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Abstract: Breitung and Roling (2015) presented a superiority of the nonparametric 
approach for estimation of mixed-frequency forecast. This approach remained outer 
performed than the usual parametric approach. In this paper, a boosted two parameter 
Breitung estimator by using the Lipovetsky and Conklin (2005) is proposed. Monte Carlo 
Simulation experiment suggests that boosted two parameters with an additional predicting 
parameter provides more reliable, and efficient approximation to the actual lag distribution 
than the one parameter Breitung nonparametric estimator. One parameter and two 
parameter Breitung estimators are applied to judge the predictive power of monthly Brent 
crude oil prices (low frequency variable) of the world on the bases of various daily stock 
market index (high frequency variable) indicators. In our real-time forecasting application, 
we find that the two parameter Breitung estimator performed well.    
Keywords: MIDAS, nonparametric, crude oil, Two-parameter, Forecast  

1. Introduction 
Generally, time series regression model contains data sampled at the same frequencies. The 
idea to construct regression model that combines the data with dissimilar frequencies is 
first time introduced by Ghysels et al., (2004), and well known as MIDAS regression. It is 
very gradually popular now a days to employ variables observed at different sampling 
frequencies for economic forecasting and nowcasting, for huge and messive literature, (see 
Ghysels et al., 2006; Andreo et al., 2011; Monteforte and Moretti, 2013; Banbura et al., 
2013; Modugno, 2013). In these types of exercises several HF predictor observations (4 
quarters, say) with a single low frequency observation (1, annual). This condition induces 
the problem that how to forecast the large number of intra period observation for the low 
frequency process. The simplest way to handle this problem to take the averages of the 
high frequency observation for an aggregative high frequency predictor for the low 
frequency dependent variable. Correspondingly, high frequency intra-period observation 
should be weighted equally while developing the predictors. One of the appealing criteria 
for this is to plan a more flexible weighting scheme for intra-period observations. One of 
the examples is to assign larger weights to the recent observation of the daily financial data 
to forecast the monthly variable (inflation rates). Estimation of the weights scheme by 
using the least square techniques, however, get untrustworthy estimates due to the 
multicollinearity among regressors and large number of estimated parameters. The MIDAS 
approach advocated by Ghysels et al., (2006) is an appropriate and well-designed solution 
to overcome these problems. 
Moreover, MIDAS parametric approach is very useful and popular, but still have an 
important disadvantage. While, applying the parametric approach, shape of the lag 
distribution is ruled by an arbitrary class of function like the beta function or an exponential 
polynomial. Parsimonious specification of this type of parametric function may collapse to 
get a precise approximation of the lag distribution, in real life empirical applications (see 
Breitung and Rolling, 2015). By considering the important drawback of standard MIDAS 
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parametric approach, Breitung and Rolling (2015) suggested the nonparametric approach 
to purely imposes some degree of smoothness to the lag distribution. This nonparametric 
approach is identical to fitting cubic splines for approximating an unknown functional 
form. Related approaches to this are very famous in applied statistics. For massive literature 
on this (see, e.g. Hodrick and Prescott, 1997; or Kalaba and Tesfatsion, 1989). 
The SLS estimator (Breitung and Rolling (2015)) has the different interpretation as it can 
be treated as ridge estimator. If multicollinearity exists, then one of the drawbacks of this 
ridge estimator is worst quality of fit of regression model and non-satisfaction of the 
orthogonality relation, so the interpretation of results from this ridge estimator can be 
unreliable. In this article, we modified the SLS estimator by using the Lipovetsky and 
Conklin (2005) into two parameter SLS estimator. The resultant two parameter SLS 
estimator works on the same principle suggested by Breitung and Rolling (2015) but with 
an additional parameter. 
Next section will cover the MIDAS approach outline and benefits of nonparametric 
approach, our proposed estimators and their comparison criteria. Rest of the article as 
follows, third section illustrates the simulation, design of experiments and in sample 
estimation performance. Fourth section represents the predictive performance of the two 
estimators and their predictive performance on real life application. Whereas, the last 
section will represent the concluding remarks. 

