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Abstract
Estimating cell probabilities for small areas can be difficult, due to a lack of available data from na-
tional surveys. One of statistical techniques for small area estimation is using multinomial Dirichlet
models to borrow information among small areas. We study Bayesian diagnostics for multinomial
counts from small areas. Within each area, the cell probabilities are ordered (e.g. unimodal order-
ing). Specifically we consider Bayesian diagnostics for a multinomial Dirichlet model with order
restriction which shares a common effect among areas. The log pseudo marginal likelihood (LPML)
is a well-known Bayesian criterion for comparing models. Since the order restriction significantly
increases the difficulty, we develop an algorithm to compute LPML. We use a special-designed im-
portance function to increase the efficiency of Monte Carlo integration, thereby gaining a higher
precision for estimations of LPML. The proposed methodology is applied to a case study of body
mass index (BMI).

Keywords: Bayesian computation, LPML, Multinomial, Monte Carlo method, Small areas, Uni-
modal order restrictions.

1. Introduction

In many surveys, questionnaires have items that are categorized into several cells.
These items may be filled in by people from different areas or groups, which may be small.
Estimates of cell probabilities for individual areas may not be reliable and a statistician
might need to pool data from different small areas (Rao and Molina 2015). Furthermore,
there may be important information over the cells from each area and this information can
be incorporated into a model to provide additional improvement. So our problem is to ob-
tain a methodology to pool information across areas and to incorporate information across
the cells in each area. The Bayesian paradigm is attractive for this problem, and we start
with the hierarchical Bayesian multinomial Dirichlet model, and then we incorporate the
order restrictions over the cell probabilities into this model.

There are extensive researches to consider different techniques for Small Area Esti-
mation(SAE) with different order restrictions. Wu, Meyer and Opsomer (2016) combined
domain estimation and the pooled adjacent violators algorithm to construct new design-
weighted constrained estimators of wage for U.S. National Compensation Survey. They
assumed constrained estimators satisfying the monotonicity. Malinovsky and Rinott (2010)
presented predictors with an appropriate amount of shrinkage for the particular problem of
ordered parameters in the context of Small Area Estimation. Their performance is close
to that of the optimal predictors. Heck and Davis-Stober (2019) provided a comprehen-
sive discussion about linear inequality constraints, such as the set of monotonic order con-
straints for binary choice probabilities on the parameters of multinomial distributions for
psychological theories. They also described a general Gibbs sampler for drawing posterior
samples. A suitable order restriction assumption can increase model precision. Li (2008)
made a great overview about statistical inference under order restrictions. He also showed
the inference of ordered binomial probabilities in frequentist statistics. From Wu, Meyer
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and Opsomer’s research about order restriction to Li’s review, they proved that the order
constraints should be considered in order to improve efficiency and minimize bias, which
can be done in different aspects.

In the small area context, most of these papers cover order restrictions across areas
(e.g., Wu, Meyer and Opsomer, 2016). However, we are not interested in order restriction
across areas, but rather we are interested in order restriction across the cell probabilities
within each area. For this type of order restrictions problem, Nandram (1997) provided a
good discussion about a hierarchical Bayesian approach for taste-testing experiment and
appropriate methods for the model. To select the best population, he studied three criteria
based on the distribution of random variables representing values on a hedonic scale using
the simple tree order (See also Nandram 1998). Nandram, Sedransk, and Smith (1997)
improved estimation of the age composition of a population of fish with the help of order
restrictions. They proposed different order restrictions for different fish length strata. With
the help of the Gibbs sampler, they showed that order restrictions provided large gains
in precision for estimating the proportion of fish in each age class. Their research was
motivated by Gelfand, Smith and Lee (1992) and earlier Sedransk, Monahan, and Chiu
(1985).

But our interest is not only order restrictions across the cell probabilities within each
area, but also similar unimodal structure within each area. Chen and Nandram (2019),
which appeared the Proceedings of the American Statistical Association, proposed a multi-
nomial Dirichlet model with order restrictions. They considered similar unimodal structure
within each area. They showed how to use Gibbs sampler for posterior distribution. A great
improvement for estimating the cell probabilities has been shown in their model applica-
tion.

The work in this paper is a large step forward from their work. We not just presented
more details for model comparison with better visualization. We also show the Bayesian
diagnostics. In the Bayesian framework, the log pseudo marginal likelihood (LPML) is
a well-known Bayesian criteria for comparing models. Since the order restriction signifi-
cantly increases the difficulty, we develop an algorithm to compute LPML for the Bayesian
diagnostic without increasing computation time. We discuss an illustrative example on
body mass index (BMI) data. Since people have similarity that the majority in each county
will be in the same level of BMI, it is reasonable to assume that the cell probabilities
share a common effect and have the same order restrictions in each county. Actually it
seems that most people will have a third level BMI, which is overweight, among those
counties. So it is reasonable to believe that the cell probabilities are unimodal in each
county and the third level is the mode. With this information, our estimates for each
county can be improved using a multinomial Dirichlet model with order restrictions such
as θi1 6 θi2 6 θi3 > θi4 > θi5 for the ith area. One feature of our approach is that Dirich-
let distribution with parameters µ and τ embodies the common effect and the same order
restriction. At the second stage of model, parameter µ has a similar order restriction as cell
probabilities θi. It has more flexibility without increasing computation difficulty. Then we
compute LPML of our proposed model and the model without order restriction.

