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Abstract

In text mining, gene expressions and machine learning there is a need to model vectors at the
positive orthant of the hypersphere. Similarly, in compositional data analysis a square root trans-
formation can also be used to map the simplex onto the mentioned subspace. This paper focuses
in developing a probability distribution on that region avoiding unnecessary probability mass at the
whole hypersphere. We modified a proposed spherical Dirichlet distribution proposing a flexible
version of this distribution. The distribution basic properties, such as normalizing constants and
moments are developed. Efficient estimators based on classical inferential statistics are also ob-
tained. An application using simulated data and a text mining example are developed and their
results are discussed.

Key Words: Dirichlet distribution, text mining, hypersphere, gene expressions, positive orthant

1. Introduction

In text mining and gene expressions analysis, the collections of texts are represented in
a vector-space model, which implies that texts once standardized, are coded as vectors in
a sphere of higher dimensions, also called a hypersphere [9]. Many researchers currently
model those distributions by means of existing probability density mixtures, however, these
approximations waste probability mass in the whole hypersphere, when it is actually only
needed at the positive orthant of the hypersphere. This is mainly because of the non-
existence of suitable distributions for that subspace. The new proposed distribution fills
that void, allowing a more efficient modeling of these vectors.

1.1 Probability Density Function and Normalizing Constants

The spherical-Dirichlet distribution is obtained by transforming the Dirichlet distribution
on the simplex to the corresponding space on the hypersphere. In this section we derive the
density and we compute the normalizing constants. Let y have a Dirichlet distribution on
the simplex as described by Ingram [8].

fDir(y;α) =
Γ(
∑m

i=1 αi)∏m
i=1 Γ(αi)

m∏
i=1

yi
αi−1. (1)

=
Γ(
∑m

i=1 αi)∏m
i=1 Γ(αi)

m−1∏
i=1

yi
αi−1(1−

m−1∑
i=1

yi)
(αm−1)

where

0 5 yi 5 1,

m∑
i=1

yi = 1, αi ∈ <
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Transforming the Dirichlet distribution (1) from the simplex to the positive orthant of the
hypersphere (Figure 1)

 

    yi          xi 

Figure 1: Transform from the simplex to the positive orthant of the hypersphere

and taking the square root transformation

xi =
√
yi, yi = xi

2,
∂yi
∂xi

= 2xi i = 1, ....m (2)

then, computing the Jacobian for all variables, it follows that

J =

∣∣∣∣∣∣∣∣∣
∂y1
∂x1

= 2x1
∂y1
∂x2

= 0 0 . . .
∂y2
∂x1

= 0 ∂y2
∂x2

= 2x2 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . ∂ym
∂xm

= 2xm

∣∣∣∣∣∣∣∣∣ =

m∏
i=1

2xi = 2m
m∏
i=1

xi

the proposed transformation results in

fSDir(x;α) =
2mΓ(α0)∏m
i=1 Γ(αi)

m∏
i=1

xi
2αi−1 (3)

=
2mΓ(α0)∏m
i=1 Γ(αi)

m−1∏
i=1

xi
2αi−1(1−

m−1∑
i=1

x2
i )

(αm− 1
2

)

where
m∑
i=1

αi =: α0, 0 5 xi 5 1,
m∑
i=1

x2
i = 1, αi ∈ <+.
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We refer to (3) as the spherical Dirichlet distribution (SDD) and write x ∼ SDD(αi).
We introduce the parameters αi as the concentration parameters in a similar manner to the
corresponding parameters of the Dirichlet distribution.

