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1. Introduction 

Time-to-event endpoints such as overall survival (OS) and progression-free survival (PFS) 
are commonly used to determine the efficacy of drugs in oncology. Usually efficacy is 
determined by performing hypotheses tests at pre-specified interim and final analyses. The 
results based on interim analyses often exhibit large variability and uncertainty due to 
immature data. A common clinical question of relevance is to forecast how these results 
will look with continued follow-up.   

We adopted the use of Bayesian predictive probability to implement a prediction model, 
assuming an underlying piece-wise exponential distribution of the survival times, to 
simulate future behavior based on the current data. The goal of the approach is to check 
whether this method can predict the robustness of the interim OS analysis results from 
different approved clinical trials and determine whether they are representative of the final 
results.   

To evaluate the approach, we present a comparison of the predicted and actual performance 
of six different clinical trial datasets.  We have also developed a Rshiny app based on the 
methodology. 

 

2. Methodology 

The posterior predictive distribution is the distribution of the unobserved (censored) 
observations conditional on the observed data. Our goal is to predict the outcome of the 
final analysis based on the results from the interim analysis. Since the final analyses occurs 
sometime after the interim analysis, this essentially boils down to predicting the future 
behavior of the censored observations.  

To achieve this goal, we assume that the control group follows a piecewise exponential 
distribution, with a hazard rate given by  

𝜆𝜆0(𝑡𝑡)  =  𝜆𝜆𝑗𝑗 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑡𝑡 ∈ [𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑗𝑗+1), 

where the cut-points 𝑇𝑇1, 𝑇𝑇2,…., 𝑇𝑇𝐽𝐽 are such that 0= 𝑇𝑇0< 𝑇𝑇1< 𝑇𝑇2< … < 𝑇𝑇𝐽𝐽< ∞. We also 
assume that the Cox proportional hazards (PH) assumption is valid for the treatment and 
control groups. Thus, we can write the PH model as 

𝜆𝜆𝑖𝑖(𝑡𝑡|𝑥𝑥)  =  𝜆𝜆0(𝑡𝑡)𝑒𝑒𝑥𝑥𝑒𝑒(𝛽𝛽𝑥𝑥), 
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where x=1 if the patient belongs to the treatment group and 0 otherwise. 

Next, we assume a prior distribution on β and 𝜆𝜆, i.e. 𝛽𝛽, 𝜆𝜆 ~𝑒𝑒(𝛼𝛼). Then, for a given set of N 
observations Y=(𝑌𝑌1, 𝑌𝑌2,…., 𝑌𝑌𝑁𝑁), the posterior distribution is defined by the density function 
𝑒𝑒(𝛽𝛽, 𝜆𝜆|𝑌𝑌,𝛼𝛼)  ∝   𝑒𝑒𝐹𝐹(𝑌𝑌|𝛽𝛽, 𝜆𝜆)𝑒𝑒(𝛼𝛼), where 𝑒𝑒𝐹𝐹(𝑌𝑌|𝛽𝛽, 𝜆𝜆) is the density function corresponding 
to 𝜆𝜆𝑖𝑖(𝑡𝑡|𝑥𝑥). 

Thus, the posterior predictive distribution of a new observation 𝑦𝑦� can be calculated as  

p(𝑦𝑦�|Y, α) = ∫ 𝑒𝑒𝐹𝐹(𝑦𝑦�|𝛽𝛽, 𝜆𝜆)𝑒𝑒(𝛽𝛽, 𝜆𝜆|𝑌𝑌,𝛼𝛼)𝑑𝑑𝛽𝛽𝑑𝑑𝜆𝜆𝛽𝛽,𝜆𝜆 . 

The censored observations can thus be predicted using the following method: Use Gibbs 
sampling to estimate β, based on the given data at the interim analysis. Once an estimate 
of β is obtained, predict the i-th censored observation using E(𝑌𝑌𝑖𝑖|𝑌𝑌𝑖𝑖 > 𝑦𝑦𝑖𝑖).  To mimic the 
final analysis, we have used two different approaches, a time-based approach and an event-
based approach. In the event-based approach, we assume that the final analysis will be 
conducted after x% more events have occurred and the predictions are censored at the 
appropriate time point. Similarly, in the time-based approach, it is assumed that the final 
analysis will take place after x many months and all predictions are censored at that time 
point. In either approach, the entire process is repeated multiple times to get a set of final 
datasets.  