2. Estimation procedure of MIDAS 
 We can study the regression model that combines the low frequency (LF)  𝑦𝑡 with the high 
frequency (HF) 𝑥𝑡,𝑗 (regressors), where 𝑡 = 1, … . . , 𝑇, is the LF time index (say, annually) 
and 𝑗 is the intra-period HF (say, monthly) observation with 𝑗 =
1, … . . , 𝑛𝑡   (𝑛𝑡𝜖 {1, … 16} 𝑖𝑛 𝑜𝑢𝑟 𝑒𝑥𝑎𝑚𝑝𝑙𝑒). For more simplification, we assume that the 
time index 𝑗 runs in the opposite direction; will be, the pair (𝑡, 𝑛𝑡) depicts the first and 
(𝑡, 0) represents the final observation of the quarter 𝑡. We can write the LF and HF in the 
form linear regression  

𝑦𝑡+𝜀 = 𝛼0 + ∑ 𝛽𝑗𝑥𝑡,𝑗
𝑝
𝑗=0 + 𝜀𝑡+ℎ   (1) 

where the 𝜀𝑡+ℎ is uncorrelated with the HF variable 𝑥𝑡,0 … . , 𝑥𝑡,𝑝. For the generalization 
commitment, we retain ourselves to a single regressor 𝑥𝑡,𝑗  so that we can treat 𝛽𝑗 as a 
scaler. Furthermore, the lag-length 𝑝 is assumed to be smaller than the minimum number 
of intra-period observations (i.e. 𝑝 < min(𝑛𝑡) =
18 in our example with monthly observation) . In Midas approach (Ghysels et al. 
(2007); Andreou et al. (2011)), we can write the coefficients as 𝛽𝑗 = 𝛼1𝜔𝑗(𝜃), where the 
weights are produced (exponential polynomial) can be written as: 

𝜔𝑗(𝜃) =
𝑒𝑥𝑝(𝜃1𝑗+⋯+𝜃𝑘𝑗𝑘)

∑ exp ((𝜃1𝑖+⋯+𝜃𝑘𝑖𝑘)
𝑝
𝑖=0

    (2) 

 The vector of 𝑘 hyperparameters 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑘)′ is unknown and estimated by using 
the beta distribution (Ghysels et al., 2007).  The weight (𝜔𝑗(𝜃)) are always lies in the 
interval [0,1], as the sum of the all weights equal to 1. Then with the given specification, 
we can write the model as  

𝑦𝑡+𝜀 = 𝛼0 + 𝛼1 ∑ 𝜔𝑗(𝜃)𝑝
𝑗=0 + 𝜀𝑡+ℎ   (3) 

 
In this background, parameter 𝛼0, 𝛼1 𝑎𝑛𝑑 𝜃1, 𝜃2, … , 𝜃𝑘  can be estimated by using the non-
linear least square (NLS). Furthermore, MIDAS approach can also be driven as a restricted 
ordinary least square (OLS) regression where ‘reduced-form parameters’ in the restricted 
OLS regression can be written as 
   

𝑦𝑡+𝜀 = 𝛼0 + 𝛽′𝑥𝑡,∎ + 𝜀𝑡+ℎ   (4) 
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where regression coefficients on different lags are ( 𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑝) ′ ) and the 
regressors on different lags 𝑥𝑡,∎ = (𝑥𝑡,0, 𝑥𝑡,1, … , 𝑥𝑡,𝑝)′ are restricted by the non-linear 
function 𝛽 = 𝑔(𝛼1, 𝜃) with the 𝑗𝑡ℎ component 𝛽𝑗 = 𝛼1𝜔𝑗(𝜃). Similarly, we can minimize 
the parameters with the objective, which can be written as  

𝑆(𝛼, 𝜃) = ∑ [𝑦𝑡+𝜀 − 𝛼0 − 𝑥𝑡,∎
′𝑔(𝛼1, 𝜃)]𝑇

𝑡=1   (5) 
The important part of the 𝑔(𝛼, 𝜃) function is that, it portrays the vector of 𝛽 that is high 
dimensional vector and it depends on the low dimensional vector of the parameters (𝜃). In 
this research editorial, we propose a two-parameter (SLS) alternative nonparametric 
approach by using the Lipovetsky and Conklin (2005) technique.  This approach doesn’t 
enforce a particular functional form but only specifies that the coefficients 𝛽𝑗 is a smooth 
function of 𝑗 in the mean that the absolute values of the second differences 

