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Abstract

Gene expression data can be difficult to analyze due to its high-dimensional nature. Regular-
ization techniques are useful in reducing the amount of predictors and highlighting the significant
genes, in this case genes that may indicate the presence of cancer. The goal of this study is to see
if grouping the genes before applying the regularization techniques is beneficial in reducing the
prediction error of classification.We investigate the potential effectiveness of using clustering algo-
rithms to generate a grouping structure for high-dimensional data sets. Using various regularization
techniques, we seek to determine if the generated groups are truly relevant to the response and if the
accuracy and interpretability of the models can be improved. We apply the clustered group structure
to two real-world data sets.
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1. Introduction

The idea of using data and information to train models that are both accurate and inter-
pretable has been around for decades. Very recently, [10] explores different analysis tech-
niques for microarray data in order to create a more effective predictor of age from DNA
methylation level. One desires to build a model based on the predictors that is both accu-
rate and interpretable; we want our models to correctly predict the outcome and we want
to know which predictors are responsible. However, in the age of big data it is becoming
increasingly common that a data set is high-dimensional, meaning the number of predictors
p vastly exceeds the number of observations n. In this setting, many longstanding statistical
modeling techniques, such as linear and logistic regression, no longer suffice. Regulariza-
tion is a popular technique that imposes a penalty on the original model; in some cases the
models are sparse, meaning they are very interpretable.

It is sometimes the case that the predictors of a model belong to some kind of pre-
defined group, and the response is based on these groups, as opposed to the individual
predictors. More advanced regularization methods have been developed to accommodate
for group structure, and assuming that the groups are well-represented, can greatly im-
prove the accuracy and interpretability of the models. Unfortunately, while the response
could truly be dependent on the group structure, the actual grouping structure is unknown
beforehand. In this situation, one would desire to properly identify the grouping structure
and build a model based on the result.

The goal of this paper is to investigate the effect that clustering can have on regularized
models. We seek to answer two questions:

1. Can clustering algorithms be used to properly identify a grouping structure in a data
set?
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2. Can grouping the predictors using the clustering information improve the accuracy
and interpretability of the model?

The rest of the article is organized into five sections. In Section 2 we provide a brief
overview of the various regularization techniques and clustering algorithms we used in our
study. Sections 3 and 4 investigate the effect of clustering predictors on two real-world
genomic data sets, and we close with a discussion in Section 5.

2. Methodology

2.1 Logistic regression

In many situations, the response variable of a data set is categorical in nature, and we
wish to assign an observation to one of the response variables given its inputs, a process
known as classification. We seek to model the probability that an observation falls into a
given class. It is often the case where the response belongs to one of two classes coded as
G = {0, 1}. In this binary setting, one popular approach to modeling the probabilities is
logistic regression.

Suppose we have n observations and p predictors stored in a data matrix X = {xi,j}
for i = 1, . . . , n and j = 1, . . . , p, along with a response vector y = (y1, . . . , yn), where
yi ∈ {0, 1}.

If p(xi) = P(Y = 1 | X = xi),
where xi = (xi,1, . . . , xi,p) is the ith observation in X, then the probability is modeled

(as the log-odds) by

log

(
p(xi)

1− p(xi)

)
= β0 + xTi β. (1)

From this, the estimated response ŷi is 1 if p(xi) ≥ 0.5 and 0 otherwise. The coefficients
β0 and β = (β1, . . . , βp) are estimated from the data by minimizing the negative log-
likelihood function

L(β0,β) =
1

n

n∑
i=1

[
log
(

1 + eβ0+xT
i β
)
− yi

(
β0 + xTi β

)]
. (2)

2.2 Basic regularization

In general, a regularized linear model seeks to minimize a penalized version of (2) of the
form

Q(β0,β) = L(β0,β) + λP (β),

where P (β) is some type of penalty imposed on the coefficient vector β. The tuning
parameter λ ≥ 0 effectively controls the severity of the penalty; as the value of λ increases,
more shrinkage is imposed on the coefficients.