For most of our results, we have assumed that J =1 or 2, with cut points at 3 months 
and/or 6 months and have used 100 resamples. 

 

3. Results 

 

To validate our method, we look at its performance for different data sets, under different 
sets of conditions. We look at the performance of the method for five different clinical 
trials, spanning three different cancer types – breast cancer, renal cell carcinoma and head 
and neck cancer. We have considered the underlying distribution to be piece-wise 
exponential with break points at 3 and 6 months and 100 resamples.  

3.1 Event-Based Approach 

For the first set of results, we have only considered the final analysis data and created the 
interim analysis datasets artificially, assuming the interim analysis occurred when 70%, 
80% or 90% of the events were observed. The dataset was then truncated at the relevant 
time point to create the interim analysis data. The estimates were then created using the 
event-based approach, assuming an exponential distribution with break points at 3 and 6 
months and using 100 resamples. The results are summarized in Table 1. 
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Table 1: Summary of Results from the Event-Based Analyses 

Population 
Observed 
p-value  

at IA (HR) 

Estimated HR Observed p-
value at FA 

(HR) Median Range 95% CI # 
HR<0.8 

# 
HR<0.9 

IA at 70% of the total # of events 

Trial A 0.140  
(0.804) 0.878 (0.721, 

1.075) 
(0.757, 
0.993) 17 64 0.142  

(0.834) 

Trial B 0.072  
(0.704) 0.796 (0.625, 

0.953) 
(0.665, 
0.914) 52 94 0.004  

(0.625) 

Trial C 0.637  
(0.909) 0.976 (0.767, 

1.319) 
(0.810, 
1.199) 2 22 0.156  

(0.784) 

Trial D 0.049  
(0.668) 0.752 (0.594, 

0.974) 
(0.645, 
0.928) 77 96 0.035  

(0.693) 

Trial E 0.000  
(0.406) 0.522 (0.447, 

0.610) 
(0.475, 
0.591) 100 100 0.000  

(0.410) 

IA at 80% of the total # of events 

Trial A 0.177  
(0.830) 0.864 (0.761,  

1.028) 
(0.790, 
0.952) 6 71 0.142  

(0.834) 

Trial B 0.028  
(0.669) 0.733 (0.596, 

0.880) 
(0.653, 
0.848) 81 100 0.004  

(0.625) 

Trial C 0.386  
(0.848) 0.894 (0.696, 

1.132) 
(0.766, 
1.063) 9 51 0.156  

(0.784) 

Trial D 0.046  
(0.681) 0.731 (0.606, 

0.857) 
(0.620, 
0.853) 83 100 0.035  

(0.693) 

Trial E 0.000  
(0.396) 0.461 (0.406, 

0.533) 
(0.419, 
0.512) 100 100 0.000  

(0.410) 

IA at 90% of the total # of events 

Trial A 0.062  
(0.784) 0.808 (0.726, 

0.874) 
(0.743, 
0.862) 44 100 0.142  

(0.834) 

Trial B 0.011  
(0.644) 0.682 (0.604, 

0.759) 
(0.616, 
0.755) 100 100 0.004  

(0.625) 

Trial C 0.228  
(0.805) 0.811 (0.696, 

0.936) 
(0.739, 
0.906) 31 96 0.156  

(0.784) 

Trial D 0.023  
(0.662) 0.69 (0.597, 

0.784) 
(0.633, 
0.769) 100 100 0.035  

(0.693) 

Trial E 0.000  
(0.403) 0.445 (0.404, 

0.489) 
(0.410, 
0.473) 100 100 0.000  

(0.410) 
 