∇2𝛽𝑗 = 𝛽𝑗 − 2𝛽𝑗−1 + 𝛽𝑗−2  𝑓𝑜𝑟 𝑗 = 2, … , 𝑝 
are small. Where, 𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑝  can be derived by minimizing the penalized least square 
function and it can be written as,  

�̃�(𝛼0, 𝛽) = ∑ (𝑦𝑡+𝜀 − 𝛼0 − 𝛽′𝑥𝑡,∎)2 + 𝜆 ∑ (∇2𝛽𝑗)2𝑝
𝑗=2

𝑇
𝑡=1  (6) 

where 𝜆 is a prespecified smoothing parameter. One of the key feature of this objective 
function it provides a  trade-off between goodness of fit  
In the next section we will first present the �̂�𝜆 by minimizing the equation (6) with respect 
to smoothing parameter 𝜆 and will get the two parameters SLS estimator by using the 
Lipovetsky and Conklin (2005).  

2.1 Midas two parameter approach 
By minimizing the equation (6) we can get the SLS estimator 
�̂�(𝜆) =  (𝑋′𝑋 + 𝜆𝐷′𝐷)𝑋′𝑦ℎ      (7) 

where  𝑟 = 𝑋′𝑦ℎ , 𝐶 = 𝑋′𝑋,  G= 𝐷′𝐷  and  𝑋 = [𝑥1,∎, 𝑥2,∎, … , 𝑥𝑇,∎]
′ , 𝑦ℎ =

[𝑦1+ℎ , 𝑦2+ℎ , … , 𝑦𝑇+ℎ]′, 
and 𝑥𝑡,∎ = [𝑥𝑡,0, 𝑥𝑡,1, … , 𝑥𝑡,𝑝]

′ . Constant term 𝛼0  is ignored in the regression. If we 
minimize the equation (5), then the objective function is equivalent to  

�̃�(𝛾) = (𝑦ℎ − �̃�1𝛾1 − �̃�2𝛾2)
′
(𝑦ℎ − �̃�1𝛾1 − �̃�2𝛾2) + 𝜆𝛾2

′𝛾2(8) 
We get the given equation after minimizing the equation 8 with respect to 𝛾2  

𝛾2 = (�̃�2
∗′

�̃�2
∗

+ λI𝑝−1)−1�̃�2
∗′

𝑦ℎ   (9) 
where �̃�2

∗
= 𝑀1�̃�2  and 𝑀1 = 𝐼𝑇 − �̃�1(�̃�1

′
�̃�1)′�̃�1

′ . Equation (9) will become the 
unrestricted OLS estimator if λ = 0. Same type of resulting form can be received from the 
equation (1) by taking the sum of square of residuals and minimization with respect to the 
𝛽1, 𝛽2, … , 𝛽𝑝.  The equation (1) can be written in the form of  

𝑦ℎ = 𝑋𝛽 + 𝜀 ,  𝜀~(0, 𝜎2𝐼𝑛) (10) 
where 𝑦ℎ  is a dependent variable (LF) variable and 𝑋  is the matrix of HF variable at 
different time-period ℎ.  
In MIDAS for standardized variable,  𝑟 = 𝑋′𝑦ℎ  𝑤ℎ𝑒𝑟𝑒𝑎𝑠 𝐶 = 𝑋′𝑋, denote the vector of 
correlation between LF and HF and correlation matrix of the HF regressors, respectively.  
Then the unrestricted OLS for the MIDAS corresponds to minimize the sum of square of 
deviations  
𝑆2 = ‖𝜀‖2 = (𝑦ℎ − 𝑋𝛽)

′
(𝑦ℎ − 𝑋𝛽) = 1 − 2𝛽′𝑟 + 𝛽′𝐶𝐵,   (11) 

If we minimize equation (11) with respect to vector of 𝛽, then it can be written as 
𝐶𝛽 = 𝑟,    (12) 

with the solution of equation (12) 
�̂� = 𝐶−1𝑟,   (13) 
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Equation (13) is a simple OLS estimator for the regression coefficient estimates, 
𝑅2 = 1 − 𝑆2 = 𝛽′𝑟 = 𝛽′𝐶𝛽 (14) 

whereas, we can represent the equation (12) relation as 
𝑋′𝜀 = 0   (15) 

We can derive the ridge estimator (Hoerl and Kennard (1970)) in a usual way and it can be 
written as,  

�̂�𝜆 = (𝐶 + 𝜆𝐼𝑝−1)𝑟.    (16) 
Equation (16) represents the same characteristics as available in equation (9) and it is 
denoted one parameter SLS estimator and this estimator can be treated as ridge estimator. 
This SLS estimator can come-up with lack of quality of fit of regular MIDAS regression. 
By using the Lipovetsky (2006) technique we can generalize the estimator given in 
equation (16) as follows. 

