = 0.4 + 0.4x. The top left diagram shows
the XY -scattergram for underlying hidden sample (H-sample) of size n = 100 while the
top right shows the corresponding XY -scattergram for M-sample with N = 61 complete
cases. Observations are shown by circles and missed incomplete cases (Xl, Zl, AlYl, Al)
with Al = 0 are shown by crosses for M-sample. The underlying regression function m(x)
is also shown by a solid line. The middle diagram gives ZY -scattergram. The bottom
scattergrams are overlaid by corresponding estimation results of D-estimate by (purple)
long dashed lines, S-estimate by (red) dot-dashed lines, E-estimate by (green) dotted lines,
K-estimate by (blue) short dashed lines and an additional S-estimate based on complete-
case (Scc) by a (cyan) long-short dashed line for M-sample. Subtitles under diagrams give
corresponding intergrated squared errors (ISE).
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Table 1: Results for “Normal” Regression function

λ n = 100 n = 200 n = 400 n = 600 n = 800

1.22 1.58 1.34 1.18 1.61 1.71 1.09 1.60 1.96 1.05 1.60 2.11 1.04 1.62 2.22
1.36 1.34 1.35 1.28 1.29 1.30 1.17 1.18 1.17 1.11 1.11 1.13 1.10 1.10 1.12

N = 70.05 N = 140.57 N = 279.70 N = 420.08 N = 559.62
1.26 1.49 1.35 1.27 1.52 1.57 1.26 1.34 1.74 1.07 1.38 1.96 1.04 1.36 2.04
1.46 1.45 1.49 1.40 1.41 1.40 1.35 1.35 1.35 1.14 1.14 1.15 1.09 1.09 1.10

1 N = 60.05 N = 120.33 N = 240.17 N = 360.05 N = 478.70
1.32 1.38 1.30 1.14 1.52 1.58 1.30 1.35 1.65 1.17 1.37 1.91 1.04 1.37 2.00
1.49 1.48 1.52 1.28 1.27 1.26 1.41 1.39 1.38 1.25 1.25 1.26 1.10 1.10 1.11

N = 50.06 N = 99.93 N = 199.63 N = 300.44 N = 399.47
1.34 1.34 1.36 1.18 1.58 1.54 1.28 1.38 1.57 1.18 1.35 1.82 1.08 1.35 1.96
1.49 1.48 1.52 1.31 1.31 1.30 1.40 1.40 1.39 1.25 1.26 1.27 1.14 1.15 1.17

n = 100 n = 200 n = 400 n = 600 n = 800
1.37 1.64 1.32 1.46 2.09 1.74 1.41 2.08 2.09 1.26 1.95 2.19 1.22 1.98 2.44
1.56 1.56 1.55 1.72 1.71 1.64 1.68 1.66 1.58 1.42 1.42 1.44 1.39 1.38 1.38

N = 70.05 N = 140.57 N = 279.70 N = 420.08 N = 559.62
1.49 1.46 1.29 1.90 1.71 1.51 1.55 1.80 1.76 1.26 1.80 2.02 1.23 1.69 2.16
1.64 1.65 1.73 2.09 1.99 2.02 1.77 1.77 1.70 1.41 1.42 1.41 1.39 1.39 1.39

2 N = 60.05 N = 120.33 N = 240.17 N = 360.05 N = 478.70
1.76 1.46 1.29 1.40 1.78 1.67 1.62 1.72 1.67 1.44 1.82 1.98 1.23 1.70 2.05
1.88 1.89 1.93 1.61 1.58 1.62 1.86 1.84 1.80 1.61 1.59 1.56 1.38 1.37 1.37

N = 50.06 N = 99.93 N = 199.63 N = 300.44 N = 399.47
1.58 1.47 1.40 1.43 1.64 1.53 1.55 1.68 1.58 1.40 1.80 1.88 1.28 1.83 2.07
1.78 1.78 1.92 1.62 1.64 1.64 1.76 1.76 1.70 1.57 1.59 1.56 1.44 1.45 1.43

n = 100 n = 200 n = 400 n = 600 n = 800
1.93 1.80 1.44 2.52 1.97 1.54 2.68 2.33 1.92 2.29 2.38 2.14 2.24 2.55 2.41
2.36 2.30 2.44 2.81 2.93 3.03 3.17 3.15 3.01 2.69 2.74 2.68 2.64 2.60 2.52

