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Abstract 

When time series data contain frequency specific principal components, including periodic 
‘signals’ such as seasonal or daily cycles, separating these components from interfering 
frequencies is essential to understand the time and space structures of variation within data.  
Without properly separating processes operating at different frequencies, statistical 
analysis can obscure and confound true spatio-temporal relationships. Kolmogorov-
Zurbenko (KZ) filters are iterated moving averages and their extensions are well suited to 
spatio-temporal analysis by frequency separation (STAFS). With guided parameter 
selection, KZ filters permit finely separating adjacent uncorrelated frequencies and enable 
analysis of factors within each independent component time scale. This work derives 
formulas for the separable spectral distance between any two frequencies given data 
constraints as well as sequence length requirements for frequency separation within 
research design. Finally, simulations demonstrate proper guided spatio-temporal 
component frequency separation, the consequences of incomplete signal separation, and 
effectiveness of this method in spatial, temporal, and spatio-temporal analysis. 
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1. Introduction 

 
Time Series Analysis, or the observation of data across time, commonly involves variation 
that exhibits periodicities, or cyclic fluctuations. While periodic changes frequently relate 
to changes over time, with spatio-temporal data analysis periodic changes can occur in any 
measured dimension, whether temporal or spatial. These spatio-temporal cycles can result 
from natural phenomenon, such as seasonal or daily rhythms, to manmade processes such 
as work weeks. The variation associated with one cycle may be smaller than that associated 
with different component factors, such as the overall mean trend across time, random 
variation, system shocks, or other cycles. In the conventional spatial-temporal 
measurement domain, for example measurements in unit time, each observation is the 
collective sum of all factors at that time point. Smaller factors can be obscured. However, 
these sources of variation may operate on different time scales, such as the case with cycles 
operating at an associated frequency. Therefore, within the frequency domain, the spectral 
representation of spatio-temporal data provides an opportunity to separate and investigate 
different time and space scales without the entanglement in the original domain. 
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Kolmogorov-Zurbenko (KZ) filters and their extensions are able to separate portions of the 
frequency domain to exclude interfering frequencies [1, 2].  The frequency separated 
spatio-temporal components can then independently be used to reveal important details 
about patterns and processes often hidden within the original data, as well as associations 
with possible factors operating at similar spatio-temporal scales. This is the idea behind 
spatio-temporal analysis by frequency separation. These filters are used to isolate 
frequencies in a variety of fields such as the environmental sciences, meteorology, and 
climatology [3, 4, 5]. They have also been used to separate and model pollution and public 
health [6, 7]. They can be applied to time series and spatio-temporal data of higher 
dimensionality [8].  More recently their use was extended to epidemiological surveillance 
data in a multivariate analysis of the frequency separated uncorrelated components of 
variables thereby greatly improving model fit [9]. Many of these examples highlight the 
use of Kolmogorov-Zurbenko filters to smooth data, reduce random variation, interpolate 
missing observations, and necessarily separate portions of the frequency domain prior to 
analysis [9,10]. 
 
Some of the prior examples address filtering only one portion of the spectrum, or 
components widely separated in the frequency domain. However, with the increasing use 
of KZ filters in various research fields and the use of filters to split closely adjacent 
frequencies or where data is scarce, guidance for minimum data requirements is necessary 
to guarantee filter performance. First, this study derives a mathematical expression for what 
number of observations is necessary to separate two different frequencies. Next, this novel 
development is extended to provide rules for the minimum number of observations, or the 
sufficient sequence length, necessary to separate any given number of different 
frequencies. Third, for research design, this work proves the closest that two frequencies 
may be in an analysis and still be separated given a fixed set of observations. Computer 
simulations of component signals, combined with strong random errors and missing data 
are used to model real world unprocessed spatio-temporal data. Finally, these simulations 
of spatio-temporal analysis by frequency separation (STAFS) illustrate the importance of 
following the proposition guidelines proven here by comparing results under scenarios of 
sufficient and insufficient observational data requirements. These demonstrations illustrate 
applications, limitations, and outcomes of KZ filters to isolate, separate, and reconstruct 
the signals from the original observed data.  
 