�̂�𝑞(𝜆) =  𝑞(𝑋′𝑋 + 𝜆𝐷′𝐷)𝑋′𝑦ℎ  (17) 
where 

𝐷 = [

1 −2 1 0 . 0
0 1 −2 1 . 0
. . . . . .
0 . . 1 −2 1

] (𝑝 − 1) × (𝑝 + 1) 

𝑦ℎ = [𝑦1+ℎ , 𝑦2+ℎ … , 𝑦𝑇+ℎ]′, 𝑋 = [𝑥1, 𝑥2, … . , 𝑥𝑇], 𝑎𝑛𝑑 𝑥𝑡 = [𝑥𝑡,0, 𝑥𝑡,1, … , 𝑥𝑡,𝑝]  . We 
ignore the constant term 𝛼0  for the simplicity. We will compare the proposed SLS 
estimator with the mentioned Breitung estimator under the MSE criterion. The MSE of the 
𝛽 which is an estimator of 𝛽 will be 

𝑀𝑆𝐸( �̃� ) = 𝐸[(𝛽 − 𝛽)(𝛽 − 𝛽)′] = 𝑉𝑎𝑟(𝛽) + 𝐵𝑖𝑎𝑠(𝛽)𝐵𝑖𝑎𝑠(𝛽)′ 
where 
𝑉𝑎𝑟(𝛽) = 𝐸[(�̃� − 𝛽)(𝛽 − 𝛽)′] 
And 

𝐵𝑖𝑎𝑠(𝛽) = 𝐸(𝛽) −  𝛽 
The scaler mean square error (mse) is obtained applying the trace operator: 
mse(𝛽) = 𝑡𝑟 (𝑉𝑎𝑟(𝛽)) + [𝐵𝑖𝑎𝑠(𝛽)]

′
[𝐵𝑖𝑎𝑠(𝛽)] 

if the two estimators 𝛽1 𝑎𝑛𝑑 𝛽2 are given, 𝛽2is considered to be superior 𝛽1 in the mean of 
MSE criterion if and only if  𝑀𝑆𝐸 (𝛽1) −  𝑀𝑆𝐸 (𝛽2) ≥ 0.  If  𝑀𝑆𝐸 (𝛽1) −  𝑀𝑆𝐸 (𝛽2) is 
a non-negative (n. n. d) definite matrix then mse(𝛽1) −  mse(�̃�2) ≥ 0,  proved by 
Theobald (1974). The reverse condition can’t necessarily hold true. Consequently, on the 
basis of this, MSE criterion is considered to be stronger and comparison on the basis of 
MSE criterion can be more appropriate. 

2.2 Comparison of two estimators 

In this subsection we will compare SLS estimator with our two-parameter proposed 
estimator.  By considering the spectral decomposition of  
decomposition of 𝐶 = 𝑃Λ𝑃, where Λ is a diagonal matrix whose diagonal elements are 
eigen values of 𝑋′𝑋 matrix and 𝑃 is 𝑝 × 𝑝 matrix whose elements are the eigenvectors of  
𝑋′𝑋 matrix, then the, OLS, SLS and our proposed estimators can be written as  

�̂� = (𝑃Λ−1𝑃′)𝑟,     (18) 
𝛽(𝜆) = (𝑃Λ𝑃′ + 𝜆𝐷𝐷′)−1𝑟,   (19) 
𝛽𝑞(𝜆) = 𝑞(𝑃Λ𝑃′ + 𝜆𝐷𝐷′)−1𝑟.   (20) 

Then the MSE of these estimators will be  
𝑀𝑆𝐸(�̂�) = 𝜎2 𝑃Λ−1𝑃′,    (21) 
𝑀𝑆𝐸(𝛽(𝜆)) = 𝜎2 𝐺𝜆 + [𝐵𝑖𝑎𝑠(𝛽𝜆)]