1.2 Moments

In this section we compute the first and second order moments, mode, standard deviation,
variances and covariances and its corresponding covariance matrix. First, we compute the
expected value for one of the variables, for example let us consider the expected value of
x1

E(x1) =

∫
· · ·
∫

2mΓ(α0)∏m
i=1 Γ(αi)

x1(

m∏
i=1

xi
2αi−1)dx1 . . . dxm (4)

=

∫
· · ·
∫

2mΓ(α0)∏m
i=1 Γ(αi)

x1(

m−1∏
i=1

xi
2αi−1)(1−

m−1∑
i=1

x2
i )

(αm− 1
2

)dx1 . . . dxm−1, (5)

where we recognize the expression inside the integral as the kernel of the proposed SDD
with a new first parameter α1+ 1

2 replacing the original α1, then we can rewrite immediately
this expression as

E(x1) =
2mΓ(α0)∏m
i=1 Γ(αi)

Γ(α1 + 1
2)
∏m
i=2 Γ(αi)

2mΓ(α0 + 1
2)

(6)

or equivalently,

E(x1) =
µ1

µ0
, (7)

where we write µi as,

µi =:
Γ(αi + 1

2)

Γ(αi)
. (8)

The general solution for the first moment for a vector x can be written as

E(x) =
Γ(α0)

Γ(α0 + 1
2)

(
Γ(α1 + 1

2)

Γ(α1)
, . . . ,

Γ(αm + 1
2)

Γ(αm)

)
=

1

µ0

Γ(α+ 1
2)

Γ(α)
(9)

that can also be written

µ =
Γ(α+ 1

2)

Γ(α)
, (10)

then the expected value for a vector x is

E(x) =
µ

µ0
=
||µ||
µ0
· µ
||µ||

= C · µ̄, (11)
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let

C =:
||µ||
µ0

, µ̄ =:
µ

||µ||
, µ̄ ∈ Ωm−1. (12)

Similarly, computing the expected value for x2
1

E(x2
1) =

∫
· · ·
∫

2mΓ(α0)∏m
i=1 Γ(αi)

x2
1 · (

m∏
i=1

xi
2αi−1)dx1 . . . dxm, (13)

then

E(x2
1) =

2mΓ(α0)∏m
i=1 Γ(αi)

∫
· · ·
∫
x2α1−1

1 (

m∏
i=2

xi
2αi−1)dx1 . . . dxm−1, (14)

again, we can recognize the expression inside the integral as the kernel of the proposed
SDD with a new first parameter α1 + 1, that yields

E(x2
1) =

2mΓ(α0)∏m
i=1 Γ(αi)

Γ(α1 + 1)
∏m
i=2 Γ(αi)

2mΓ(α0 + 1)
=

Γ(α0)

Γ(α0 + 1)

Γ(α1 + 1)

Γ(α1)
=
α1

α0
, (15)

this result can be generalized to any xi as

E(x2
i ) =

αi
α0
. (16)

Moreover, the variance for any variable xi is

V (xi) =
αi
α0
− µ2

i

µ2
0

, (17)

and the covariance for x1, x2 can be written as

E(x1·x2) =

∫
· · ·
∫

2mΓ(α0)∏m
i=1 Γ(αi)

x1 · x2(
m∏
i=1

xi
2αi−1)dx1 . . . dxm, (18)

after some arrangements, we can identify the kernel of the proposed SDD with the first
two parameters as α1 + 1

2 , and α2 + 1
2 , where we can solve the corresponding integral, and

our result takes the form

E(x1·x2) =
Γ(α1 + 1

2)Γ(α2 + 1
2)

α0Γ(α1)Γ(α2)
=
µ1 · µ2

α0
. (19)

In general for any pair of variables (xi, xj) we can write

E(xi·xj) = δij ·
αi
α0

+ (1− δij) ·
µi · µj
α0

, (20)
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where δij is the delta Kronecker, and we can also write the covariance for any pair of
variables (xi, xj) as

COV (xi, xj) =

(
1

α0
− 1

µ2
0

)
µi · µj for i 6= j. (21)