Further, Chen and Nandram(2020) will have an overview for this type order restric-
tion problem in SAE. Their overview will cover model selection, sampling from posterior
distribution, model diagnostics, model illustration example, and problem discussions.

The article is organized as follows. In Section 2, we present the hierarchical Bayesian
multinomial Dirichlet model with order restrictions. In Section 3, we use the same tech-
niques from Chen and Nandram (2019). In Section 4, we present a Bayesian diagnostic
for the model with order restrictions and we discuss difficulties associated with a standard
Bayesian diagnostic measure that may not be appropriate. In Section 5, we show how to
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analyze the BMI data in our application. We demonstrate how much improvement there is
under the order restrictions. Section 6 has a summary of our work.

2. Multinomial Dirichlet Models

In this section, we describe the Bayesian methodology for the cell counts over the small
areas. Nandram, Kim and Zhou (2019) has a useful discussion of hierarchical Bayesian
multinomial Dirichlet model without order restriction (M1) and the methodology needed
to fit it.

We incorporate the order restriction into the hierarchical Bayesian Dirichlet multino-
mial model (M2). We use a grid method in Gibbs sampler. This is more efficient than
the method by Nandram (1998). Letting nij be the cell counts, θij the corresponding cell
probabilities,i = 1, 2, . . . , I , j = 1, 2, . . . ,K,ni. =

∑K
j=1 nij and we believe the mode of

θis is θim, 1 6 m 6 K.
Specifically, we take

ni|θi
ind∼ Multinomial(ni. ,θi), θi ∈ C i = 1, . . . , I,

pdf : f(ni|θi) =
Γ(ni. + 1)∏K
j=1 Γ(nij + 1)

K∏
j=1

θ
nij

ij ,

K∑
j=1

nij = ni., ni > 0.

where C = {θi : θi1 6 . . . 6 θim > . . . > θiK , i = 1, . . . , I}, and assume C is known.
As mentioned above, in our BMI study, C = {θi : θi1 6 θi2 6 θi3 > θi4 > θi5, i =
1, 2, . . . , 35}.

At the second stage, we take

θi|µ, τ
ind∼ Dirichlet(µτ), i = 1, . . . , I,

pdf : f(θi|µ, τ) =
Γ(

∑K
j=1 µjτ)∏K

j=1 Γ(µjτ)

K∏
j=1

θ
µjτ−1
ij ,

K∑
j=1

θij = 1, θij ≥ 0, j = 1, . . . ,K.

π(µ, τ) =
K(m− 1)!(K −m)!

(1 + τ)2
, µj > 0,

K∑
j=1

µj = 1, µ ∈ Cµ.

Since E(θij) = µj , µ should have the same order restriction as θi, which is µ ∈ Cµ,

Cµ = {µ : µ1 6 . . . 6 µm > . . . > µK}.

Using Bayes’ theorem, the joint posterior distribution of all variables is

π(θ,µ, τ |n) ∝
I∏
i=1

{
K∏
j=1

θ
nij

ij

∏K
j=1 θ

µjτ−1
ij ICICµ

D(µτ)C(µτ)
} 1

(1 + τ)2

∝
I∏
i=1

{
∏K
j=1 θ

nij+µjτ−1
ij ICICµ

D(µτ)C(µτ)
} 1

(1 + τ)2
,

where IC and ICµ are the indicator functions under those order restrictions,
and

C(µτ)
denote

=

∫
θi∈C

Γ(
∑K

j=1 µjτ)∏K
j=1 Γ(µjτ)

K∏
j=1

θ
µjτ−1
ij dθi,
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D(µτ) =

∏K
j=1 Γ(µjτ)

Γ[
∑K

j=1 µjτ ]
.

3. Computations

It is straight forward to generate samples from M1; see Nandram (1998). In fact, using
the griddy Gibbs sampler, it can be done easier than the method in Nandram (1998). Chen
and Nandram (2019) presented a new method for the order restrictions of µ and θ into two
parts for model M2. They used Gibbs sampling, a Markov chain Monte Carlo (MCMC)
algorithm, for µ with an order restriction and τ . Instead of sampling directly from the
posterior of θ, they sampled from a set of truncated Gamma distributions.

