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Abstract 
Pediatric trials are an important component of drug development and are typically conducted when 
the efficacy and safety has been established in adult population.  Many disease areas are presented 
with inherent difficulties in conducting large pediatrics trials making such development highly 
challenging. When pediatric trials are conducted after adult trials, it allows for utilization of prior 
adult information to help enhance efficiencies for scenarios that justify borrowing prior information.  
Innovative clinical trials using Bayesian framework to leverage historical information have been 
discussed extensively in recent years. This framework helps alleviate logistical and ethical 
challenges in conducting large clinical trials in children by providing avenues for designing pediatric 
trials with feasible sample size which in turn facilitate timely decision making and treatment access 
to children. We consider three frequently used Bayesian frameworks including hierarchical model, 
power prior, mixture prior, and explore their relationship with one another. Chen & Ibrahim (2006) 
established an 1-1 correspondence between power prior and hierarchical model under certain 
settings. In this paper, we further established relationship between power prior and mixture prior 
using their operating characteristics. This newly established relationship allows unifying the three 
commonly used Bayesian frameworks: hierarchical model, power prior, and mixture priors. We 
demonstrate the correspondence across three methods using the key parameters that controls the 
amount of borrowing of historical information via simulations. Although discussed in the context of 
pediatrics development, the application is this work is applicable for any other scenario of borrowing 
prior information.  
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1. Introduction 
 

Pediatric trials are an important component of drug development. But it often encounters the 
challenge of not being able to enroll sufficient number of subjects to meet the stringent efficacy 
criterion. The enrollment challenges for the pediatric trials are many, including but not limited to 
rarity of disease, reluctance of exposing children to new drug, or other ethical reasons.  Innovative 
ideas become even more necessary when face with practical challenges that could delay access of 
important treatments to children.  Augmenting information from historical data, whenever 
appropriate, becomes an important avenue to demonstrate efficacy and move forward the pediatrics 
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development.   The discussion here focuses on the efficacy evaluation only, as the safety evaluation 
is based on regulatory requirement and is out of scope of this manuscript. 
 
Bayesian framework allows augmentation of available information from historical trial(s) and that 
can help reduce sample size.  Borrowing information from historical data hinges on the fact that 
there is sufficient evidence that the treatment responses are likely to be similar across pediatric and 
the prior adult population, based on clinical rationales, pharmacokinetics, and pharmacodynamics 
of the medical product [1, 2].  Spiegelhalter (2004) provided a systemic review for Bayesian methods 
in health care evaluation [3,4].  Bayesian paradigm provides a natural framework for extrapolation 
and there are many frameworks to incorporate results from historical trials to different populations. 
To combine information from different sources, Viele (2014) discussed various scenarios of 
borrowing including static and  dynamic borrowing, and Schmidt (2014)  discussed borrowing from 
multiple sources utilizing meta analytical approach [5,6].  Schoenfeld et al. (2009) considered 
hierarchical models to augment information from adult trial to pediatric trial [7].  Kaur et al. (2018) 
utilized similar approach in design of pediatric study and sample size determination by incorporating 
information from previously completed adult treatment effect, and  Jin et al. (2020) further extended 
the approach for various scenarios including that for binary data as well as incorporating directly 
information from multiple historical trials[8,9]. Gamalo-Siebers et al. (2017) discussed the sample 
size problem in terms of extrapolation to extend information from subgroups of the patient from 
source population (e.g. adult population), to make inferences for another subgroup of the target 
population (e.g. pediatric population), allowing for  dynamic borrowing [10]. Further review of 
borrowing external data has been discussed for medical devices, rare diseases, and various other 
scenarios and many recent regulatory guidance have discussions on utilizing Bayesian framework 
under various settings [11-14].  A recent impact paper mentions that “…CDER statisticians are 
applying Bayesian hierarchical models to other critical areas in drug evaluation as well, such as in 
the evaluation of treatments for children. Considering the adult and pediatric data together 
improves the quality of decision-making in the pediatric setting by borrowing from the adult results. 
The amount of borrowing from adults (the weight that can be given to the adult data) is based on an 
evaluation of all available data and depends on ratio of variability in adult and children’s data to 
variability between subgroups. Such an approach can be especially helpful for pediatric indications 
where recruiting pediatric patients for clinical trials can be difficult…” [15].   
 