In general we can write the covariance for any pair of variables (xi, xj) as

COV (xi, xj) = δij ·
(
αi=j
α0
− µ2

i

µ2
0

)
+ (1− δij) ·

(
1

α0
− 1

µ2
0

)
µi · µj , (22)

that in matrix notation can also be written as

Σ =


α1
α0
− µ21

µ20

(
1
α0
− 1

µ20

)
µ1 · µ2 . . . . . .(

1
α0
− 1

µ20

)
µ2 · µ1

α2
α0
− µ22

µ20
. . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . αm
α0
− µ2m

µ20

 ,

an equivalent expression is

Σ =
1

α0


α1 − µ2

1 0 . . . . . .
0 α2 − µ2

2 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . αm − µ2

m

− ( 1

µ2
0

− 1

α0

)
µµT ,

similarly we let

Σ =
1

α0
diag(α)− C2µ2

0

α0
diag(µ̄µ̄T )− C2

(
1− µ2

0

α0

)
µ̄µ̄T , (23)

where

C =
||µ||
µ0

, µ̄ =
µ

||µ||
, µ̄ ∈ Ωm−1, (24)

that summarizes our results in a succinct form.

1.3 Mode and Relationship with the Mean

The mode for the SDD can be determined by finding the values of αi that maximize this
function, alternatively, we can also maximize the log of this function as it is customary and
usually easier. First, taking the natural log of the SDD and adding the constraint

∑m
i=1 x

2
i =

1 for the purpose of using Lagrange multipliers we get

lnfSDir(x,α) = ln(
2mΓ(α0)∏m
i=1 Γ(αi)

) +
m∑
i=1

(2αi − 1) lnxi − λ(
m∑
i=1

x2
i − 1), (25)

taking derivatives with respect to xi and setting them to zero we have
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∂lnfSDir

∂xi
= (2αi − 1)

1

xi
− 2xiλ = 0, (26)

solving for x2
i , it yields

x2
i =

2αi − 1

2λ
, (27)

and substituting this result at the constraint in (25) we can solve for λ as

λ =
1

2
(2

m∑
i=1

αi −m), (28)

where we can obtain the mode for xi as

xi =

√
2αi − 1

2α0 −m
. (29)

Considering the special case of a symmetric SDD for all αi = α, it yields for all xi

(mode)xi =

√
2α− 1

m · (2α− 1)
=

1√
m

for ∀αi = α and α 6= 1

2
, (30)

the mean for a symmetric Spherical-Dirichlet distribution for all αi = α is

E(xi) =
µi
µ0

=
Γ(α+ 1

2)

Γ(α)
· Γ(α0)

Γ(α0 + 1
2)

=
Γ(α+ 1

2)

Γ(α)
· Γ(mα)

Γ(mα+ 1
2)
, (31)

where we can see that the mode does not match the expected value for a symmetric
SDD, however, we can still find an asympotic relationship using the expression developed
by Frame [1]

lim
x→∞

f(x) =
Γ(x+ a)

Γ(x)
= xa, (32)

using this approximation it yields

lim
α→∞

E(xi) = (α
1
2 ) · 1

(mα)
1
2

=
1√
m

for ∀αi = α and α 6= 1

2
, (33)

that in the limit it matches the mode shown in (30).

2. Relationships of the SDD with other Distributions

In this section we explore the relationships or the lack thereof, between the SDD and other
popular distributions such as the uniform, von Mises and its particular case of the Fisher
Bingham distribution. We consider limiting cases for different values of the concentration
parameters αi.
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2.1 Limiting Case Symmetric Distribution for large α

Assuming a symmetric SDD with αi = α, for ∀αi we can write

fDir(y;α) =
Γ(mα)

Γ(α)m

m∏
i=1

xi
2α−1, (34)

subject to the restrictions

0 5 xi 5 1,
m∑
i=1

x2
i = 1, α ∈ <+,

in this case the covariance matrix can be reduced to

Σ =
1

m

(
1− µ2

α

α

)
I −

(
µα
µ0

)2(
1− µ2

0

mα

)
11T , (35)

where

µα =
Γ(α+ 1

2)

Γ(α)
, µ0 =

Γ(α0 + 1
2)

Γ(α0)
,

in an attempt to write the SDD as a rotational distribution of the type shown by Mardia
[5], the latter expression can be rewritten as