4. Bayesian Diagnostics

In the Bayesian framework, the logarithm of the pseudo-marginal likelihood (LPML)
is a well-known Bayesian criterion for comparing models. A ratio of LPML’s is a surrogate
for the Bayes factor. The best model among competing models have the largest LPML,

LPML =

I∑
i=1

log(CPOi),

where CPOi = P (ni | ni is deleted) for the ith county. Essentially the ith county is
deleted and then its cell counts are predicted from the remaining counties.

Conditional predictive ordinate (CPO) can be estimated using the harmonic mean of
the likelihood of the vectors of the nij . (M is the number of converged posterior samples
from Gibbs sampling in Section 3.)

ˆCPOi =

[
1

M

M∑
h=1

1

f(ni|µ(h), τ (h))

]−1

=

 1

M

M∑
h=1

∏K
j=1 nij !

ni.!

∫
θi∈C

∏K
j=1 θ

µ
(h)
j τ (h)−1
ij dθi∫

θi∈C
∏K
j=1 θ

µ
(h)
j τ (h)+nij−1
ij dθi


−1

.

As mentioned by Sedransk, Monahan, and Chiu (1985), a different importance sam-
pling could be used to estimate the ratio,∫

θi∈C
∏K
j=1 θ

µ
(h)
j τ (h)−1
ij dθi∫

θi∈C
∏K
j=1 θ

µ
(h)
j τ (h)+nij−1
ij dθi

.

It is more precise but slower than the importance function used in Gibbs sampling.
More details can be found in Appendix. CPOi can be estimated as

ˆCPOi =

 1

M

M∑
h=1

∏K
j=1 nij !

ni.!

∫
θi∈C

∏K
j=1 θ

µ
(h)
j τ (h)−1
ij dθi∫

θi∈C
∏K
j=1 θ

µ
(h)
j τ (h)+nij−1
ij dθi


−1

=

 1

M

M∑
h=1

∏K
j=1 nij !

ni.!

Γ(ni. + τ (h))

Γ(τ (h))

∑M ′

q=1(
∏K
j=1 x

(q)
ij

µ
(h)
j τ (h)−α∗

e−(1−r
∗)

∑K
j=1 x

(q)
ij )∑M ′

q=1(
∏K
j=1 x

(q)
ij

nij+µ
(h)
j τ (h)−α∗

e−(1−r
∗)

∑K
j=1 x

(q)
ij )


−1

,
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M ′ is the Monte Carlo sample size for integrating over xij , and

LPML ≈
I∑
i=1

log( ˆCPOi).

In our illustrative example, M = M ′ ≈ 1000, but this is not necessary.

5. Application to BMI

5.1 Body Mass Index

In our application, we use a selected subset of the female BMI data from NHANES
III, where we use only the female BMI data from the 35 largest counties with a population
at least 500,000. Our goal is to estimate the proportions of the BMI levels. Table 1 gives
an illustration of the female BMI data of a few counties, where it can be seen that the cell
probability is largest for the normal range and other probabilities roughly tail off on both
sides to form the unimodal order restriction. Indeed, there are violations in some counties
in the earliest and latest cells.

For large population counties, we consider that people randomly fall into five BMI cat-
egorical levels, which are underweight, normal, overweight, obese1, and obese2. Thus, for
each county, the BMI counts can be assumed to follow a multinomial distribution because
each individual person can be assumed to exist independently. Figure 1 shows a histogram
of all BMI values for females aggregated into a single large sample. It can be clearly seen
that the unimodal order restriction holds. Because the data in the individual counties are
generally sparse, it is difficult to tell whether the unimodal order restrictions holds, a way
to improve posterior inference. However, it is sensible to assume that the same unimodal
restriction holds within all the counties. Therefore, we can use multinomial distributions to
model the female BMI counts.

Table 1: US Female BMI data
State ID County ID BMI lvl1 BMI lvl2 BMI lvl3 BMI lvl4 BMI lvl5

4 13 3 40 37 13 4
6 1 1 36 38 15 1
6 19 3 20 49 13 5
6 37 2 145 174 77 14
6 59 1 29 31 16 3

. . . . . . . . . . . . . . . . . . . . .