We also wanted to come up with metrics to predict the efficacy at the final analysis. For 
this, we looked at the proportion of times the hazard ratio (HR) was less than 0.8 and 0.9 
out of the 100 resamples. This metric can be tailored to an individual trial, based on the 
details in the protocol. Based on the table, we can see that median HR is slightly higher 
than the observed HR at the final analysis in most cases, which means the results based our 
method are conservative. The range and 95% CI are wider when the interim analysis occurs 
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at 70% of the number of events for the final analysis, but it becomes narrower as this 
percentage increases and our predictions also improve in quality. This is expected, because 
we are predicting a smaller proportion of the data as the percentage of events at the interim 
analysis increases. In all cases, the observed HR at the final analysis lies within the 95% 
CI predicted by the method. A visual representation of the results for Trial A and Trial B 
are given in Figures 1 and 2 respectively. In each of the graphs, the blue lines represent the 
predicted treatment curves and the orange lines represent the predicted control curves. If 
the two sets of curves do not overlap too much, it indicates that there is some difference in 
the efficacy outcomes between the two arms, while a large amount of overlap signifies that 
there are similarities in the survival outcomes in the treatment and control group and a 
treatment effect may not be present.  In both Figures 1 and 2 we see that the actual Kaplan-
Meier curves at the final analysis (black lines) lie within the corresponding prediction 
bands, which shows that the method is performing as expected. 

 

Figure 1: Kaplan-Meier Plot for Trial A when the IA occurs at 90% of the total events 

 

 
1790



 

Figure 2: Kaplan-Meier Plot for Trial B when the IA occurs at 90% of the total events 

 

 

3.2 Time-Based Approach 

Next, we created the interim analysis datasets by assuming the interim analysis occurred 3 
or 6 months before the final analysis. The dataset was then truncated at the relevant time 
point to create the interim analysis data. The estimates were then created using the time-
based approach, assuming an exponential distribution with break points at 3 and 6 months 
and using 100 resamples. The results are summarized in Table 2. 

Table 2: Summary of Results from the Time-Based Analyses 

Population 
Observed 
p-value  

at IA (HR) 

Estimated HR Observed p-
value at FA 

(HR) Median Range 95% CI # 
HR<0.8 

# 
HR<0.9 

IA 3 months before the FA 

Trial A 0.094 
(0.802) 0.841 (0.752, 

0.953) 
(0.762, 
0.903) 22 95 0.142  

(0.834) 

Trial B 0.018 
(0.651) 0.690 (0.616, 

0.798) 
(0.621, 
0.773) 100 100 0.004  

(0.625) 

Trial C 0.414 
(0.856) 0.920 (0.761, 

1.206) 
(0.787, 
1.074) 4 43 0.156  

(0.784) 

Trial D 0.021 
(0.655) 0.691 (0.588, 

0.787) 
(0.613, 
0.765) 100 100 0.035  

(0.693) 

Trial E 0.000 
(0.403) 0.599 (0.471, 

0.780) 
(0.497, 
0.729) 100 100 0.000  

(0.410) 

IA 6 months before the FA 
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Trial A 0.166 
(0.818) 0.868 (0.734, 

1.078) 
(0.756, 
0.986) 13 73 0.142 

 (0.834) 

Trial B 0.105 
(0.717) 0.825 (0.670, 

1.025) 
(0.685, 
0.980) 34 79 0.004  

(0.625) 

Trial C 0.090 
(0.663) 0.871 (0.599, 

1.194) 
(0.632, 
1.094) 30 63 0.156  

(0.784) 

Trial D 0.036 
(0.651) 0.737 (0.607, 

0.988) 
(0.653, 
0.878) 85 98 0.035  

(0.693) 

Trial E 0.016 
(0.450) 0.904 (0.543, 

1.339) 
(0.646, 
1.189) 25 48 0.000  

(0.410) 
 

Based on the results, we can see that the 3 months prediction are quite conservative and 
seems to be doing a good job at predicting the results. The 6-month predictions are actually 
quite unstable, with much wider 95% confidence intervals. This shows that at 6 months 
out, the predictions do not work very well and there is a lot of uncertainty around the 
interim analysis data. A visual representation for Trials A and B is given in Figures 3 and 
4 respectively. 