Σ =

(
1− µ2

α

α

)(
1

m
I − µ̄µ̄T

)
+

(
1−mµ2

α

µ2
0

)
µ̄µ̄T , (36)

or equivalently

Σ = var(x)mµ̄µ̄T +

(
1− µ2α

α

m

)(
I −mµ̄µ̄T

)
, (37)

where we can’t determine an equivalence to the von-Mises or similar rotationally sym-
metric distributions, however, we can see that in the limiting case for α → ∞ and conse-
quently α0 →∞ we have

lim
α→∞

µα = lim
α→∞

Γ(α+ 1
2)

Γ(α)
= α

1
2 ,

and

lim
α→∞

µ0 = lim
α→∞

Γ(mα+ 1
2)

Γ(mα)
= (mα)

1
2 ,

which in the limit it yields

lim
α→∞

Σ = lim
α→∞

(
1− µ2

α

α

)(
1

m
I − µ̄µ̄T

)
+

(
1−mµ2

α

µ2
0

)
µ̄µ̄T = 0,

we can conclude that for large values of α the covariance matrix tends to zero, conse-
quently, the SDD tends to be concentrated as a vector with no variation.
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2.2 Limiting Case Uniform Distribution

We now consider the case where all αi = 1
2 , then the SDD becomes

fSDir(x;α) =
2mΓ(α0)∏m
i=1 Γ(αi)

m∏
i=1

xi
2αi−1 =

2mΓ(m2 )

Γ(1
2)m

, (38)

which is a constant thickness independent of the values of xi. Then the SDD becomes
the uniform distribution over the positive orthant of the hypersphere.

2.3 Similarities and Differences of the SDD with the von Mises and Fisher Bingham
Distributions

The von Mises distribution is usually considered the analogue of the normal distribution
in the circle as described by Mardia in [4], and its particular case for the three dimen-
sional sphere, the Fisher Bingham distribution, both tend to converge to a multivariate and
bivariate normal distribution respectively for large values of κ as shown by Kent [2].

The proposed SDD doesn’t seem to converge to the von Mises distribution or to a
multivariate normal distribution for large values of αi, but rather it tends to be concentrated
as a vector as it was established at the end of Section 2.1.

Moreover, both the von Mises and the Fisher Bingham distribution converge to the
uniform distribution for very small values of κ, in a similar way as the SDD does for all
αi = 1

2 , as it was shown at section 2.2.

3. Inference for the Spherical Dirichlet Distribution

We now consider estimation of the parameters of the SDD. Our main interest is to develop
suitable procedures to estimate the set of parameters αi, given a sample of random vectors
in the positive orthant of the hypersphere. We first derive estimators for αi using the method
of moments (MOM), next we develop estimators for the same set of parameters using the
method of maximum likelihood estimation (MLE).

3.1 Method of Moments

Using a similar procedure as the one developed by Narayanan [7] to estimate the param-
eters of the Dirichlet distribution, suppose we have a random sample with n random vec-
tors X1, X2, ....Xn such that Xi ∈ <m =

[
Xj |j = 1...,m;Xj > 0,

∑m
j=1 x

2
j = 1

]
that are

i.i.d., then

E(xi) =
Γ(αi + 1

2)

Γ(αi)
· Γ(α0)

Γ(α0 + 1
2)

=
µi
µ0
, (39)

and

E(x2
i ) =

αi
α0
. (40)

We define the sample moments as

X
′
1j =

1

n

n∑
i=1

xij j = 1, ..,m, (41)
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and

X
′
2j =

1

n

n∑
i=1

x2
ij j = 1, ..,m. (42)

We have m first order moment equations and m second order moment equations to solve
for m unknowns αi. To avoid linear dependency and for the sake of simplicity we choose
one of the first order moments and m-1 second order moment equations

Γ(α1 + 1
2)

Γ(α1)
· Γ(α0)

Γ(α0 + 1
2)

=
1

n

n∑
i=1

xi1 = X
′
11, (43)

then, the remaining m-1 second order moment equations are

αi
α0

=
1

n

n∑
i=1

x2
ij = X

′
2j j = 2, ...,m. (44)

There is no closed form solution for αi in solving simultaneously (43) and (44), so we
must solve numerically to obtain the corresponding method of moments estimators for αi.
Results from MOM can be used as initial values for the MLE that usually exhibit better
statistical properties.