5.2 MCMC Convergence

We run 20,000 MCMC iterations, take 10,000 as a ‘burn in’ and use every 10th to
obtain 1,000 converged posterior samples. Table 2 gives the effective sample size of the
parameters µ, τ for the model with the order restriction and the general model. The effec-
tive sample sizes are almost 1,000. Table 3 gives the p-values of the Geweke test for the
parameters (Cowles and Carlin 1996). The p-values are all large so we can not reject that
null hypothesis that the MCMC is stationary. Then posterior samples can be used for the
further inference.
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Figure 1: Total Counts for 35 Counties

Table 2: Effective Sizes
Models µ1 µ2 µ3 µ4 µ5 τ

W. Order 974 1000 1000 1000 1000 1000
W/O Order 859 1000 1000 971 1000 1032

Table 3: Geweke Diagnostics
Models µ1 µ2 µ3 µ4 µ5 τ

W. Order 0.4275 0.3221 0.2376 0.0895 0.3784 0.1393
W/O Order 0.8352 0.785 0.6931 0.4425 0.3692 0.8983

In Figure 2, posterior densities of µ show a nice pattern and µ3 is centered at the largest
value. It means that our samples from µ posterior densities have an order restriction. It
matches our model assumptions. But we notice that there is an overlap between µ2 and µ3.
It is apparent that µ2 6 µ3 may not be appropriate for BMI counts. The order restriction
assumption may be too strong in this case.

Figure 2: Posterior Density of µ
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5.3 Model Comparison

We compute the estimated cell probabilities for each county and their variances, which
are the posterior sample means and posterior standard deviations of parameter θ. In Ta-
ble 6(Appendix), we show their posterior means (PM), posterior standard deviations (PSD),
and coefficients of variation (CV). We notice that the posterior means from the model with
order restrictions (M2) have lower variances compared with the general model (M1). Gen-
erally we have higher accuracy for the estimation of the cell probabilities θ. But for pa-
rameters θ1 and θ5 in some counties, such as the second county in Table 6 (PSD: 0.0106 vs
0.0089), the model with order restriction does not gain precision on them. This is expected
because the extreme cells are generally sparse. In general, many of the coefficients of vari-
ation are small enough to declare that the posterior means are reliable. In Table 6, we also
present coefficient of variation, also known as relative standard deviation, for the model
comparison. It is defined as the ratio of the posterior standard deviation σ to the posterior
mean µ, CV = σ

µ . In Table 6, the model with order restrictions (M2) has lower CV than
the model without order restriction. Specially for θ2, θ3, and θ4, CV reduced to almost half
of the previous.From this aspect, our model M2 is more suitable for BMI data.

In Figure 3, the top panel is the model with order restrictions and the bottom panel is the
model without any order restriction for the same county, County 1. It can be seen from the
plots of the posterior densities of the θ’s that θ in this county has an order restriction. Our
unimodal assumption for this county holds. However in the first density (top panel) and the
second density (bottom panel), there are overlaps between θ2 and θ3. It means that the order
restriction may not hold for this county. The overlap between θ1 and θ5 is acceptable, since
there is no direct comparison between them. Specially in the bottom panel, the densities
from the model without order restriction show that θ2 is even larger than θ3. Our unimodal
assumption may not be proper in this county.

Figure 3: Posterior Densities of θ for County 1

In Figure 4, the top panel is the model with order restrictions and the bottom panel is
the model without any order restriction for another county, County 3. Plots of the posterior
densities of the θ’s without any order restriction show that θs in each county may have an
order restriction. It can be seen from the second density (bottom) that θ3 is the mode for
the cell probabilities even without order restriction assumption. It means that our unimodal
assumption in this county is valid. Like in Figure 3, the overlap between θ1 and θ5 is
acceptable, since there is no direct comparison between them.
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Figure 4: Posterior Densities of θ for County 3

In Figure 5, we use posterior standard deviations (PSD) to generate regression lines.
Those regression lines show the overall PSD comparison between the model with order
restrictions (M2) and the model without order restriction (M1). If the slope of regression
line is larger than the black reference line whose slope is one, it means that M2 has smaller
PSDs than M1. For each cell probability θ shown in different color, the slope is larger than
the reference line’s. Therefore we gain higher precision on estimation of cell probabilities
among 35 counties.

Figure 5: Posterior standard Deviation Comparisons of θs’

The LPML of Multinomial Dirichlet model with order restrictions is -977.102, and
the LPML of Multinomial Dirichlet model without any order restriction is -471.821. The
LPMLs show that the model without order restriction is better than the model with order
restriction. This result is puzzling because we found better precision for the model with
order restriction. To look at this issue more closely, in Table 4, we present the log(CPO)
for the individual counties. Most of the log(CPO) are larger under Model M1 than Model
M2, except for county 21 (smallest sample size) where the order restriction is satisfied.
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Table 4: log(CPOi) for each county by model
County size M2 M1 County size M2 M1