2. Methods 

 
2.1 Statistical Analysis Tools 

The Kolmogorov-Zurbenko (KZ) filter is an iteration of a moving average of length m, a 
positive odd integer [1]. It is a filter with two parameters. The parameter m is the filter 
window size and k is the number of iterations. KZ filters are low pass filters that strongly 
attenuate signals of frequency 1/m and higher while passing lower frequencies. Applied to 
a random process {𝑋(𝑡): 𝑡 ∈ ℤ} a KZ filter with m time points, and k iterations is defined 
as: 
 
Equation 1: Kolmogorov-Zurbenko Filter 

𝐾𝑍𝑚,𝑘(𝑋(𝑡)) = ∑
𝑎𝑢
𝑚,𝑘

𝑚𝑘
𝑋(𝑡 + 𝑢)

𝑘(𝑚−1)/2

𝑢=−𝑘(𝑚−1)/2

 

 
The coefficients 𝑎𝑢

𝑚,𝑘 are the polynomial coefficients from: 
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∑ 𝑧𝑟𝑎𝑟−𝑘(𝑚−1)/2
𝑚,𝑘

𝑘(𝑚−1)

𝑟=0

= (1 + 𝑧 +⋯+ 𝑧𝑚−1)𝑘 

 
One advantage of the KZ filter is the computational ease with which statistical software 
can apply it in an iterated form. As an iterated application of a moving average filter of m 
time points, k times, the Kolmogorov-Zurbenko filter can be produced: 
 
Equation 2: Kolmogorov-Zurbenko filter as an iterated algorithm 

𝐾𝑍𝑚,1(𝑋(𝑡)) = ∑
𝑎𝑢
𝑚,1

𝑚1
𝑋(𝑡 + 𝑢)

(𝑚−1)/2

𝑢=−(𝑚−1)/2

=
1

𝑚
∑ 𝑋(𝑡 + 𝑢)

(𝑚−1)/2

𝑢=−(𝑚−1)/2

 

𝐾𝑍𝑚,2(𝑋(𝑡)) =
1

𝑚
∑ 𝐾𝑍𝑚,1(𝑋(𝑡 + 𝑢))

𝑘(𝑚−1)/2

𝑢=−𝑘(𝑚−1)/2

 

 
⋮ 

 

𝐾𝑍𝑚,𝑘(𝑋(𝑡)) =
1

𝑚
∑ 𝐾𝑍𝑚,𝑘−1(𝑋(𝑡 + 𝑢))

𝑘(𝑚−1)/2

𝑢=−𝑘(𝑚−1)/2

 

 
The transfer function is the linear mapping that describes how input frequencies are 
transferred to outputs. The energy transfer function is the square of the transfer function 
and as such is symmetric about zero. The energy transfer function of the KZ filter at 
frequency λ is: 
 
Equation 3: Kolmogorov-Zurbenko energy transfer function 

|𝐵(𝜆)|2 = (
sin(𝜋𝑚𝜆)

𝑚 sin(𝜋𝜆)
)
2𝑘

 

 
The cutoff frequency is a limit or boundary at which the energy transferred through a filter 
is suppressed or diminished rather than allowed to pass through. A cutoff frequency is used 
in many fields such as physics, communications, and electrical engineering, and selection 
depends upon the application. The point where output power is 𝛼 𝜖 (0,1) times that of the 
input can be used as the boundary, and it is common to use 𝛼 = 1/2 or the half power 
point, a power ratio in 10 ∗ 𝑙𝑜𝑔10 of -3 decibels units. The cutoff frequency, where the 
transfer function for a KZ filter is [11]: 
 
Equation 4: Kolmogorov-Zurbenko cutoff frequency 

𝜆0 ≈
√6

𝜋
√
1 − (1/2)

1
2𝑘

𝑚2 − (1/2)
1
2𝑘

 

 
Where the KZ filter is a low pass filter, strongly filtering signals of a frequency at or above 
the frequency equivalent to 1/m, the related Kolmogorov-Zurbenko Fourier Transform 
(KZFT) filter is a band pass filter.  KZFT is a filter applied to a random process 
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{𝑋(𝑡): 𝑡 ∈ 𝑇} that has parameters m time points, and k iterations but is shifted to center at 
a frequency 𝜈 and is defined: 
 
Equation 5: Kolmogorov-Zurbenko Fourier Transform 

𝐾𝑍𝐹𝑇𝑚,𝑘,ν(𝑋(𝑡)) = ∑
𝑎𝑢
𝑚,𝑘

𝑚𝑘
𝑒−𝑖2𝑚νu𝑋(𝑡 + 𝑢)