 

Figure 3: Kaplan-Meier Plot for Trial A when the IA occurs 3 months before the FA 
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Figure 4: Kaplan-Meier Plot for Trial B when the IA occurs 3 months before the FA 

 

3.1: Sensitivity 

In this part, we look at the impact of the different model assumptions made during 
estimation. The first set of results looks at the impact of the piece-wise exponential 
assumption. We compare three different set-ups: piece-wise exponential with one break at 
3 months, piece-wise exponential with one break at 6 months and piece-wise exponential 
with two breaks at 3 and 6 months. The dataset compared here is from Trial F, which has 
been approved for head and neck cancer. The trial looked at 6 different subpopulations and 
the results are compared for all 6 of them. We specifically looked at this dataset for this 
exercise because the exponential assumption does not hold for the underlying data and we 
felt that the impact of the piece-wise exponential assumption may be most prominent in 
this dataset. 

Table 3: Impact of Piece-wise Exponential Assumption on the Results for Trial F 

Population Estimated Median P-values (Range) 
One break at 3 
months 

One break at 6 
months 

Two breaks at 3 and 
6 months 

Subpopulation 1 0.032 (0.002, 0.131) 0.029 (0.002,0.144) 0.024 (0.001,0.216) 
Subpopulation 2 0.003 (0.000,0.025) 0.003 (0.000,0.026) 0.003 (0.000,0.026) 
Subpopulation 3 0.009 (0.001,0.049) 0.008 (0.000,0.062) 0.006 (0.000,0.051) 
Subpopulation 4 0.016 (0.001,0.114) 0.012 (0.001,0.068) 0.012 (0.000,0.051) 
Subpopulation 5 0.015 (0.001,0.094) 0.013 (0.001,0.083) 0.012 (0.000,0.080) 
Subpopulation 6 0.054 (0.013,0.252) 0.058 (0.005,0.363) 0.067 (0.010,0.218) 

 

Based on the above set of results, we can see that the impact of the number of breaks is 
minimal. Similar results were also observed for Trials A-E. Thus, we decided to use 2 break 
points at 3 and 6 months for our analyses. 
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The final set of results looks at the impact of the number of resamples. We compare the 
results obtained under 50, 100 and 200 resamples. A part of it has been summarized in 
Table 6.  

Table 4: Impact of the Number of Resamples on the Results for Trial F 

Population Estimated Median P-values (Range) 
50 resamples 100 resamples 200 resamples 

Subpopulation 1 0.023 (0.001,0.113) 0.024 (0.001,0.216) 0.026 (0.001,0.216) 
Subpopulation 2 0.004 (0.000,0.019) 0.003 (0.000,0.026) 0.003 (0.000,0.035) 
Subpopulation 3 0.006 (0.000,0.051) 0.006 (0.000,0.051) 0.008 (0.000,0.051) 
Subpopulation 4 0.014 (0.000,0.059) 0.012 (0.000,0.080) 0.012 (0.000,0.080) 
Subpopulation 5 0.010 (0.001,0.083) 0.012 (0.001,0.083) 0.010 (0.001,0.084) 
Subpopulation 6 0.071 (0.024,0.218) 0.067 (0.010,0.218) 0.070 (0.006,0.289) 

 

Based on the above set of results, we can see that an increase in the number of resamples 
to 200 did not lead to any significant improvement in the results. Thus, we decided to use 
100 resamples for all our calculations.  

 

4. Discussion 

Based on the results, the Bayesian posterior prediction model does well when predicting 
the behavior at the final analysis, based on the results at the interim analysis. The method 
seems to be conservative and works well when using the event-based approach. The 
method, however, breaks down when we predict more than 6 months out using the time-
based analysis. In these cases, one must caution that although the model provides an 
estimate, they may reflect actual performance from previous studies. As an alternative, an 
event-based approach may allow for prediction at a pre-specified number of events, 
however predictions that occur into the distant future may still be unreliable  

Our future goal is to apply the method to a larger number of trials to determine if there are 
specific situations when this method breaks down. We also hope to implement a more 
robust piece-wise continuous function that does not rely on a proportional hazards 
assumption. We would also like to look at the model performance under such conditions. 
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