1 97 -22.957 -16.485 18 61 -20.853 -13.894
2 91 -29.87 -13.948 19 52 -19.404 -7.793
3 90 -22.368 -17.386 20 64 -27.941 -13.975
4 412 -109.684 -21.155 21 49 -11.848 -16.226
5 80 -20.223 -14.695 22 77 -26.737 -15.169
6 66 -16.642 -16.232 23 50 -16.403 -13.573
7 62 -18.532 -13.434 24 70 -19.817 -14.386
8 53 -20.073 -13.669 25 64 -30.908 -10.063
9 73 -22.255 -13.11 26 60 -16.544 -14.578
10 81 -32.178 -8.714 27 48 -14.371 -13.135
11 98 -17.48 -16.144 28 52 -16.706 -12.687
12 84 -38.694 -16.25 29 75 -28.701 -13.678
13 217 -67.18 -19.439 30 82 -23.83 -13.209
14 72 -25.363 -14.297 31 75 -19.882 -14.452
15 87 -21.267 -16.952 32 102 -33.623 -14.868
16 101 -35.126 -14.356 33 129 -37.243 -15.985
17 99 -22.601 -15.412 34 84 -29.009 -15.338

35 92 -40.79 -10.593
1Note: Shaded Area: The model with order restrictions (M2)

Unshaded Area: The model without any order restriction (M1)

For the county with the largest sample size, the log(CPO) under model M2 is much too
small even though the order restriction is satisfied. There are a few counties in which the
log(CPO) are comparable (e.g., counties 6, 11, 26 and 27). There are two explanations for
these findings. First, for the few counties with larger sample sizes, because the log(CPO)
is based on deletion and prediction, the model is doing a bad job in predicting for the
counties with larger sample sizes. Second, if the order restrictions are not fully satisfied (see
Figure 3), then the fitted values will not agree with the observed values, thereby causing
the discrepancy.

Next we split 35 counties into 3 groups based on the ratio of people in level 2 and level
3. We expect better performances of our proposed model in each subgroup after splitting.
In Group 1, the number of people in BMI level 3 is at least 10% more than people in BMI
level 2. The mode is more likely at the third position in Group 1. Controversially in Group
3, the number of people in BMI level 2 is at least 10% more than people in BMI in level 3.
Then we fit the model with order restrictions for each group, seen in Table 5. As we can
see, we have some improvement in Group 3 but not in Group 1. One possible reason is that
some counties with large sizes, eg County 4 and County 13, will cause the problem. Since
CPO is one kind of leave-one-out methods, it will be hard for a large county to borrow
information from other counties.
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Table 5: log(CPOi) for each county
Group 1 Group 3

County ID M1 M2 County ID M1 M2
1 27 -11.2098 -14.4154 1 31 -11.9776 -19.3504
2 3 -16.38 -22.0339 2 14 -11.6669 -23.6478
3 20 -10.0768 -28.1033 3 28 -10.2338 -15.476
4 32 -12.6318 -34.1183 4 13 -19.8629 -63.2454
5 30 -12.1297 -24.5537 5 22 -11.4118 -25.6294
6 15 -14.3668 -22.9273 6 25 -11.1472 -28.6044
7 17 -13.7607 -22.8095 7 18 -10.928 -19.3792
8 34 -11.9051 -29.7782 8 19 -10.6955 -17.8958
9 16 -12.3094 -36.3469 9 21 -12.7922 -9.61966
10 26 -11.7787 -16.8221
11 4 -23.8692 -113.144
12 8 -10.4124 -19.9604
13 23 -10.5611 -16.801
14 33 -13.6766 -39.3604

LPML -185.067 -441.175 LPML -110.716 -222.848
Previous LPML -202.112 -390.841 Previous LPML -129.929 -251.255

2Note: Shaded Area: The model with order restrictions (M2)
Unshaded Area: The model without any order restriction (M1)

Perhaps one can consider other Bayesian diagnostics (e.g., deviance information cri-
terion - DIC - and Bayes factors). Mode uncertainty can be considered in future study to
create a more flexible model such as the one inspired by Nandram (1997). That may help
to get a larger LPML for the model with order restriction than the model without any order
restriction.

6. Conclusion

Hierarchical Bayesian multinomial Dirichlet models can be used to make inference for
small areas. We have proposed the model with order restrictions to increase the accuracy
of the estimation for the parameters. We have also shown how to generate samples from
posterior distributions with order restrictions. We have significantly increased the precision
of the estimation of cell probabilities for cells 2, 3 and 4 for the female BMI data. This is
true for most of the counties. We have also shown difficulties in assessing model fit using
Bayesian diagnostic measures (log(CPO)) under order restriction; we believe that this is
an open problem.

However, as shown in Figure 3, the same unimodal assumption may be too strong.
Some counties have more people in BMI level 2 than level 3, for instance County 1; some
counties have opposite situations. It seems that the mode of cell probabilities in each county
is not fixed. Nandram and Sedransk (1995) and Nandram, Sedransk and Smith (1997) pre-
sented a good discussion about unimodal order restriction in a stratified population. They
made inference about the proportion of firms belonging to each of several classes when
there are unimodal order relations among the proportions. In that paper, the hyperparam-
eters are specified and they did not have a small area estimation problem; our problem is
much more difficult. They discussed an extension of their approach, which is the uncertain
modal positions for their case. So for our model, one possible solution is considering un-
certainty of modal position of the cell probabilities. We can consider a random variable to

 
1763



indicate the type of order restriction for each county. In other words, even counties have
different order restriction structure, we can borrow strenght among them with the help of
uncertainty. Uncertain modal positions may be more suitable for our BMI data. But again
this is a much more difficult problem. If order restriction obviously exist and each small
area has similar size, the multinomial Dirichlet model with order restrictions will work
well.