𝑘(𝑚−1)/2

𝑢=−𝑘(𝑚−1)/2

 

The coefficients 𝑎𝑢
𝑚,𝑘 are the polynomial coefficients from: 

∑ 𝑧𝑟𝑎𝑟−𝑘(𝑚−1)/2
𝑚,𝑘

𝑘(𝑚−1)

𝑟=0

= (1 + 𝑧 +⋯+ 𝑧𝑚−1)𝑘 

 
Where the KZ filter is symmetric around zero, the KZFT is a symmetric band pass filter 
around frequency ν. Practical use of the KZFT filter is similar to the KZ filter since it can 
be produced in statistical software. The energy transfer function of the KZFT filter at a 
frequency λ with parameters m, k, and ν is given below. 
 
Equation 6: Kolmogorov-Zurbenko Fourier Transform energy transfer function 

|𝐵(𝜆 − 𝜈)|2 = (
sin(𝜋𝑚(𝜆 − 𝜈))

𝑚 sin(𝜋(𝜆 − 𝜈))
)
2𝑘

 

 
It follows that the cut off frequency is: 
 
Equation 7: Kolmogorov-Zurbenko Fourier Transform cutoff frequency 

|𝜆0 − 𝜈| ≈
√6

𝜋
√
1 − (1/2)

1
2𝑘

𝑚2 − (1/2 )
1
2𝑘

 

 
For these filters, the cutoff frequency boundaries then become useful to determine the 
region of the spectra that is passed and that which is suppressed or filtered. 
 
2.2 Statistical Theory 

With a sufficiently large spatio-temporal sequence length or number of observations, n, 
this study proves that two frequencies can be separated by Kolmogorov-Zurbenko (KZ) 
filters with appropriate chosen filter parameters, so that each frequency is outside of the 
filter cutoff from the other frequency. In practice this does not mean that different 
frequencies are separable for any set of data. However, the cutoff frequency can be used to 
derive a set of conditions necessary so that appropriate KZ filters can be assured of 
separating frequencies, while minimizing interference between filtered spectral 
components subject to the limitations of the data. This research derives how many 
observations are minimally necessary in order to separate two given frequencies and then 
it details what separation is possible given a certain quantity of data observations. 
 
Proceeding with the outline of the theory for the following propositions and proofs, it is 
through the choice of filter parameters that control is exercised over the KZ filters, and 
their extensions such as KZFT. With the goal to separate and filter each of two or more 
different given frequencies and control the bandwidth of the cutoff frequency, it is possible 
to create two filters that center or pass one frequency while selecting window size, m, so 
that 1/m is less than or equal to one half the separation range or bandwidth between the two 
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given frequencies. The cutoff frequency would then be closer to the central target 
frequency, thereby attenuating the other target frequency enough so that interference is 
kept below a predetermined arbitrarily small level controlled. For simplicity, the proofs use 
the KZFT filter which can center the band-pass filter over a given frequency, and attenuate 
other frequencies based on the choice of the window size m and number of iterations. 
 
This idea only requires that there is some sufficiently large number of observations. It does 
not indicate that this is in some way a wise choice for n, or for that matter a practical choice. 
In practice it is unlikely someone is able to choose any large number n of observations with 
which to separate frequencies. For this reason, it is interesting to know what a lower limit 
of n observations that would be necessary to again be certain that given two frequencies, 
they can be separated outside of filter cutoff boundaries. This necessitates adjusting filter 
parameters so that bandwidth is not wasted with unnecessarily larger choices of m or k. 
The target frequencies are unchanged, thus the only parameters remaining are the filter 
windows size and iterations. Larger numbers of iterations narrow the band-pass filter, but 
requires higher numbers of observations because time points are discarded from the 
beginning and end of the available data due missing data outside the filter window time 
range. The only remaining parameter to adjust is the filter window size. Adjusting the 
window size of two filters centered at different frequencies so that the respective cutoff 
frequencies approach but do not overlap should separate with the minimum number of 
observations required. The following figure illustrates KZFT filters centered over different 
frequencies and how lowering the choice of m for each filter should decrease the number 
of observations required while still separating the frequencies. As the filters widen, band-
pass regions do not overlap up to the point that cutoff boundaries equal. This attenuates the 
interference caused by the other frequency with a minimum number of observations. 
 