3.2 Maximum Likelihood Estimation

Suppose that we have a random sample of vectors on the positive orthant of the hyper-
sphere, X1, X2, ....Xn, where Xi ∈ <m from SDD with pdf (3). Then, the log-likelihood
is

lnL(α) = ln
n∏
i=1

2mΓ
(∑m

j=1 αj

)
∏m
j=1 Γ(αj)

m∏
j=1

xij
2αj−1

= ln

n∏
i=1

2mΓ(

m∑
j=1

αj)

m∏
j=1

Γ(αj)
−1xij

2αj−1. (45)

The parameters for a SDD can be estimated maximizing the log-likelihood function
of the data, in a similar procedure as the one used by Minka for the Dirichlet distribution
described at [6]. We can group all the constant terms as K, and we can rewrite all the
products and sums as

lnL(α) = K + n ln Γ(
m∑
j=1

αj)− n
m∑
j=1

ln Γ(αj) +
n∑
i=1

m∑
j=1

(2αj − 1) lnxij ,

= K + n

ln Γ(
m∑
j=1

αj)−
m∑
j=1

ln Γ(αj) +

m∑
j=1

(2αj − 1)
1

n

n∑
i=1

lnxij

 ,

where the function that needs to be optimized after removing unnecessary constants is
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F (α) = ln Γ(

m∑
j=1

αj)−
m∑
j=1

ln Γ(αj) +

m∑
j=1

(2αj − 1)

(
1

n

n∑
i=1

lnxij

)
. (46)

The gradient of the objective function can be obtained by differentiating the log-likelihood
lnF (α) with respect to αk as

∇(F )k =
∂F

∂αk
= Ψ(

m∑
j=1

αj)−Ψ(αk) + 2

(
1

n

n∑
i=1

lnxik

)
, (47)

where Ψ =: d ln Γ(x)
dx is the digamma function. The optimization is subject to the con-

straints αi = 0. Because the SDD is a member of the exponential family this is a convex
function and the observed sufficient statistic is equal to the expected sufficient statistic,
where the latter is

E (xk) =
1

2
Ψ(αk)−

1

2
Ψ(

m∑
j=1

αj), (48)

and the observed sufficient statistic is

1

n

n∑
i=1

lnxij . (49)

That leads to the following iterative procedure

Ψ(αnewk ) = Ψ(

m∑
j=1

αoldj ) + 2

(
1

n

n∑
i=1

lnxik

)
. (50)

Although the proposed procedure does not guarantee in general reaching a global max-
imum, updating successively (50) to maximize the log-likelihood equation provides rea-
sonable results and convergence is typically fast.

4. Applications to Data

Lets now consider estimation of the parameters of the SDD. We first developed an exam-
ple using simulated data generated from the proposed SDD with known parameters, and
assuming to be unknown for the purpose of this estimation. Next, a second example was
developed using a text mining example, with data obtained from a publicly available data
set. Both examples were solved using MOM and MLE, applying the proposed techniques
described at sections 3.1 and 3.2, and results obtained from both methods were compared.

4.1 Simulation Example

Four different simulations were performed each with 1,000 randomly generated values from
a SDD in a three-dimensional space, with known proposed values of the parameters α1, α2

andα3. Inferences to estimate the values of these parameters, assumed to be unknown, were
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performed using MOM and MLE procedures developed in the previous sections 3.1 and
3.2. Graphs for the SDD corresponding to the proposed four different sets of parameters
are shown in figures 2 and 3.
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Figure 2: α1 = 2, α2 = 2, α3 = 2 α1 = 5, α2 = 15, α3 = 2
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Figure 3: α1 = 0.5, α2 = 0.5, α3 = 2 α1 = 2, α2 = 2, α3 = 10