In future, we might want to make the correlation structure of the Dirichlet distribu-
tion (all components are negatively correlated) more flexible. This can be done by using
multivariate logistic models with similar unimodal order restrictions as are studied in this
paper. Also, we can use more flexible prior distributions such as Dirichlet process on the
cell probabilities; this is a difficult problem with the unimodal order restrictions.
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7. Appendix

7.1 Model Comparison

Table 6: Posterior Mean, Standard Deviation and Coefficient of Variation
θ1 θ2 θ3 θ4 θ5

Counties PM PSD CV PM PSD CV PM PSD CV PM PSD CV PM PSD CV
0.0234 0.0103 0.4402 0.3751 0.0203 0.0541 0.4157 0.0243 0.0585 0.1505 0.0248 0.1648 0.0354 0.0128 0.3616

1
0.0356 0.0169 0.4747 0.3959 0.0465 0.1175 0.3709 0.0449 0.1211 0.163 0.0341 0.2092 0.0345 0.0175 0.5072
0.0152 0.0085 0.5592 0.3726 0.0243 0.0652 0.4275 0.0279 0.0653 0.162 0.026 0.1605 0.0227 0.0106 0.4670

2
0.0198 0.0128 0.6465 0.3807 0.0448 0.1177 0.4011 0.0431 0.1075 0.1892 0.0366 0.1934 0.0092 0.0089 0.9674
0.0233 0.0104 0.4464 0.3203 0.0347 0.1083 0.4678 0.0383 0.0819 0.1489 0.0241 0.1619 0.0397 0.0138 0.3476

3
0.0374 0.0184 0.4920 0.24 0.0396 0.1650 0.5051 0.0476 0.0942 0.1719 0.0358 0.2083 0.0455 0.0198 0.4352
0.0079 0.0039 0.4937 0.3583 0.0189 0.0527 0.4224 0.0204 0.0483 0.1787 0.0165 0.0923 0.0327 0.0077 0.2355

4
0.0078 0.0044 0.5641 0.35 0.0227 0.0649 0.4182 0.0237 0.0567 0.1916 0.0188 0.0981 0.0324 0.0084 0.2593
0.0158 0.0087 0.5506 0.3625 0.0231 0.0637 0.4151 0.0264 0.0636 0.174 0.027 0.1552 0.0326 0.0123 0.3773

5
0.0213 0.0149 0.6995 0.3544 0.0473 0.1335 0.3778 0.0487 0.1289 0.216 0.0407 0.1884 0.0306 0.0167 0.5458
0.012 0.0085 0.7083 0.3662 0.0254 0.0694 0.4195 0.0303 0.0722 0.1515 0.0277 0.1828 0.0507 0.0177 0.3491

6
0.0146 0.0128 0.8767 0.3649 0.051 0.1398 0.3798 0.0527 0.1388 0.1722 0.0404 0.2346 0.0685 0.027 0.3942
0.0118 0.0079 0.6695 0.3634 0.0259 0.0713 0.4192 0.0293 0.0699 0.1749 0.0298 0.1704 0.0307 0.0127 0.4137

7
0.0149 0.0138 0.9262 0.3594 0.0534 0.1486 0.3737 0.0528 0.1413 0.2276 0.0451 0.1982 0.0245 0.0173 0.7061
0.0174 0.0094 0.5402 0.3743 0.0274 0.0732 0.4419 0.0323 0.0731 0.1392 0.0281 0.2019 0.0272 0.013 0.4779

8
0.0304 0.0202 0.6645 0.3748 0.0542 0.1446 0.4314 0.0571 0.1324 0.1488 0.0405 0.2722 0.0145 0.0142 0.9793
0.0166 0.0092 0.5542 0.3694 0.0236 0.0639 0.4184 0.0279 0.0667 0.1704 0.0292 0.1714 0.0253 0.0114 0.4506

9
0.0242 0.0158 0.6529 0.3806 0.0504 0.1324 0.3731 0.0508 0.1362 0.2115 0.0424 0.2005 0.0105 0.0102 0.9714
0.0106 0.0072 0.6792 0.3743 0.0217 0.0580 0.4202 0.0252 0.0600 0.1758 0.0272 0.1547 0.0189 0.0093 0.4921