′
[𝐵𝑖𝑎𝑠(𝛽𝜆)],  (22) 
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𝑀𝑆𝐸(𝛽𝑞(𝜆)) = 𝑞2𝜎2 𝐺𝜆 + [𝐵𝑖𝑎𝑠 (𝛽𝑞(𝜆))]
′

[𝐵𝑖𝑎𝑠 (𝛽𝑞(𝜆))],  (23) 
whereas we define,  
𝐺𝜆 = (𝑃Λ𝑃′ + 𝜆𝐷𝐷′)′𝑃ΛP′(𝑃ΛP′ + 𝜆𝐷𝐷′)−1 ,𝐵𝑖𝑎𝑠 (𝛽(𝜆)) =  −𝜆(𝑃Λ𝑃′ + 𝜆𝐷𝐷′)𝛽  and 

𝐵𝑖𝑎𝑠 (𝛽𝑞(𝜆)) = [𝑞(𝑃ΛP′ + 𝜆𝐷𝐷′)−1𝑃ΛP′ − 𝐷𝐷′] 𝛽. 
Furthermore, we will compute the smoothing parameter 𝜆 by minimizing the AIC (see., 
Breitung and Rolling (2015)) and whereas we will compute the additional parameter 𝑞 
optimal by minimizing MSE of the estimator with respect to 𝑞. 
Furthermore, for selection criteria, we can say that the matrix Λ = 𝑑𝑖𝑎𝑔(𝑘1, … . , 𝑘𝑝) is 
diagonal matrix whose diagonal elements are the eigenvalues of 𝑋𝑋′  and 𝑇  be 𝑝 × 𝑝 
matrix whose elements are the eigenvectors of matrix 𝑋𝑋′ fulfilling  𝑇′𝑋𝑋′𝑇 = Λ, T′𝑇 =
𝐷𝐷′. Afterwards, the original model can be written in canonical form 

𝑦ℎ = 𝑍𝛼 + 𝜀𝑡+ℎ     (24) 
where 𝑍 = 𝑋𝑇, 𝛼 = 𝑇′𝛽 𝑎𝑛𝑑 𝑍′𝑍 = 𝑇′𝑋𝑋′𝑇 = Λ.  Then, �̂�𝑞(𝜆) = 𝑇′𝛽𝑞(𝜆)  and 
𝑀𝑆𝐸 (�̂�𝑞(𝜆)) = 𝑇′𝑀𝑆𝐸(𝛽𝑞(𝜆))𝑇, then the MSE of the estimator �̂�𝑞(𝜆) can be written as  

𝑀𝑆𝐸 (�̂�𝑞(𝜆)) =  𝑞2𝜎2(Λ + 𝜆𝐷𝐷′)−1Λ(Λ + 𝜆𝐷𝐷′)−1

+ [𝑞(Λ + 𝜆𝐷𝐷′)−1Λ − 𝐷𝐷′]𝛼𝛼′[𝑞(Λ + 𝜆𝐷𝐷′)−1Λ − 𝐷𝐷′]′ 
We can get the optimal values of the 𝜆 and 𝑞, by minimizing the above equation with 
respect to 𝜆 and 𝑞, respectively.  

3. Design of experiment, simulation and estimation performance  
In this section, we will compare the small sample properties of nonparametric variant of 
SLS estimator and two parameter SLS estimators of the MIDAS regression. For 
comparative study, we generate data similarly to the Andreou et al., (2010) given as 

𝑦𝑡+ℎ = 𝛽0 + ∑ 𝛽𝑗𝑥𝑡,𝑗
𝑝
𝑗=0 + 𝜀𝑡+ℎ (25) 

𝛽𝑗 = 𝛼1𝜔𝑗(𝜃)   (26) 
𝜀𝑡+ℎ~N𝑖𝑖𝑑(0,0.125)  (27) 

where 𝑡 = 1,2, … , 𝑇 , 𝛽0 = 0.5, 𝑎𝑛𝑑 𝜔𝑗(. )is a weighting function which can be chosen in 
several specifications, details are presented below. The high frequency regressor is 
generated by the 𝐴𝑅(1) process given below 