The most common approach for implementing Bayesian methods is to build a prior distribution on 
the treatment effect by utilizing available information to design and analyze the trial.  Three most 
commonly used Bayesian methods that down-weight data from the source population include power 
prior, hierarchical models, and mixture priors. Power priors discussed by Ibrahim & Chen (2000) 
are formed by raising the likelihood of the historical data to a power parameter 𝑎௣ ∈ [0, 1] [16].  The 

parameter 𝑎௣ controls the extent of borrowing, and its larger value means more extrapolation from 

prior data.  Hierarchical models have been around for a while, and Schoenfeld et al. (2009) discussed 
this model assuming the parameter of interest, say treatment effect, from the adult and the pediatric 
populations with a common normal distribution  N (µ, 𝑣ଶ), where the treatment effect µ  has a non-
informative prior and  the variance of the prior distribution 𝑣ଶ, representing the heterogeneity across 
the adult and pediatric population, is estimated from available information. A smaller value of 
𝑣ଶ implies similarity between adult and pediatric population thus allowing for borrowing more 
extrapolation.  Mixture prior (Rover et al. 2019, Ye & Travis 2017, Islas et al. 2017) is formed by 
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mixing two distributions with weight  𝑎௠, i.e., π(θ) = (1 − 𝑎௠)π1(θ) + 𝑎௠π2(θ) [17-19]. The mixing 
weight 𝑎௠ can be viewed as the applicability probability of historical trials and can be solicited 
through expert opinion.  Compared with power priors and hierarchical models, mixture prior is less 
studied in adult-to-pediatric extrapolation, though it has good interpretive properties. 
 
Chen & Ibrahim (2006) showed 1-1 correspondence, under certain settings, between the power 
parameter 𝑎௣, when using power prior framework, and variance parameter 𝑣ଶ, when using  

hierarchical modeling, [20] and is discussed in detail in subsequent sections.  We further establish a 
1-1 correspondence between the mixing weight 𝑎௠ and power parameter 𝑎௣ for mixture prior and 

power prior in the context of the operation characteristics.  Together, with the already established 
relationship between power prior and hierarchical model and newly established relationship between 
power prior and mixture prior, the three commonly used Bayesian methods can be viewed under the 
same framework. We demonstrate the correspondence across these three Bayesian methods in terms 
of the key parameters that affect the amount of borrowing.  
 
The remainder of the manuscript is organized as follows. In Section 2, we provide background of 
the three commonly used methods, hierarchical model, power prior, mixture prior, and discuss the 
key parameters that control borrowing of historical information.  In Section 3,  we review the 
established relationship across power priors and hierarchical models, and establish new relationship 
across power prior and mixture priors, along with evaluation of these relationships via simulations. 
The concluding remarks are provided in Section 4. 
 

2. Methods  
 

Let’s consider a single historical dataset with two arms and equal randomization ratio similar 
to that in the planned new trial. If there is more than one historical dataset, one may obtain the 
parameter estimate of historical treatment effect from a meta-analytical approach. Let θ and θ0 
denote the treatment effect (difference between treatment and control arm) for current and 

historical  trials,  respectively.   Denote the estimator Ȳ  for θ,  Ȳ0
  for θ0.  A commonly used data 

model is  
 

𝑌ത|𝜃~𝑁ሺ𝜃,𝜎ଶ 𝑛⁄ ሻ,      𝑌଴ഥ |𝜃଴~𝑁ሺ𝜃଴ ,  𝜎଴
ଶ 𝑛଴⁄ ሻ, 

 
Where n and n0 are sample sizes per arm for the new (e.g. pediatric) and historical (e.g. adult)  
trial, σ2/2 and σ0