 
Figure 1: Illustration of 2 different frequencies λ1 and λ2, and the reduction of filter window 
sizes so A and B cutoffs shift to A' and B' from a KZFT filter centered at λ1 and E and F 
cutoffs shift to E' and F' from a KZFT filter centered at λ2. Window size is reduced until 
cutoff B' equals cutoff E'. C' and D' provide the new frequencies to set window size in the 
respective KZFT filters. 
 
While time series typically separate signal frequencies in time, there is no difference in 
signal separation in any spatio-temporal dimension, either a temporal or a spatial 
dimension. Because of this, the following propositions make no differentiation between 
time and space scales and the propositions hold in either case. Frequency is equal to one 

                     A'          A D'    λ1       B        B'=E'        E        λ2    C'F           F'      
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divided by the period, where the period is the length of the cycle in what ever units that 
dimension happens to be measured. 
 
With this motivation we proceed to the proposition on the theoretical lower limit of the 
number of spatio-temporal observations necessary to separate two given frequencies so 
that the cutoff frequencies of KZFT filters are near equal and attenuated regions do not 
overlap. The first proposition can be considered to provide the minimal required or 
‘sufficient sequence length’ (SSL) of spatio-temporal data for separation. Proofs of 
propositions and corollaries are included in the Appendix. 
 
Proposition 1: Given 𝜆𝑖 = 1/𝑑𝑖  and 𝜆𝑗 = 1/𝑑𝑗  different spatio-temporal frequencies 
where 𝜆𝑖 ≠ 𝜆𝑗, and given 𝑘𝑖, 𝑘𝑗 parameters of KZFT filters, where 𝑚𝑖 = 𝑚𝑗 = 𝑚𝑖,𝑗 ≡ 

𝑚𝑎𝑥

(

 
 
𝑐𝑒𝑖𝑙𝑖𝑛𝑔

(

 √(1/2)
1
2𝑘𝑖
⁄

+
1−(1/2)

1
2𝑘𝑖
⁄

𝜋2

6
(
|λ𝑖−λ𝑗|

2
)

2

)

 , 𝑐𝑒𝑖𝑙𝑖𝑛𝑔

(

 √(1/2)
1
2𝑘𝑗⁄
+
1−(1/2)

1
2𝑘𝑗⁄

𝜋2

6
(
|λ𝑗−λ𝑗|

2
)

2

)

 

)

 
 
  

if |√6
𝜋
√

1−(1/2)
1
2𝑘𝑖
⁄

𝑚𝑖,𝑗
2 −(1/2)

1
2𝑘𝑖
⁄
| ≤

|λ𝑖−λ𝑗|

2
 and |√6

𝜋
√

1−(1/2)
1
2𝑘𝑗⁄

𝑚𝑖,𝑗
2 −(1/2)

1
2𝑘𝑗⁄
| ≤

|λ𝑖−λ𝑗|

2
 then  

𝑛𝑖,𝑗 ≥ 𝑚𝑎𝑥 (𝑚𝑖,𝑗, 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (
1

𝜆𝑖 
) , 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (

1

𝜆𝑗
)). 

 
One immediate corollary to the first proposition provides the rule for the sufficient 
sequence length, or minimum n, needed to separate any finite number, h, of different 
frequencies. 
 
Corollary 1: Given h different spatio-temporal frequencies, 𝜆1 < … < 𝜆ℎ , and 
𝑘1, 𝑘2, … , 𝑘ℎ given parameters of KZFT filters, where 𝑚𝑖,𝑗 ≡ 

𝑚𝑎𝑥

(

 
 
𝑐𝑒𝑖𝑙𝑖𝑛𝑔

(

 √(1/2)
1
2𝑘𝑖
⁄

+
1−(1/2)

1
2𝑘𝑖
⁄

𝜋2

6
(
|λ𝑖−λ𝑗|

2
)

2

)

 , 𝑐𝑒𝑖𝑙𝑖𝑛𝑔

(

 √(1/2)
1
2𝑘𝑗⁄
+
1−(1/2)

1
2𝑘𝑗⁄

𝜋2

6
(
|λ𝑗−λ𝑗|

2
)

2

)

 

)

 
 
   

for 𝑖 < ℎ and 𝑗 = 𝑖 + 1, if |√6
𝜋
√

1−(1/2)
1
2𝑘𝑖
⁄

𝑚𝑖,𝑗
2 −(1/2)