Various regularization methods have been introduced throughout the years using differ-
ent penalty functions, with each method shrinking the coefficients in a different way. Ridge
regression [7] imposes a squared `2 norm on β, and seeks to minimize

Q(β0,β) = L(β0,β) +
λ

2
‖β‖22. (3)

The `2 norm causes continuous shrinkage of the estimated coefficients. A major drawback
to ridge regression is that it produces dense models, i.e. models where βj 6= 0 for all j, an
undesirable characteristic for an interpretable model.
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An alternative similar to ridge regression is the lasso [16], which minimizes

Q(β0,β) = L(β0,β) + λ‖β‖1. (4)

Here, an `1 norm is imposed on β, as opposed to a squared `2 norm. Unlike ridge re-
gression, the lasso is able to perform variable selection, forcibly setting many estimated
coefficients to zero, producing sparse models. The resulting sparsity of the model often
makes the lasso more preferable than ridge regression in the high-dimensional setting. Un-
fortunately, the lasso has several caveats as well; in the high-dimensional setting the lasso
will select at most n predictors, and if several predictors are highly-correlated, the lasso
will select only one and force the others to zero.

A generalization to ridge regression and the lasso, which attempts to combine the ben-
efits while negating the drawbacks, is the elastic net1 [20], which minimizes

Q(β0,β) = L(β0,β) + λ
[
α‖β‖1 +

1− α
2
‖β‖22

]
. (5)

This penalty is a linear combination of (3) and (4), and the mixing parameter α ∈ [0, 1]
is used to determine how much of each type of penalty is imposed on the model; α = 0
corresponds to ridge regression, while α = 1 gives the lasso.

2.3 The group setting

Much work has been done to develop penalties that exploit pre-determined group structure.
Suppose that the predictors of X are split intoK non-overlapping groups, with Sk denoting
the size of the kth group. For k = 1, . . . ,K, let Xk ∈ Rn×Sk denote the data matrix
with the predictors in group k, and let βk = (βk,1, . . . , βk,Sk

) be the sub-vector of β
corresponding to the kth group.

The group lasso (“gLasso”) [18] imposes an `2 norm on each of the coefficient sub-
vectors; it minimizes

Q(β0,β) = L(β0, β) + λ
K∑
k=1

√
Sk‖βk‖2. (6)

The group lasso was later extended to logistic regression by [12]. The `2 penalties on each
of the coefficient sub-vectors creates sparsity among the different groups while performing
ridge shrinkage within each group. As a result, the group lasso unfortunately only induces
sparsity at the group level, and if a group is determined to be significant, all of the group’s
predictors will be nonzero.

Both [18] and [12] assume that the data is orthonormal within each group, i.e. XT
kXk =

I for all k. This is almost never the case in practice, so one would want to orthonormalize
each Xk before minimizing (6). However, as [14] show, this actually changes the penalty
to

Q(β0,β) = L(β0, β) + λ
K∑
k=1

√
Sk‖Xkβk‖2. (7)

This alternative penalty is theoretically and computationally superior [3] to (6), so for the
rest of this paper we refer to (7) when speaking about the group lasso.

There are several methods used in practice to induce sparsity both within and among
groups, a feature known as bi-variate selection. One method is to combine the lasso and

1[20] call this penalty the naïve elastic net penalty, and suggest that scaling the estimated coefficients up by
a factor of 1+ λ(1−α) improves prediction accuracy. However, in their paper describing the implementation
of the elastic net, [5] abandon this distinction.
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the group lasso penalties as a linear combination, similar to the elastic net; the resulting
penalty is known as the the sparse group lasso [13], and minimizes

Q(β0,β) = L(β0,β) + λ

[
α‖β‖1 + (1− α)

K∑
k=1

√
Sk‖βk‖2

]
. (8)

With this penalty, sparsity is induced at the group level, and elastic net-type shrinkage
is imposed within each group. Unfortunately, unlike the group lasso, there is no way to
orthonormalize each group without corrupting the within-group sparsity effect, making any
implementation of the sparse group lasso difficult compared to other penalties.