𝑥𝑡,𝑗 = 𝛼0 + 𝜚𝑥𝑡,𝑗−1 + 𝜀𝑗,𝑡,  𝜀𝑗,𝑡~𝑖𝑖𝑑 𝑁(0,1)  (28) 
where 𝑗 = 0,1, … . , 𝑝, 𝑥𝑡,𝑗−𝑝−𝑘 = 𝑥𝑡−1,𝑗−𝑘  for all 𝑘 > 0. Correspondingly,  𝑥𝑡,𝑗  denotes 
the 𝑗𝑡ℎ lag of the 𝐴𝑅(1) series 𝑥𝑡,0. As suggested by Andreou et al., (2010), we will take 
𝛼0 = 0.5 and 𝜚 = 0.9. 
We choose  𝑇 ~{100,200,400} different sample sizes and high frequencies lags are 𝑝 +
1~{20,40,60}. The scale parameter given in equation (10) is chosen as 𝛼1~(0.2, 0.3, 0.4), 
respectively to model of small, medium and large signal to noise ratio. Furthermore, we 
replicated this experiment 5000 times by considering the Monte Carlo simulation.  
At first step, we selected the different functions and respective equations are given in the 
next section. At second step, we considered the ratio of mean MSE of boosted two 
parameter SLS estimator nonparametric approach with the SLS estimator nonparametric 
approach.  Assuming the SLS nonparametric approach superiority on the usual parametric 
approach we only compared the SLS with the boosted two parameter SLS nonparametric 
approach. The ratio given in the Table 1 illustrates that two-parameter estimator is more 
superior and perform better than the SLS. Further, results can be verified in Table 1. 
3.1. Results 
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All of the analysis Monte Carlo Simulation we considered a lag distribution that fits into 
the nonparametric and parametric MIDAS framework equally (Breitung and Roling, 2015). 
First experiment was conducted by using the exponentially weight function with  

𝜔𝑗(𝜃) =
exp (𝜃1𝑗 + 𝜃2𝑗2)

∑ exp (𝜃1𝑖 + 𝜃2𝑖2)𝑝
𝑖=0

, 𝑗 = 0,1 … 𝑝 

where we follow Andreou et al., (2010) and set 𝜃1 = 7 × 10−4 and 𝜃2 = −6 × 10−3. The 
Table 1 shows the MSE ratio of the proposed nonparametric SLS estimator with an 
additional parameter relative to the SLS estimator.     
We done the second experiment by considering the hump shaped weight give as  

𝜔𝑗(𝜃) =
exp (𝜃1𝑗 + 𝜃2𝑗2)

∑ exp (𝜃1𝑖 + 𝜃2𝑖2)𝑝
𝑖=0

, 𝑗 = 0,1 … 𝑝 

We govern the parameter such that the weighting function reaches maximum at 𝑗 = 6, 𝑗 =
10, 𝑗 = 16, when lags are 20, 40 and 60 lags are retained, respectively. We chosen 𝜃1 =

8 × 10−2 𝑎𝑛𝑑 𝜃2 =
𝜃1

10
, 𝜃2 =

𝜃1

20
, 𝑎𝑛𝑑 𝜃2 =

𝜃1

30
, respectively.  

The third experiment is run by utilizing the sign changing weight function given as 
  

𝜔𝑗(𝑐1, 𝑐2) =
𝑐1

𝑝 + 1
[sin(𝑐2 +

𝑗2𝜋

𝑝
)] 

Where 𝑐2 = 1 × 10−2, 𝑐1 = 5, 𝑐1 = 2.5, 𝑎𝑛𝑑 𝑐1 =  5/3 , for the lags 20, 40, and 60 
respectively, we the constraint that these weights sum to unity.  
Table 1: In sample MSE ratios  

High frequency lags  𝒑 + 𝟏 = 𝟐𝟎 𝒑 + 𝟏 = 𝟒𝟎 𝒑 + 𝟏 = 𝟔𝟎 
Exp. declining weights 

𝐦𝐬𝐞(�̂�𝒒(𝝀))/MSE(𝑺𝑳𝑺𝟏) T 𝛼1

= 0.2 
𝛼1

= 0.3 
𝛼1

= 0.4 
𝛼1

= 0.2 
𝛼1

= 0.3 
𝛼1

= 0.4 
𝛼1

= 0.2 
𝛼1

= 0.3 
𝛼1

= 0.4 
100 0.7271 0.6172 0.6021 0.7212 0.7023 0.5023 0.8223 0.7523 0.7012 
�̂�𝒐𝒑𝒕 12.23 8.2402 6.7200 5.960 4.960 2.1300 4.3211 3.2111 2.1601 
AIC 2.555 1.640 2.7500 2.540 1.630 1.7401 2.542 1.542 0.740 
200 0.8231 0. 