1
2𝑘𝑖
⁄
| ≤

|λ𝑖−λ𝑗|

2
 and |√6

𝜋
√

1−(1/2)
1
2𝑘𝑗⁄

𝑚𝑖,𝑗
2 −(1/2)

1
2𝑘𝑗⁄
| ≤

|λ𝑖−λ𝑗|

2
 

for all 𝑖 < ℎ and 𝑗 = 𝑖 + 1, then 

𝑛 ≥ 𝑚𝑎𝑥 ({𝑚𝑖,𝑗| 𝑖 < ℎ and 𝑗 = 𝑖 + 1}, {𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (
1

𝜆1 
) ,… , 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (

1

𝜆ℎ
)). 

 
Proposition 1 provides guidance for the smallest n possible to separate two given 
frequencies with KZ filters and Corollary 1 extends this describing the SSL, n, to separate 
any finite number of different frequencies with KZ filters. Generally, much larger numbers 
of observations are desired to more accurately represent the spatio-temporal patterns in 
data. In practice, it is often the case that n is not chosen but is fixed with the data available. 
Waiting for additional future observations to be recorded to extend the dataset may not be 
practical or possible. A subsequent question therefore is, with a fixed spatio-temporal 
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sequence length, n, what is the closest that two frequencies may be and still be separated 
with given KZ filters. This proposition can be considered as the rule or guideline to provide 
the minimum separable frequency difference between any number of frequencies. 
 
Proposition 2: If n is the given number of observations, and 𝜆𝑖 = 1/𝑑𝑖 and 𝜆𝑗 = 1/𝑑𝑗  are 

two frequencies so that √6
𝜋
√

1−(1/2)
1
2𝑘𝑖
⁄

𝑚𝑖
2−(1/2)

1
2𝑘𝑖
⁄

≤
|𝜆1−𝜆2|

2
 , 𝑖 = 1, 2  where 𝑚1, 𝑘1, 𝜆1  and 

𝑚2, 𝑘2, 𝜆2  are parameters of KZFT filters, then |𝜆1 − 𝜆2| ≥
√6

𝜋
√
1−(1/2)

1
2𝑘1
⁄

𝑛2−(1/2)
1
2𝑘1
⁄

+

√6

𝜋
√
1−(1/2)

1
2𝑘2
⁄

𝑛2−(1/2)
1
2𝑘2
⁄

. 

 
Recall that the propositions extend to both temporal and spatial data as well as higher 
dimensioned mixed spatio-temporal frameworks. Spatial frequency, or the reciprocal of 
distance (1/d), is suitable for the more common temporal frequency often used in research. 
 
The results of these propositions provide for the robust application of Kolmogorov-
Zurbenko filters and their extensions to separate spatio-temporal components in 
multidimensional time series data. In real world datasets, only with sufficient observations 
and appropriate choices of KZ parameters can the separation between different frequencies 
be effective so that time scale components can treated as independent. 
 

3. Simulations 

 

The theoretical conclusions of this study are supported by the use of simulations under 
assumed conditions and settings comparable to real world spatio-temporal data analysis. 
Simulations help understand and illustrate the performance of multidimensional 
Kolmogorov-Zurbenko filters to recover signals from original unprocessed observed data, 
conditions that may require the separation, isolation and recovery of signals of different 
frequencies, from a high degree of noise and high missing data rates. 
 
3.1 Simulation Methods 

Analysis is performed in R version 3.6.1 statistical software using the KZA and KZFT 
packages [11,12] with datasets in arrays with two spatial dimensions and one time 
dimension. Arrays are constructed with 100 x-axis and 100 y-axis spatial units, and 100 
time units. These arrays are populated by the sum of two spatio-temporally dependent sine 
wave signals with different frequencies and spatial patterns, where time and a combination 
of x and y coordinates determine the phase of the sine wave. The result is a motion picture 
in time of moving and interacting waves entangled in the time domain. While it is not 
possible to display the motion picture here, an example sequence of 5 equally spaced time 
points of one of the spatio-temporally changing signals used to construct the motion picture 
of moving and interacting entangled waves is seen in the following figure. 
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Figure 2: Example sequence of 5 equally spaced time points of one spatio-temporally 
changing signal used to construct the motion picture of moving and interacting entangled 
waves. 
 