An alternative method for performing bi-variate selection is the composite minimax
concave penalty2 (“cMCP”) [2], which minimizes

Q(β0,β) = L(β0,β) +

K∑
k=1

fλ,Γk

(
Sk∑
s=1

fλ,γ(|βk,s|)

)
. (9)

Here fλ,γ(·) is the minimax concave penalty [19], given by

fλ,γ(φ) =

{
λφ− φ2

2γ , if φ ≤ γλ
1
2γλ

2, if φ > γλ
. (10)

The intuition behind (10) is to counter the aggressive shrinkage that the lasso imposes on
large coefficients. The parameter γ > 0 controls the “range” of this counter, and the penalty
becomes the lasso as γ →∞. We can see that (9) is effectively applying the penalty twice,
once to induce sparsity within each group and then again to induce sparsity among the
groups. The outer parameter is set to Γk = 1

2Skγλ, while the inner penalty γ is the same
throughout.

2.4 Regularization based on principal components

Let X = UDVT be the singular value decomposition of the data matrix, and let m =
rank(X). The principal axes, or right singular vectors, are given by the columns of V ∈
Rp×m, and d = (d1, . . . , dm) are the singular values such that d1 ≥ . . . ≥ dm > 0.
D ∈ Rm×m is a diagonal matrix whose diagonal entries are the elements of d.

Principal components lasso (“pcLasso”) [15] minimizes

Q(β0,β) = L(β0,β) + λ‖β‖1 +
θ

2
βT
(
VDd21−d2j

VT
)
β, (11)

where λ and θ are two separate tuning parameters. The diagonal matrix Dd21−d2j
∈ Rm×m

has diagonal inputs that are functions of the singular values of X, and is given by

Dd21−d2j
= diag(d2

1 − d2
1, d

2
1 − d2

2, . . . , d
2
1 − d2

m). (12)

This “pcLasso penalty” has the result of imposing less shrinkage in the direction of the
leading principal axis and more severe shrinkage in the directions of subsequent principal
axes. In other words, β is biased in the direction of the leading principal axis. The presence
of the `1 norm allows pcLasso to simultaneously perform feature selection.

pcLasso can also be modified to exploit group structure. Let Xk = UkDkV
T
k be the

singular value decomposition for the kth group matrix, and let mk = rank(Xk). Then the

2[2] originally denote cMCP as the group MCP. To avoid confusion, [8] recommend denoting (9) as the
composite MCP.
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columns of Vk and dk = (dk,1, . . . , dk,mk
) are the principal axes and singular values of

Xk, respectively. In this setting, pcLasso seeks to minimize

Q(β0,β) = L(β0,β) + λ‖β‖1 +
θ

2

K∑
k=1

√
Skβ

T
k

(
VkDd2k,1−d

2
k,j
VT
k

)
βk. (13)

Similar to (12), the matrix Dd2k,1−d
2
k,j
∈ Rmk×mk is given by

Dd2k,1−d
2
k,j

= diag(d2
k,1 − d2

k,1, d
2
k,1 − d2

k,2, . . . , d
2
k,1 − d2

k,mk
). (14)

We now see that pcLasso biases each coefficient sub-vector βk in the direction of that
group’s leading principal axis, all while producing sparse models. Unlike the group lasso
and cMCP, pcLasso does not require each group matrix Xk to be orthonormal.

2.5 Clustering methods

In general, a clustering algorithm seeks to partition the predictors of a data set into different
sub-groups based on some dissimilarity measure; ideally, the dissimilarity will be low for
predictors within the same cluster and high for predictors in separate clusters. Various
clustering algorithms and dissimilarity measures exist that seek to achieve this goal, so for
this report we only focus on two simple algorithms.