N = 70.05 N = 140.57 N = 279.70 N = 420.08 N = 559.62
2.18 1.70 1.37 2.53 1.74 1.51 2.36 2.02 1.77 2.14 2.16 1.84 2.37 2.23 2.08
2.36 2.36 2.45 2.92 2.89 2.98 2.83 2.76 2.70 2.50 2.47 2.42 2.70 2.76 2.63

3 N = 60.05 N = 120.33 N = 240.17 N = 360.05 N = 478.70
2.99 1.68 1.31 2.29 1.82 1.58 2.32 2.01 1.68 2.30 2.13 1.86 2.15 2.19 2.05
2.98 2.95 3.12 2.63 2.57 2.80 2.77 2.71 2.70 2.78 2.73 2.58 2.51 2.52 2.47

N = 50.06 N = 99.93 N = 199.63 N = 300.44 N = 399.47
2.44 1.73 1.43 2.29 1.94 1.62 2.69 1.75 1.57 2.56 2.07 1.82 2.21 2.32 2.04
2.68 2.62 2.65 2.61 2.62 2.76 3.47 3.39 3.08 3.03 2.96 2.86 2.68 2.67 2.59

Consider a general additive regression model Y = m(X)+g(Z)+σ(X,Z)ε with “Normal” corner function
m(x), uniform joint design fX,Z(x, z) = I((x, z) ∈ [0, 1]2), scale function σ(x, z) = exp(λz/2). For fixed
λ, four rows of blocks in the table correspond scenario under H-sample with sample size n and then M-
samples with availability likelihood functions w1(x) = 0.5 + 0.4x, w2(x) = 0.4 + 0.4x and w3(x) =
0.3 + 0.4x, respectively. Average number of complete cases denoted by N is listed above each missing
scenario. In each block, three ratios in the first row are average values of ISES/ISED, ISEE/ISES and
ISEK/ISES under base model without additive component (g(z) = 0) while three ratios in second row are
average values of ISES/ISED under general additive model with g1(z) = z − 1/2, g2(z) = z2 − 1/3 and
g3(z) = z3 +z−3/4, respectively. Here, ISE’s stand for integrated squared errors of D-estimate, S-estimate,
E-estimate and K-estimate according to their subscripts.
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Table 2: Results for “Biomodal” Regression function

λ n = 100 n = 200 n = 400 n = 600 n = 800

1.06 0.98 0.69 1.02 0.95 0.68 1.03 0.90 0.97 1.01 0.92 1.08 1.01 0.95 1.14
1.09 1.08 1.09 1.04 1.04 1.05 1.06 1.06 1.07 1.03 1.04 1.04 1.03 1.03 1.04

N = 70.05 N = 140.57 N = 279.70 N = 420.08 N = 559.62
1.08 1.10 0.80 1.04 1.05 0.75 0.80 1.33 0.90 1.00 0.94 1.01 1.01 0.95 1.09
1.11 1.11 1.11 1.07 1.07 1.07 0.82 0.83 0.83 1.03 1.03 1.04 1.03 1.03 1.03

1 N = 60.05 N = 120.33 N = 240.17 N = 360.05 N = 478.70
1.10 1.12 0.85 1.04 1.06 0.78 0.85 1.27 0.89 0.72 1.46 1.00 1.00 0.95 1.09
1.14 1.15 1.16 1.07 1.08 1.08 0.87 0.87 0.87 0.74 0.74 0.75 1.03 1.03 1.04

N = 50.06 N = 99.93 N = 199.63 N = 300.44 N = 399.47
1.07 1.16 0.93 1.04 1.10 0.83 0.88 1.22 0.89 0.76 1.37 0.98 0.97 1.02 1.06
1.15 1.17 1.16 1.08 1.08 1.08 0.91 0.91 0.91 0.79 0.79 0.79 1.00 1.00 1.01

n = 100 n = 200 n = 400 n = 600 n = 800
1.14 1.13 0.81 1.11 1.12 0.79 1.14 1.11 0.99 1.09 1.12 1.12 1.10 1.12 1.21
1.21 1.21 1.19 1.16 1.16 1.15 1.21 1.22 1.21 1.14 1.14 1.15 1.16 1.15 1.16

N = 70.05 N = 140.57 N = 279.70 N = 420.08 N = 559.62
1.19 1.24 0.93 1.14 1.25 0.87 0.97 1.40 0.96 1.10 1.23 1.05 1.11 1.20 1.12
1.29 1.29 1.26 1.20 1.19 1.19 1.03 1.03 1.02 1.15 1.15 1.15 1.16 1.16 1.16