Next, random variation is introduced by generating equal size arrays of elements randomly 
selected from a uniform distribution with a range of five times the amplitude of the original 
signals. These arrays of random variations are then combined with the array of the original 
pure signals. Finally, each (𝑥, 𝑦)  coordinate within the array is assigned a uniformly 
distributed randomly generated number from which a fixed percentage are selected and 
discarded as missing. This simulates the geographic or spatial scarcity often present in 
observed data. In this example the chance of being selected missing is 50 percent. 
 
The resulting three dimensional array of data is composed of the pure signals obscured by 
noise, and then with randomly selected observations discarded as missing data to form the 
final observed data to be processed. This observed data is all that would be available prior 
to analysis with no knowledge of the signals. One frame, or time point, of the final observed 
motion picture of the simulated data array can be seen in the following figure. 
 

Figure 3: Simulated data of two signals, with noise and missing observations at one 
example time point. 
 
This simulation design is used in two simulation scenarios to demonstrate the propositions, 
formulas, and guidance described above for separating frequencies. In each scenario, 
KZFT filters are centered above the original signal frequency, while choosing parameters 
to exclude the other frequency outside the cutoff boundary for that filter. A combination of 
KZFT filters removes the longer period, lower frequency, signal to reconstruct the shorter 
period, higher frequency, signal. The resulting reconstructed high frequency signal can be 
compared to the original true high frequency signal initially used in construction of the 
data. The separation, filtering, and signal reproduction is then repeated with the role of high 
and low frequency signals reversed. An illustrative visual comparison is made at one 
sample time point in the figures of the Results section. 
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The signals in the first simulation, ‘Scenario 1: Frequency Separation with Insufficient 
Sequence Length’, have frequencies 0.020 and 0.025, a frequency separation of 0.005. In 
the second simulation, ‘Scenario 2: Frequency Separation with Sufficient Sequence 
Length’ the frequencies are farther apart at frequencies 0.010 and 0.025, a separation of 
0.015. With this data, KZ filters with identical methodologies attempt to smooth and 
separating the two signals within the two scenarios. To illustrate the importance of the 
propositions and performing frequency separation with a sufficient sequence length, the 
results are compared showing the effect of signal separation with and without a spatio-
temporal SSL for the desired frequencies to be separated. 
 
3.2 Assessment of the Quality of Fit 

Correlation is a normalized measure of the association between random processes. 
Correlation measures the similarity in how one random process varies in time relative to a 
different process. It assumes a value between -1, implying perfect negative correlation, and 
positive 1, implying perfect positive correlation between random variables. Zero implies 
that the two random variables are not correlated. 
 
The coefficient of determination, calculated as the square of correlation, is a measure that 
indicates the quality of fit of a given time series to another by the fraction of the variance 
of one that is explained by another. In classical statistics, particularly linear regression 
through ordinary least squares, a typical assumption is that observations are independent 
and identically distributed. Time series processes are unlikely to be independent, violating 
these assumptions, but the use of 𝑅2 for time series does not require the assumption of 
independence of observations and is mathematically identical in calculation to that in 
classical statistics. This means that functions for calculating the 𝑅2 provided in statistical 
software can be used in time series, with care to interpret it as a measure of the goodness 
of fit between two time series. 𝑅2 ∗ 100 gives the percentage of variance of one time series 
that is explained by another. 
 
Here coefficient of determination, 𝑅2, measured in percent is used after simulation between 
one reconstructed component against another, as well as against the known true original 
signals to assess the fit, revealing the ability separate and to reconstruct, respectively. 
 

4. Results 

 
According to Proposition 1, in a time series with n=100 observations and with an 𝛼 = 0.5, 
or half power, the closest two frequencies may be is approximately 0.0062, with 
Kolmogorov-Zurbenko (KZ) filters having parameters 𝑘1, 𝑘2 = 2. We note here one KZ 
iteration does not completely interpolate all missing data, and more than two iterations 
require filter windows with wider support than the number of observations given, making 
two the natural choice. As may be the case, there are times when some parameters are 
dictated by the particular application or research. A minimum frequency separation of 
0.0062 is more than the frequency separation in scenario one, 0.005. This indicates that in 
the first scenario the frequencies are too close to each other for 100 observations to 
sufficiently separate them.   A minimum frequency separation of 0.0062 is less than that in 
scenario two, 0.015, indicating 100 observations is a least sufficient. Indeed, according to 
Proposition 2, a frequency separation of 0.005 should require 125 observations at a 
minimum.  A frequency separation of 0.015 should require 100 observations at a minimum. 
 