2/2 are the variances for current and historical data, respectively.  Further 
assuming the threshold for testing is C, the hypothesis test can be expressed as 

H0 : θ ≤ C vs  H1 : θ > C 
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Hierarchical Model:   
Let’s consider the normal prior distribution of i.i.d. parameters as follows: 
 
  𝜃 ,  𝜃଴~𝑁ሺ𝜇, 𝑣ଶሻ,   
 
where 𝑣ଶ measures the variation between the treatment effect in the pediatric and adult trials and; larger 
𝑣ଶ indicates larger variation between the populations, thus allows for less borrowing. Schoenfeld et al, 
(2009) indicated that  𝑣 could be elicited from the prior evidence using a data driven approach along with 
clinical input, e.g. 𝑣ො ൌ ห𝜃෠଴ െ 𝜃෠ห √2⁄ .   
 
The parameter 𝜇 usually has a non-informative prior, e.g.,  𝑁ሺ0, 𝜏ଶሻ,  𝜏ଶ → ∞. 
 
Power Priors:   
The prior is expressed by down-weighting the likelihood of historical (say adult trial) information  
 
     𝜋൫𝜃|𝑌ത଴,𝑎௣൯ ∝ 𝐿ሺ𝜃|𝑌଴ഥ ሻ

௔೛  
 
0 ൑ 𝑎௣ ൑ 1. The discounting parameter 𝑎௣ controls amount of information borrowed, where 𝑎௉ ൌ

1 implies full borrowing, i.e., equivalent to pooling data across adult and pediatric trials, and 𝑎௉ ൌ
0 implies no borrowing , i.e., equivalent to using only pediatric data. However, the challenge of this 
approach is to how to elicit 𝑎௣ as that would determine the extent of borrowing from the historical 

data [16] 
 
Mixture Prior Model:   
The prior is expressed by down-weighting by mixing a skeptical part as  
 

𝜋ሺ𝜃|𝑌ത଴,𝑎௠ሻ ൌ ሺ1 െ 𝑎௠ሻ𝜋ୱ୩ୣ୮ሺ𝜃ሻ ൅ 𝑎௠𝐿ሺ𝜃|𝑌଴ഥ ሻ 
 
Where 𝜋௦௞௘௣~𝑁ሺ0, 𝑘ଶሻ measures skepticism on the pediatric treatment effect (𝛿 ൌ 0ሻ, where larger 

𝑘ଶ implies less skepticism, and smaller 𝑘ଶ implies more skepticism towards prior (or adult) data.  
Further, the mixing weight 𝑎௠ controls the amount of information borrowed, where 𝑎௠ ൌ 1 implies 
full borrowing, i.e., equivalent to pooling, and 𝑎௠ ൌ 0 implies no borrowing, and that turns out to 
be more conservative than a standalone trial.  The mixing parameter 𝑎௠ can  be interpreted as the 
evidence of the applicability of adult results [18] and could be estimated by elicitation through expert 
opinion through properly designed survey questions.  A schematic representation of mixture prior 

is presented in Figure 1, when 𝑌଴ഥ ൌ 1, 𝜎଴
ଶ ൌ 9, n଴ ൌ 100, 𝑘ଶ ൌ 1, 𝑎௠ ൌ 0.3, and 𝑘ଶ ൐

ఙబ
మ

௡బ
. 
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Figure 1: A schematic representation of mixture prior 

 
 

3. Relations Across Bayesian Frameworks 
 
Chen & Ibrahim (2006) established 1-1 correspondence between 𝑎௉  in power prior and variance 
𝑣ଶ in hierarchical model (Chen & Ibrahim, 2006) 
 

𝑎௉ ൌ 1/ቆ
2𝑣ଶ𝑛଴
𝜎଴
ଶ ൅ 1ቇ 

 
This correspondence between 𝑎௉  and 𝑣ଶ is established by matching the posteriors of power prior 
 and hierarchical models.    
 