8112 0.8004 0.9312 0.8921 0.8108 0.9024 0.9016 0.8015 

�̂�𝒐𝒑𝒕 8.230 7.250 5.380 3.250 5.510 1.5401 1.2301 1.2012 1.430 
AIC 2.230 3.121 2.450 2.230 1.455 2.440 2.220 1.335 1.311 
400 0.2561 0.2667 0.3222 0.3562 0.3210 0.3001 0.2901 0.2871 0.341 
�̂�𝒐𝒑𝒕 6.600 2.140 2.510 5.660 6.320 4.120 5.519 5.001 2.791 
AIC 2.920 2.031 1.150 2.920 1.020 1.004 2.920 3.021 3.140 

Humped-shaped weights 

𝐦𝐬𝐞(�̂�𝒒(𝝀))/MSE(𝑺𝑳𝑺𝟏) 100 0.2830 0.2139 0.2097 0.367 0.2012 0.2311 0.1778 0.450 0.026 
�̂�𝒐𝒑𝒕 16.280 13.210 11.390 17.25 11.000 8.170 12.070 10.520 8.460 
AIC 1.555 1.640 1.750 2.540 2.630 2.740 3.542 2.542 1.740 
200 0.180 0.190 0.130 0.190 0.170 0.160 0.210 0.130 0.120 
�̂�𝒐𝒑𝒕 18.99  17.620 15.740 15.74 10.49 17.74 10.85   8.690 17.92 
AIC 2.23 2.231 2.456 2.235 3.352 2.441 2.221 1.325 2.441 
400 0.201 0.180 0.170 0.234 0.420 0.420 0.512 0.53 0.440 
�̂�𝒐𝒑𝒕 17.92  15.34 14.30 19.885  17.42 15.33 10.11 17.69 16.17 
AIC 2.921 3.031 3.150 5.920 4.020 3.140 3.920 3.021 3.140 

Sign-changing weights 

𝐦𝐬𝐞(�̂�𝒒(𝝀))/MSE(𝑺𝑳𝑺𝟏) 100 0.950 0.931 1.431 1.391 1.155 0.980 0.980 0.981 0.954 
�̂�𝒐𝒑𝒕 1.131 2.610 1.011 1.021 1.312 1.101 1.501 1.141 1.053 
AIC 1.556 1.640 1.750 1.540 2.630 2.740 2.542 2.542 2.742 
200 0.981 0.661 1.100 0.762 0.730 0.791 0.637 0.508 0.410 
�̂�𝒐𝒑𝒕 1.031 1.011 1.101 1.942 1.231 1.150 3.000 3.000 2.000 
AIC 1.439 1.431 1.654 1.530 1.590 1.540 1.235 3.325 2.441 
400 0.701 1.710 2.021 0.261 0.123 0.745 0.191 0.147 0.360 
�̂�𝒐𝒑𝒕 2.321 2.079 2.021 2.163 2.224 1.511 2.460 2.123 2.201 
AIC 3.4224 2.8403 3.256 3.425 3.860 4.222 3.121 4.861 4.260 