What results in the following figures after filtration and signal reconstruction are images 
that have smoothed noise and interpolated missing observations, but in Scenario 1 where 
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there is an insufficient sequence length for a signal separation of 0.005, the two signals are 
not well separated (Figure 4A and Figure 5A).  Both high and low frequencies are still 
present and somewhat visible, looking like a mix of the true high and low frequency 
component (Figure 4C and Figure 5C). The filters left the two signals entangled. In the 
images corresponding to the second scenario, there is improved signal separation (Figure 
4B and Figure 5B).  When the frequencies are farther apart as in Scenario 2 where there is 
a SSL for a signal separation of 0.015, the reconstructed higher frequency signal looks 
increasing like the true high frequency signal and exhibits less remnants of the low 
frequency signal.  When the signal frequencies are very close, given limited data, the filters 
capture more of the adjacent frequencies including the other interfering signal, resulting in 
a reconstructed image that is more a blend of the higher and lower frequency signals. When 
the signals are close there is confusion as to what the reconstructed signal indicates is the 
true pattern at that frequency. In a real world scenario, where the true signals are not known, 
the reconstructed signals can easily be mistaken as arising from the other component, or 
without indicating a given pattern at all (Figure 5A). 
 
 

A) B) C)  
 
Figure 4: Reconstructed high frequency signals when separation is (A) 0.005, (B) 0.015, 
and (C) the true high frequency component signal. 
 
 

A) B) C)  
 

Figure 5: Reconstructed low frequency signals when separation is (A) 0.005, (B) 0.015, 
and (C) the true low frequency component signal. 
 
The following table displays calculated fit statistics for the models produced.  In the first 
scenario, with a small separation between signals, the reconstructed high and low 
frequency signal along with the original observed data, with noise and missing 
observations, are fit against the true component high and low signal.  The same is done for 
the scenario when the signal separation is larger and correlation and coefficient of 
determination are provided. 
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Table 1: Correlation and Coefficient of Determination between original, true and 
recovered signals. 
 
Simulation Scenario 1: 0.005 Frequency Separation with Insufficient Sequence Length 
R2 * 100 (Percent) True High True Low 
Original Data 1.76% 1.75% 
Recovered High 23.27% 25.73% 
Recovered Low 0.80% 11.68% 
Simulation Scenario 2: 0.015 Frequency Separation with Sufficient Sequence Length 
Original Data 1.78% 1.82% 
Recovered High 28.72% 6.86% 
Recovered Low 0.11% 72.58% 

 
Results indicate that in both scenarios, the observed data did not fit either the high or low 
frequency component well, where the original data explains less than 2% of the variation 
of each of the component signals. This is not surprising given that the original observed 
data was composed of both signals but only in the presence of severe noise and missing 
observations.  This illustrates the challenge in the analysis. While in both simulation 
scenarios the recovered signals were an improvement in fit to their respective targeted true 
signals, the recovered high and low signals modeled the true high and low frequency 
signals better when the signal separation was greater. The R2 as a percentage of variance 
explained for the recovered high frequency signal improved the correlation from 23.27% 
to 28.72%, with the true high frequency signal. The success of the recovered low frequency 
signal was even more striking, with R2 increasing from 11.68% to 72.58%, and explaining 
over sixty percent more of the variation in the true low frequency signal. An additional 
failure caused by not following the proposition guidelines in scenario one, where frequency 
separation is below the minimum number of required observations, is the recovered signal 
for a given targeted frequency had higher R2 fit statistics to the wrong component 
frequency. In the simulated scenario one of an example of not following the proposition 
guidelines, the recovered high frequency signal had higher correlation and R2 with the true 
low frequency component, 25.73%, than it did with the intended high frequency target 
signal, 23.27%. This indicates that failing to follow these proposition guidelines likely 
result in poor signal separation and could be prone to model misspecification. 
 

5. Discussion 

 
This study illustrates the importance of understanding the applications and limitations of 
Kolmogorov-Zurbenko (KZ) filters and their extensions as well as spatio-temporal analysis 
by frequency separation (STAFS). It extends the theory of separating component signals 
by proving propositions to guide what separation may be expected given a set of data, and 
similarly what data is required to investigate the separation of two or more targeted signals. 
This helps to understand what questions these tools can answer retrospectively given a set 
of data, and assists the design of future research that uses this class of filters as an 
investigatory tool. 
 