2 N = 60.05 N = 120.33 N = 240.17 N = 360.05 N = 478.70
1.28 1.26 0.99 1.14 1.27 0.93 1.00 1.40 0.97 0.88 1.49 1.05 1.09 1.24 1.13
1.32 1.32 1.34 1.19 1.20 1.20 1.07 1.07 1.05 0.92 0.92 0.92 1.15 1.15 1.15

N = 50.06 N = 99.93 N = 199.63 N = 300.44 N = 399.47
1.21 1.30 1.09 1.13 1.30 0.99 1.03 1.36 0.98 0.91 1.44 1.04 1.07 1.27 1.10
1.29 1.28 1.30 1.19 1.19 1.19 1.09 1.08 1.08 0.96 0.96 0.96 1.12 1.12 1.12

n = 100 n = 200 n = 400 n = 600 n = 800
1.44 1.34 0.96 1.43 1.29 0.89 1.62 1.35 0.97 1.54 1.38 1.10 1.57 1.36 1.19
1.57 1.55 1.58 1.54 1.54 1.53 1.78 1.77 1.74 1.66 1.65 1.62 1.68 1.67 1.67

N = 70.05 N = 140.57 N = 279.70 N = 420.08 N = 559.62
1.54 1.43 1.12 1.49 1.40 1.00 1.40 1.50 1.02 1.50 1.51 1.07 1.55 1.51 1.13
1.63 1.62 1.64 1.60 1.59 1.59 1.52 1.52 1.49 1.62 1.62 1.58 1.67 1.67 1.64

3 N = 60.05 N = 120.33 N = 240.17 N = 360.05 N = 478.70
1.74 1.41 1.16 1.51 1.47 1.08 1.38 1.54 1.07 1.26 1.62 1.11 1.53 1.55 1.14
1.80 1.74 1.80 1.57 1.58 1.63 1.50 1.50 1.49 1.36 1.35 1.32 1.68 1.67 1.64

N = 50.06 N = 99.93 N = 199.63 N = 300.44 N = 399.47
1.66 1.43 1.28 1.52 1.46 1.13 1.43 1.51 1.10 1.27 1.59 1.13 1.46 1.58 1.16
1.69 1.67 1.76 1.61 1.61 1.65 1.54 1.54 1.53 1.41 1.40 1.38 1.59 1.59 1.56

Consider a general additive regression model Y = m(X)+g(Z)+σ(X,Z)εwith “Bimodal” corner function
m(x), uniform joint design fX,Z(x, z) = I((x, z) ∈ [0, 1]2), scale function σ(x, z) = exp(λz/2). For fixed
λ, four rows of blocks in the table correspond scenario under H-sample with sample size n and then M-
samples with availability likelihood functions w1(x) = 0.5 + 0.4x, w2(x) = 0.4 + 0.4x and w3(x) =
0.3 + 0.4x, respectively. Average number of complete cases denoted by N is listed above each missing
scenario. In each block, three ratios in the first row are average values of ISES/ISED, ISEE/ISES and
ISEK/ISES under base model without additive component (g(z) = 0) while three ratios in second row are
average values of ISES/ISED under general additive model with g1(z) = z − 1/2, g2(z) = z2 − 1/3 and
g3(z) = z3 +z−3/4, respectively. Here, ISE’s stand for integrated squared errors of D-estimate, S-estimate,
E-estimate and K-estimate according to their subscripts.
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Figure 3: Analysis of the ozone data set with missing response. Consider the model (2)
Y = m(X) + σ(X,Z)ε, where respons Y is ozone measure, predictor of interest X is
the latitude and auxiliary covariate Z is the longitude of a monitoring station. Top left
diagram presents the triplet (X,Z, Y ) of sample size n = 147. In the top right diagram,
observations are shown by circles and the (blue) dot-dashed straight line and curve, (black)
solid, (red) dashed, (green) dotted curves are the linear regression, E-estimate, S-estimate
and its 95% pointwise and simultaneous confidence bands. In the bottom diagrams, we use
availability likelihood function w(x) = 0.3 + 0.6x to generate MAR sample with N = 95
complete cases and constant function w(x) = 0.6 to generate MCAR sample with N = 94
complete cases, where missed cases are showed by crosses at horizon. The S-estimate in
the bottom right diagram is based on complete cases as linear regression and E-estimate.
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