10
0.0116 0.0109 0.9397 0.3883 0.048 0.1236 0.3847 0.047 0.1222 0.215 0.0396 0.1842 0.0004 0.0022 5.5000
0.023 0.0104 0.4522 0.3575 0.0229 0.0641 0.4041 0.0268 0.0663 0.1751 0.0272 0.1553 0.0402 0.0138 0.3433

11
0.0351 0.0161 0.4587 0.3545 0.0421 0.1188 0.3595 0.0437 0.1216 0.209 0.0363 0.1737 0.0419 0.018 0.4296
0.0108 0.0071 0.6574 0.3898 0.0237 0.0608 0.4419 0.0272 0.0616 0.1297 0.0252 0.1943 0.0278 0.0118 0.4245

12
0.0119 0.011 0.9244 0.4146 0.0483 0.1165 0.4307 0.0483 0.1121 0.1238 0.0334 0.2698 0.0189 0.0133 0.7037
0.0127 0.006 0.4724 0.3894 0.0146 0.0375 0.4099 0.0171 0.0417 0.1524 0.0214 0.1404 0.0357 0.0103 0.2885

13
0.0138 0.0078 0.5652 0.4367 0.0321 0.0735 0.364 0.0311 0.0854 0.1507 0.024 0.1593 0.0348 0.0119 0.3420
0.0215 0.0105 0.4884 0.3845 0.0209 0.0544 0.4243 0.0262 0.0617 0.1444 0.0268 0.1856 0.0254 0.0113 0.4449

14
0.0357 0.0193 0.5406 0.4264 0.0521 0.1222 0.3747 0.0514 0.1372 0.1524 0.0378 0.2480 0.0108 0.0104 0.9630
0.0194 0.0098 0.5052 0.3604 0.0283 0.0785 0.4381 0.0309 0.0705 0.1405 0.0243 0.1730 0.0417 0.014 0.3357

15
0.03 0.0157 0.5233 0.3411 0.0449 0.1316 0.4355 0.0467 0.1072 0.1475 0.0361 0.2447 0.046 0.0189 0.4109

0.0141 0.0078 0.5532 0.3686 0.0258 0.0700 0.4378 0.0301 0.0688 0.1581 0.0253 0.1600 0.0214 0.0094 0.4393
16

0.0182 0.0124 0.6813 0.3573 0.0447 0.1251 0.4345 0.046 0.1059 0.1814 0.0352 0.1940 0.0086 0.009 1.0465
0.0309 0.0125 0.4045 0.3559 0.0258 0.0725 0.4281 0.0303 0.0708 0.1591 0.0247 0.1552 0.026 0.0109 0.4192

17
0.0511 0.0193 0.3777 0.3313 0.0433 0.1307 0.4183 0.0444 0.1061 0.1827 0.0356 0.1949 0.0165 0.0117 0.7091
0.012 0.0079 0.6583 0.378 0.022 0.0582 0.4141 0.0248 0.0599 0.1638 0.0293 0.1789 0.0321 0.0128 0.3988

18
0.0154 0.0134 0.8701 0.425 0.0556 0.1308 0.3388 0.0522 0.1541 0.1956 0.0426 0.2178 0.0252 0.0175 0.6944
0.0181 0.0103 0.5691 0.3769 0.0226 0.0600 0.4162 0.0257 0.0617 0.1664 0.0305 0.1833 0.0223 0.0117 0.5247

19
0.0304 0.0193 0.6349 0.4237 0.0575 0.1357 0.3426 0.0554 0.1617 0.2027 0.0472 0.2329 0.0005 0.0025 5.0000
0.0114 0.0075 0.6579 0.3547 0.0319 0.0899 0.4644 0.0374 0.0805 0.1445 0.0247 0.1709 0.025 0.0115 0.4600

20
0.0143 0.0134 0.9371 0.3042 0.0504 0.1657 0.5057 0.0553 0.1094 0.1644 0.0404 0.2457 0.0115 0.0116 1.0087
0.0355 0.0159 0.4479 0.3745 0.0213 0.0569 0.4071 0.0254 0.0624 0.1428 0.0289 0.2024 0.04 0.0154 0.3850

21
0.0745 0.0303 0.4067 0.4398 0.0623 0.1417 0.2993 0.0539 0.1801 0.1428 0.0412 0.2885 0.0437 0.024 0.5492
0.0162 0.0092 0.5679 0.3853 0.0197 0.0511 0.4222 0.0251 0.0595 0.1467 0.0271 0.1847 0.0295 0.0126 0.4271

22
0.0231 0.015 0.6494 0.4384 0.0513 0.1170 0.3673 0.0495 0.1348 0.1509 0.036 0.2386 0.0202 0.0141 0.6980
0.0124 0.0084 0.6774 0.3689 0.0275 0.0745 0.4336 0.0314 0.0724 0.1515 0.0294 0.1941 0.0336 0.0138 0.4107