K-means clustering [11] clusters the predictors into K non-overlapping groups based
on their Euclidean distance in the observation space. Let Ck be the set of all predictors that
belong to group k, for k = 1, . . . ,K, and let Sk denote the number of predictors in group
k. K-means clustering seeks to minimize the total within-cluster variation, given by

WK =
K∑
k=1

∑
j∈Ck

‖xj − x̄k‖22, (15)

where xj is the jth predictor and x̄k = 1
Sk

∑
j∈Ck

xj is the kth group centroid.
One drawback ofK-means clustering is that the number of clustersK must be supplied

before WK can be minimized. Given that we have no information about the group struc-
ture beforehand, we desire some type of measurement to determine the optimal number of
clusters. The GAP statistic [17], defined as

Gap(m) = E [log(Wm)]− log(Wm), (16)

attempts to choose an optimal K from the rate that WK decreases. Given a maximum
amount of clusters M , the gap statistic is estimated using B Monte Carlo random samples;
the optimal number of clusters K is chosen when Gap(K) ≥ Gap(K + 1) − δ(K + 1),
where

δ(m) = sdm

√
1 +

1

B

and sdm is the standard deviation of the B estimated Wm’s.
Another appealing clustering algorithm is hierarchical clustering, which groups the

predictors into nested clusters. While Euclidean distance could be used as the choice of
dissimilarity, we chose to use correlation instead to investigate how this choice effects the
resulting group structure. UnlikeK-means clustering, there is no criteria that could be used
to choose the optimal number of clusters. Fortunately, given that the clusters are nested,
they can be represented in a dendrogram where the number of clusters can be chosen by
the user.
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3. Colon data set

The colon data set, originally introduced by [1], contains the gene expressions of 2,000
genes for 62 different tissue samples, i.e. n = 62 and p = 2, 000. Of the 62 tissue samples,
40 of the samples tested positive for colon cancer, while 22 tested negative.

3.1 Clustering information
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Figure 1: Clustering information for the colon data set.

Figure 1 shows the clustering information for the colon data set. The top-left panel
measures the gap statistics for m = 1, . . . , 20, and chooses K = 9 as the optimal number
of clusters using K-means clustering. The top-right panel plots the predictors against the
first two columns of Z = VD (where VDUT = XT is the SVD of the transposed data
matrix, so the columns of Z are the principal components of XT ), along with the labeled
groups that each predictor belongs to.

The bottom panel displays the corresponding dendrogram using correlation as the dis-
similarity measure for hierarchical clustering. We decided that K = 7 was a reasonable
cut-off for this dendrogram.
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3.2 Results

For all of the following methods, we randomly split the data set into a training set and a
test set, both with 31 observations each. Each model was fit on the training set, and its
performance was measured on the test set. Models that have additional parameters besides
λ were fit using a grid of values of said parameter (e.g. α for the elastic net), and the model
with the lowest deviance was chosen.

We first fit the following regularized models on the colon data set without any grouping
structure:

1. The lasso: was fit using glmnet version 2.0.16.

2. The elastic net: was fit for α = 0.95, 0.8, 0.6, 0.4, 0.2, 0.05, using glmnet version
2.0.16.

3. pcLasso: was fit for rat3 = 0.95, 0.9, 0.75, 0.5, 0.25, 0.1, using pcLasso version
1.1.

Next, we fit the following models on the colon data set using the grouping structure ob-
tained from K-means clustering:

1. gLasso: was fit using grpreg version 3.2.1.

2. sgLasso: was fit for α = 0.95, 0.8, 0.6, 0.4, 0.2, 0.05, using SGL version 1.2.

3. cMCP: was fit for γ = 30, using grpreg version 3.2.1.

4. pcLasso: was fit for rat = 0.95, 0.9, 0.75, 0.5, 0.25, 0.1, using pcLasso version
1.1.

The clusGap function from cluster version 2.1.0 was used to calculate the gap
statistic, and the groups were clustered using the kmeans function. Finally, the process
above was repeated using the grouping structure from hierarchical clustering, which was
obtained using the hclust function.

The results from the various models are presented in Table 1. Included in the table
are the values of the optimized parameters, the cross-validation deviance, the number of
missclassifications on the test set, the number of nonzero coefficients in the final model
(including the intercept β0), the number of significant groups in the final model (if a single
group contained a nonzero coefficient, then it is considered significant), and the area under
the curve (AUC) measurements. The corresponding ROC curves for each model have been
printed in Figure 2.