We further explored the relationship between the 𝑎௉ in power prior and the 𝑎௠ in the mixture prior.  
When the posteriors of power prior and hierarchical model are both normal then one could match 
them exactly under some settings. In contrast, the posterior distribution in the mixture prior is always 
a mixture and therefore it is not feasible to match it exactly with the normally distributed posterior 
distribution of power prior.  Hence the equivalence between the mixture prior and the power prior 
 was established in terms of power and Type I error.  We derived (calculations details not shown) 
the relationship between the mixture prior mixing weight 𝑎௠ and the power prior discounting factor 
𝑎௉,  and this correspondence is presented in Figure 2.  The relationship changes as the skepticism 
parameter 𝑘 changes. 
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Figure 2: A relationship between the mixture prior mixing weight 𝑎௠and the power prior discounting factor 
𝑎௉ , when  𝑌଴ഥ ൌ 1, 𝜎଴

ଶ ൌ 9, 𝑛଴ ൌ 100, 𝜎ଶ ൌ 8,  𝑛 ൌ 50, 𝛿 ൌ 0, 𝛼 ൌ 0.05 

 
A simulation study was conducted to explored power and Type I error both for binary data as well 
as its normal approximation for testing superiority hypothesis; the size of the adults study (historical 
information) 𝑛ୌ ൌ 400 per arm, and size of the pediatric study was 𝑛 ൌ 200 per arm. Table 1 
provides power and Type I error for various scenarios of 𝑣 from hierarchical model and its 
equivalent values 𝑎୮ from power prior, and 𝑎୫ from mixture prior, respectively. Frequentist column 

represents the case of no borrowing and the Binomial column provides results without normal 
approximation of binary data.  The simulation results indicate the power increase when relatively 
more information is borrowed from the historical data and remains higher than the frequentist 
approach.  The Type I error is maintained under frequentist approach though it gets inflated under 
Bayesian methods.  The inflation of Type I error is unavoidable when borrowing “successful” 
information from historical data in Bayesian framework.  The evaluation of Bayesian methods 
therefore needs to be made not only based on Type I error but also by all considering of overall 
benefit of this approach along with other related perspective. 
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Table 1: Power and Type I Error Under Various Scenarios of Borrowing for Hierarchical Model, Power Prior, 
Mixture Priors 

 

𝑝ଵ  𝑝ଶ  𝑝ଵு  𝑝ଶு  𝝂  ap    am  Power (%) Type 1 Error (%) 
              Hierarchical*  Binomial Frequentist Hierarchical* Binomial  Frequentist 
0.5  0.4  0.5  0.4  0.05  0.20  0.27  68.8  68.1  52.0  6.4  7.1  2.5 

0.5  0.4  0.5  0.4  0.1  0.06  0.07  56.9  56.6    3.3  3.3   

0.2  0.1  0.2  0.1  0.05  0.11  0.27  89.7  88.9  80.0  5.7  5.7  2.5 

0.2  0.1  0.2  0.1  0.1  0.03  0.06  83.0  82.6    3.2  2.6   
*Equivalent power for hierarchical model, power prior, mixture prior for parameters 𝑣,𝑎୮, and 𝑎୫, respectively.  
Frequentist column is the case of no borrowing - i.e., only pediatric data is used; Binomial column is the counterpart without normal approximation [9]. 

In mixture prior computations, kଶ ൌ 0.09 (about 80-150 times 
஢బ
మ

୬బ
). 

 

 

4. Summary 
 

Bayesian framework provides a reasonable solution for pediatrics development when the large trials 
are not possible. There are multiple ways to borrow information with different models (hierarchical 
model, power priors, mixture priors, etc.).  There is well established correspondence between 
hierarchical model and power priors [20].  We established correspondence between power prior and 
mixture priors. This helps unify three Bayesian frameworks under normal data assumption; 
hierarchical model, power priors, and mixture priors. Borrowing information from historical data 
requires upfront justification and transparency of underlying assumption and discussion with 
regulatory agencies for agreement on the extent of  information that can borrowed. 
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