23
0.0173 0.0167 0.9653 0.3652 0.057 0.1561 0.4053 0.0583 0.1438 0.1839 0.0446 0.2425 0.0284 0.0203 0.7148
0.0117 0.0076 0.6496 0.3629 0.0247 0.0681 0.4171 0.0294 0.0705 0.173 0.0285 0.1647 0.0353 0.0138 0.3909

24
0.0141 0.0133 0.9433 0.364 0.0498 0.1368 0.3731 0.0485 0.1300 0.2158 0.0432 0.2002 0.033 0.0185 0.5606
0.0175 0.0099 0.5657 0.3944 0.0205 0.0520 0.4304 0.0253 0.0588 0.1366 0.0276 0.2020 0.021 0.0107 0.5095

25
0.0255 0.0168 0.6588 0.4673 0.0568 0.1215 0.3769 0.0542 0.1438 0.13 0.0361 0.2777 0.0004 0.002 5.0000
0.0226 0.0116 0.5133 0.3676 0.0267 0.0726 0.4336 0.0308 0.0710 0.1457 0.0263 0.1805 0.0306 0.0119 0.3889

26
0.0401 0.0217 0.5411 0.3571 0.053 0.1484 0.4178 0.0538 0.1288 0.1608 0.0417 0.2593 0.0242 0.0169 0.6983
0.0233 0.0117 0.5021 0.3356 0.0352 0.1049 0.4516 0.0387 0.0857 0.162 0.0298 0.1840 0.0275 0.0125 0.4545

27
0.0464 0.0259 0.5582 0.2428 0.0524 0.2158 0.4785 0.0587 0.1227 0.2177 0.048 0.2205 0.0146 0.0136 0.9315
0.018 0.0098 0.5444 0.3758 0.0227 0.0604 0.4179 0.0258 0.0617 0.1605 0.0297 0.1850 0.0277 0.0128 0.4621

28
0.0311 0.0216 0.6945 0.4109 0.0577 0.1404 0.3531 0.0559 0.1583 0.1903 0.0455 0.2391 0.0147 0.0148 1.0068
0.0114 0.0072 0.6316 0.3756 0.0246 0.0655 0.4338 0.0301 0.0694 0.1542 0.0271 0.1757 0.025 0.0112 0.4480

29
0.0129 0.0111 0.8605 0.3832 0.0488 0.1273 0.4146 0.0476 0.1148 0.1784 0.0372 0.2085 0.0109 0.0106 0.9725
0.0153 0.0085 0.5556 0.3484 0.0283 0.0812 0.4254 0.0318 0.0748 0.1877 0.0297 0.1582 0.0231 0.0107 0.4632

30
0.0219 0.0144 0.6575 0.3101 0.0445 0.1435 0.4074 0.0479 0.1176 0.2504 0.0427 0.1705 0.0102 0.0104 1.0196
0.0208 0.0098 0.4712 0.373 0.0225 0.0603 0.4159 0.0277 0.0666 0.1608 0.0286 0.1779 0.0295 0.0122 0.4136

31
0.0337 0.0188 0.5579 0.3953 0.0475 0.1202 0.3633 0.0483 0.1329 0.1858 0.0396 0.2131 0.0218 0.0142 0.6514
0.0097 0.0064 0.6598 0.3412 0.0292 0.0856 0.439 0.0326 0.0743 0.184 0.0265 0.1440 0.026 0.0111 0.4269

32
0.0102 0.0086 0.8431 0.2919 0.0413 0.1415 0.4469 0.045 0.1007 0.2346 0.0384 0.1637 0.0163 0.0114 0.6994
0.0128 0.0073 0.5703 0.3653 0.0234 0.0641 0.4228 0.0254 0.0601 0.172 0.0249 0.1448 0.0271 0.0103 0.3801

33
0.015 0.0105 0.7000 0.3586 0.0386 0.1076 0.4082 0.0394 0.0965 0.1982 0.0309 0.1559 0.02 0.0111 0.5550
0.0156 0.0085 0.5449 0.37 0.0261 0.0705 0.4451 0.0317 0.0712 0.1414 0.0244 0.1726 0.0278 0.0109 0.3921

34
0.0217 0.0142 0.6544 0.3584 0.0479 0.1336 0.4466 0.0492 0.1102 0.1532 0.0362 0.2363 0.0201 0.0141 0.7015
0.015 0.0082 0.5467 0.3914 0.022 0.0562 0.4409 0.0258 0.0585 0.1342 0.0246 0.1833 0.0184 0.01 0.5435

35
0.02 0.0129 0.6450 0.4227 0.0457 0.1081 0.4236 0.0448 0.1058 0.1334 0.0309 0.2316 0.0003 0.0013 4.3333

3Note: Shaded Area: The model with order restrictions (M2)
Unshaded Area: The model without any order restriction (M1)
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