3As opposed to testing over a grid of values for θ, [15] suggest specifying a value of rat instead. More
details can be found in their paper.
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No Clustering K-means Clustering Hierarchical Clustering

– K = 9 K = 7

Lasso Elastic Net pcLasso gLasso sgLasso cMCP pcLasso gLasso sgLasso cMCP pcLasso

Parameters
λ = 0.0642 λ = 0.0853 λ = 8.75 λ = 0.00562 λ = 0.0215 λ = 0.0838 λ = 35.32 λ = 0.0621 λ = 0.0194 λ = 0.0813 λ = 163.94

– α = 0.95 rat = 0.95 – α = 0.4 γ = 30 rat = 0.25 – α = 0.05 γ = 30 rat = 0.95

Deviance 0.938 0.945 0.561 0.490 0.853 1.01 0.525 0.987 0.863 0.995 0.548

Misclass. 6/31 6/31 5/31 12/31 7/31 6/31 5/31 8/31 11/31 6/31 3/31

Sig. Coef. 16 19 30 49 29 11 30 20 461 11 7

Sig. Groups – – – 3 2 4 9 1 1 4 6

AUC 0.936 0.945 0.850 0.695 0.745 0.932 0.891 0.623 0.814 0.932 0.818

Table 1: The performance of various models on the colon data set.
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Figure 2: The ROC curves for the colon data set.

We can see that pcLasso using hierarchical clustering performs the best in terms of
missclassifications, having only incorrectly predicting 3 of the 31 test observations. When
looking at the missclassifications for all of the models, we can see that the lasso, the elastic
net, and pcLasso without clustering all perform about the same.

With K-means clustering, gLasso missclassifies 12 of the 31 test observations, which
is worse than a null model (the test set had 11 observations that tested negative for cancer
and 20 that tested positive). sgLasso performs slightly worse, and cMCP and pcLasso
perform about the same as the non-clustered models. Looking at the number of significant
groups, we can see that pcLasso does not perform bi-variate selection at all, since all nine
groups are represented in the final model. This, along with the poor performance of gLasso
and sgLasso, indicate that the grouping structure obtained using K-means clustering is not
sufficient.

A similar situation occurs with hierarchical clustering. This time we see that sgLasso
missclassifies the most test observations, and gLasso also performs worse than the non-
grouped models. Interestingly, the trained cMCP model using hierarchical clustering is
identical in size to the model using K-means clustering. Finally, pcLasso here both miss-
classifies the least amount of test observations and has the least number of significant coef-
ficients. There are six significant coefficients (keep in mind the table includes the intercept
term) as well as six non-zero coefficients, so again pcLasso does not induce shrinkage at
the group level. It is worth noting that pcLasso using hierarchical clustering also has less
significant coefficients than all of the non-clustered models, so it is both more accurate and
more interpretable.

4. Leukemia data set

The leukemia data set, from [6], contains the gene expressions of 7,128 genes for 72 dif-
ferent patients (n = 72 and p = 7, 128). The response is the type of leukemia each patient
has; 47 were diagnosed with acute lymphoblastic leukemia (ALL) while 25 were diagnosed
with acute myeloid leukemia (AML).

4.1 Clustering information

The clustering information for the leukemia data set has been printed in Figure 3. The gap
statistics for m = 1, . . . , 20 have been printed in the top left panel, and K = 19 is chosen
as the optimal number of clusters. The top right panels plots the predictors against the first
two principal components of the observation space, with each group labeled. Finally, the
bottom panel shows the leukemia dendrogram; we chose K = 5 at the optimal number of
clusters.
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Figure 3: Clustering information for the leukemia data set.
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No Clustering K-means Clustering Hierarchical Clustering

– K = 19 K = 5

Lasso Elastic Net pcLasso gLasso sgLasso cMCP pcLasso gLasso sgLasso cMCP pcLasso

Parameters
λ = 0.00407 λ = 0.00509 λ = 0.00548 λ = 0.0779 λ = 0.0457 λ = 0.111 λ = 0.00548 λ = 0.0779 λ = 0.0236 λ = 0.111 λ = 0.00548

– α = 0.8 rat = 0.95 – α = 0.95 γ = 30 rat = 0.9 – α = 0.4 γ = 30 rat = 0.95

Deviance 0.241 0.0834 0.465 1.240 0.730 0.671 0.442 1.240 0.731 0.671 0.439

Misclass. 5/36 3/36 3/36 14/36 13/36 6/36 2/36 14/36 14/36 6/36 2/36

Sig. Coef. 14 28 41 1 6 6 76 1 772 7 46

Sig. Groups – – – 0 1 2 19 0 1 2 5

AUC 0.987 1.000 0.977 0.500 0.994 0.964 0.994 0.500 0.990 0.968 1.000

Table 2: The performance of various models on the leukemia data set.