First, an estimation was performed using MOM and iterating between (43) and (44).
These values are updated in each cycle until convergence is achieved within the proposed
tolerance limit. The estimated values of the parameters found using MOM were used as the
initial values for the iterative process using MLE. For the latter method expression (50) is
updated successively until the values of the parameters are stable within a pre-set tolerance
level. Results for estimation by both methods and the true values of the parameters are
shown at table 1. Note the close agreement between the MLEs and MOMs at the results
shown at table 1.
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Table 1: Simulation Results.
Method # Iterations α1 = 2 α2 = 2 α3 = 2 % Error
MOM 176 2.0557 2.0983 2.0764 3.84
MLE 51 2.0412 2.0798 2.0479 2.81
Method # Iterations α1 = 5 α2 = 15 α3 = 2 % Error
MOM 589 5.0351 14.7148 1.9684 1.40
MLE 147 5.1932 15.1998 2.0496 2.56
Method # Iterations α1 = 0.5 α2 = 0.5 α3 = 2 % Error
MOM 28 0.4964 0.4639 1.9212 3.96
MLE 23 0.4903 0.4821 1.9503 2.67
Method # Iterations α1 = 2 α2 = 2 α3 = 10 % Error
MOM 385 1.9349 2.0153 10.1145 1.72
MLE 85 1.9745 2.0713 10.3528 2.79

4.2 Text Mining Example

A text mining example was developed using a publicly available data set assembled by
Lang [3]. An example of email messages regarding several interest groups are available,
the ”auto” topic was selected and summarized using standard data mining techniques. A
collection of randomly selected 160 documents (emails) was extracted and summarized as
vectors at the positive orthant of the hypersphere. Common terms such as ”from” or ”sub-
ject” were excluded as they did not provide any discriminant power and could potentially
bias the analysis. Vocabulary reduction for synonymous and stemming were performed,
and the ten most common terms were extracted by obtaining their raw frequencies. The
frequencies for these terms can be expressed as vectors at a ten-dimensional space. A small
sample of this data set can be seen at table 2.

Table 2: Terms Frequency.

Doc ID ntoken auto write articl engin don good time drive road
103092 0 2 1 1 0 0 0 0 0 0
101671 7 0 2 2 0 2 2 0 0 0
...... ... ... ... ... ... ... ... ... ... ...
101582 6 8 3 2 0 0 0 0 0 0
103050 0 3 1 0 0 0 0 0 0 0

An appropriate transformation for these vectors needs to be applied to reduce extreme
values and eliminate zeros. The transformation that was applied here is xtransf = ln(1.10+
x). These vectors were standardized with a unit length at the positive quadrant of the hyper-
sphere and they were fitted using the proposed multivariate SDD for ten dimensions. The
estimation for the corresponding α’s for the proposed distribution were done using both
MOM and MLE, and their corresponding estimated values are shown at table 3.
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Table 3: Text Mining Results.
Parameter MOM MLE
α1 0.7799 1.1787
α2 0.6545 1.0013
α3 0.2151 0.4755
α4 0.1790 0.4276
α5 0.1182 0.2825
α6 0.1268 0.3224
α7 0.0923 0.2857
α8 0.1054 0.3004
α9 0.0833 0.2796
α10 0.0591 0.2481

The number of iterations needed to fit the SDD within a preset tolerance level for MOM
were 271. Using the MOM estimators as the initial values for MLE a new model was
fitted using 19 additional iterations. Although the MLE procedure in general does not
guarantee finding a global maximum, the proposed method provided reasonable results and
the convergence was fast enough.

5. Conclusions

The proposed SDD is a good alternative to other methods for fitting unit vectors at the
positive orthant of the hypersphere. The SDD avoids wasting probability mass or using
distribution mixtures for the whole hypersphere. Results for MOM and MLE were in close
agreement for simulated data, and reasonably close for a real text mining example. The
simulated data was generated directly from the proposed SDD while the text mining data
was obtained from a real practical problem. The SDD is flexible enough and it shows a
rich variety of shapes that are able to fit a wide range of data, in a similar way as the beta
distribution does for a one dimensional space. Future research will be aimed to enhance
the capability of dealing with hyper-vectors that include zeros in some coordinates.
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