Noise exceeding many times the strength of component signals or missing data rates of 
half or more of all observations may seem impossible obstacles given other statistical 
analysis techniques. The simulations in this study were not only intended to illustrate the 
use of KZ filters to handle these difficulties, but were intentionally designed with scenarios 
chosen to stress KZ methods for signal separation both in line with and outside of guidance 
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from the propositions about frequency separation with a sufficient sequence length.  The 
purposely low number of simulated observations coupled with signals with smaller and 
then greater separation, as guided by the previous propositions, illustrated signal 
reconstruction where data was theoretically inadequate verses minimally sufficient. 
Correlation analysis between the reconstructed signals and the original component signal 
in both scenarios indicates the superiority of KZ filters where there is sufficient data to 
more effectively separate the given signals. The assessment of the quality pf fit also 
indicated the negative consequences of not following the proposition guidelines. Besides 
poor quality signal reconstruction fit, there was the potential for misidentification of signals 
and model misspecification. In practice, far greater numbers of observations are desirable, 
several multiples of the longest signal period. Still, in these challenging simulated 
conditions above the successful signal reconstruction and quality of fit was visibly and 
measurably evident when following the proposition guidance. 
 
The use of KZ filters has increased as demand increases to meet statistical analysis 
challenges such as multidimensional spatial and temporal data analysis, large random 
errors, high rates of missing observations, signal interference, and situations where other 
statistical analysis methods are inadequate. As these statistical analysis tools find wider use 
in a variety of scientific fields the theoretical results discussed here are necessary to ensure 
performance in spatio-temporal analysis by frequency separation. 
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Appendix 

 
Proposition 1: Given 𝜆𝑖 = 1/𝑑𝑖  and 𝜆𝑗 = 1/𝑑𝑗  different spatio-temporal frequencies 
where 𝜆𝑖 ≠ 𝜆𝑗, and given 𝑘𝑖, 𝑘𝑗 parameters of KZFT filters, where 𝑚𝑖 = 𝑚𝑗 = 𝑚𝑖,𝑗 ≡ 

𝑚𝑎𝑥
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Proof of Proposition 1: Define 𝑐 = 𝜋2
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, the cutoff for a filter with parameters m and k. 
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Corollary 1: Given h different spatio-temporal frequencies, 𝜆1 < … < 𝜆ℎ , and 
𝑘1, 𝑘2, … , 𝑘ℎ given parameters of KZFT filters, where 𝑚𝑖,𝑗 ≡ 

𝑚𝑎𝑥

(

 
 
𝑐𝑒𝑖𝑙𝑖𝑛𝑔

(

 √(1/2)
1
2𝑘𝑖
⁄

+
1−(1/2)

1
2𝑘𝑖
⁄

𝜋2

6
(
|λ𝑖−λ𝑗|

2
)

2

)

 , 𝑐𝑒𝑖𝑙𝑖𝑛𝑔

(

 √(1/2)
1
2𝑘𝑗⁄
+
1−(1/2)

1
2𝑘𝑗⁄

𝜋2

6
(
|λ𝑗−λ𝑗|

2
)

2

)

 

)

 
 
   

for 𝑖 < ℎ and 𝑗 = 𝑖 + 1, if |√6
𝜋
√

1−(1/2)
1
2𝑘𝑖
⁄

𝑚𝑖,𝑗
2 −(1/2)

1
2𝑘𝑖
⁄
| ≤

|λ𝑖−λ𝑗|

2
 and |√6

𝜋
√

1−(1/2)
1
2𝑘𝑗⁄

𝑚𝑖,𝑗
2 −(1/2)

1
2𝑘𝑗⁄
| ≤

|λ𝑖−λ𝑗|

2
 

for all 𝑖 < ℎ and 𝑗 = 𝑖 + 1, then 
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Proof of Corollary 1: Without loss of generality, we can assume that 𝜆1 < 𝜆2 < ⋯ < 𝜆ℎ. 
Assuming the givens, by Proposition 1 we have 
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Proposition 2: If n is the given number of observations, and 𝜆𝑖 = 1/𝑑𝑖 and 𝜆𝑗 = 1/𝑑𝑗  are 
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Proof of Proposition 2: Assume the given statements. By definition a KZFT filter has 
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