 
1814



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

No Clustering
−

Lasso (0.987)
Elastic Net (1)
pcLasso (0.977)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

K−means Clustering
K = 19

gLasso (0.5)
sgLasso (0.994)
cMCP (0.964)
pcLasso (0.994)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

Hierarchical Clustering
K = 5

gLasso (0.5)
sgLasso (0.99)
cMCP (0.968)
pcLasso (1)

Figure 4: The ROC curves for the leukemia data set.

4.2 Results

The same general set up for the colon data set was applied to the leukemia data set; the
results have been printed in Table 2 and the ROC curves have been printed in Figure 4.
As with the colon data set, it seems that the clustering algorithms are unable to identify a
sufficient grouping structure.

For the non-clustered models, both the elastic net and pcLasso perform the same in
terms of missclassifications. However, the elastic net has a markedly lower deviance, less
significant coefficients, and a higher AUC, making it a decisively better model in this situ-
ation.

Both gLasso and sgLasso perform extremely poorly for bothK-means and hierarchical
clustering; in fact, gLasso actually fits a null model in both cases. cMCP again fits models
with similar sizes in both cases, and while the missclassification rate is much better than
gLasso and sgLasso, it still performs worse than the non-clustered models. As with the
colon data set, clustered pcLasso is the overall winner, having only missclassified two of
the 36 test observations in both cases. In addition, we see that pcLasso does not induce
shrinkage at the group level. And while both models perform the same in prediction accu-
racy, pcLasso using hierarchical clustering has a slightly lower deviance, significantly less
significant predictors, and a slightly higher AUC, so it can be considered the best model for
all of the clustered predictors.

Unlike the colon data set, however, there is some type of trade-off that one would
have to consider when choosing an overall best model. While pcLasso with hierarchical
clustering has the lowest number of missclassifcations, it has 45 significant predictors. On
the other hand, the lasso and the elastic net have 13 and 27, respectively, so even though
their missclassification rates are slightly higher, they are more interpretable models. It is
entirely reasonable for one to choose a model with one additional incorrect prediction if it
is easier to interpret and explain.

5. Discussion

With both data sets, we saw that the group lasso and the sparse group lasso performed
very poorly relative to the other methods, especially for the leukemia data set. In addi-
tion, pcLasso did not perform bi-variate selection. Both of these facts are indications that
both K-means clustering and hierarchical clustering were ineffective in properly identify-
ing a grouping structure that was relevant to the response. However, we also observed that
pcLasso with clustered predictors had a slighlty lower number of missclassifications than
the non-clustered models, showing that even though the groups were not relevant to the
response, the models can potentially become more accurate and interpretable.

There are several avenues that one could follow for further research:

 
1815



• Looking at the top right panels of Figures 1 and 3, we can see that the clusters are not
well-separated at all. Despite this, the gap statistic split the predictors into a rather
large number of clusters, especially for the leukemia data set, which may be a result
of the large number of predictors. Perhaps another measure to determine the optimal
number of clusters can be used. It is also worth mentioning that the computation
time when using the clusGap function was on the magnitude of hours, making it
non-practical for larger data sets.

• The two clustering algorithms used were chosen because of their simplicity and rep-
utation, but one could argue that their poor performance is entirely expected. Much
work has been done in the field of unsupervised learning, and one could use a differ-
ent clustering algorithm to generate the group structure.

• There are many more grouped regularization models that can be employed that per-
form bi-variate selection, such as the group exponential lasso (“GEL”) [4] or the
group bridge [9], that can be efficiently implemented using the grpreg package.
Each of these methods have their own interesting properties, and one could investi-
gate if their use can improve over the non-clustered models.
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