 
Note: The entries are the MSE ratios of nonparametric two parameter SLS estimator relative to the nonparametric SLS 
estimator . Data are generated according to the equation 25-28. Both of the estimators are computed by minimal choice of 
smoothing parameter 𝜆 by using the Breitung and Roling (2015), modified AIC technique. The number of replications is 
5000. 
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The results of Table 1 are summarized as follows. First, the proposed nonparametric SLS 
estimator with an additional parameter 𝑞  evidently dominates the SLS nonparametric 
approach in-sample estimation for all the weights function. It is evidently noted that, 
proposed SLS estimator outperformed the SLS estimator in sample estimation in hump 
shaped weight function. For the hump shaped weights, the proposed SLS estimator yields 
more accurate estimates and less MSE.  
Concerning the exponentially declining weights, the performance of the nonparametric 
MIDAS approach also improves as the sample size 𝑇 increases which is for sure expected. 
The same is applicable for all the weight functions, except some point in sign changing 
weights, where nonparametric approach with SLS estimator evidently dominates when the 
sample size was 200. One thing we more noted that, larger value of �̂�𝑜𝑝𝑡  yields more 
efficient results. But from the result in Table 1, it is noted that as the sample size increased, 
we can see the decline in the �̂�𝑜𝑝𝑡 value. We believe that the for large sample size �̂�𝑜𝑝𝑡 will 
be equal to 1 and proposed estimator can be equal to the SLS estimator at some point. In 
these results, we adopted the same criteria by minimizing the AIC similar to Breitung and 
Roling (2015), nonparametric approach.  
In Table 1, we were concerned for estimating the weights 𝛽𝑗  in equation (26) and we 
observed the domination of the proposed SLS estimator in-sample estimation. Now at next 
step, we move to evaluate the accuracy of out-of-sample forecast made by the 
nonparametric, by using the SLS and proposed SLS estimator in the sample model. For 
this, we partitioned the whole sample into in sample estimation, comparing observation 
1,2, … . 𝑇𝑒 , and a forecasting sample consisting of observation 𝑇𝑒 + 1,2, … 𝑇 . In this 
exercise we set 𝑇𝑒 = 𝑇/2.  
The estimation sample is used to achieve a baseline estimate of the weights 𝛽𝑗 from the 
sample as follows 

�̂�𝑡+ℎ = ∑ �̂�𝑗⋮𝑇0
𝑥𝑡,𝑗 + �̂�𝑡+ℎ ,

𝑝

𝑗=0

𝑓𝑜𝑟 𝑡 = 1, … . 𝑇𝑒  

Whereas the given baseline estimates, one step ahead forecast of the target variable 
(dependent variable) is given as 

�̂� 𝑇𝑒 + 1 ⋮  𝑇𝑒 = ∑ �̂�𝑗⋮𝑇𝑒𝑥𝑇𝑒 , 𝑗

𝑝

𝑗=0

 

We then include the next period in the estimation sample while dropping the first period, 
the with the same model and we obtain the next one-step- ahead forecast.  
4. Empirical application: Forecasting the Monthly Brent crude oil price by 

using the daily AMEX oil Index 

Daily predictors 
Crude oil is a type of energy and chemical material source, plays vital role in global 
commodity market and in the expansion of worldwide economy. In modern years, 
relationship between crude oil markets and stock markets has appealed extensive attention, 
and it is proved by the large number of studies that crude oil markets are attentively related 
to the stock markets; see e.g., (Wang and Liu, 2016; Pan et al; 2016;  Broadstock and Filis, 
2014; Mensi et al., 2013; Creti et al., 2013; Du and He, 2015) .  
In our empirical application, we mentioned earlier we emphasis on the most reliable daily 
indicator stock market indices. In the empirical literature, due to close associations between 
crude oil market and stock markets, an enormous number of scholars use stock market 
indices information to forecast crude oil prices see (Guglielmo et al., 2015; Chen, 2014; 
Liu et al., 2015).  Recently, Zhang and Wang (2019), forecasted the WTI and Brent crude 
oil prices monthly (LF variable) on the basis of daily and weekly (HF variable) of four 
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stock markets indices. Amex Oil indices daily indicator was remained the superior indices 
to forecast the crude oil price. 
In our empirical exploration, we therefore focus on the Amex oil indices as a daily 
predictors of crude oil price. We thus examine the predictive power of the crude oil prices 
employing the SLS (non-parametric) and two parameters proposed SLS MIDAS 
framework.   
4.1 Preliminary analysis In-sample results of MIDAS regressions 
 The target variable is the monthly Brent crude oil price, ranged from May 1993 to March 
2017 and our daily predictor is the Amex oil stock index.  Amex oil stock index high 
frequency predictor was used to forecast the Brent crude oil (Zhang and Wang, 2019). They 
suggested that the, Amex oil stock index (daily predictor) is superior and powerful 
predictor as compare to all other index for predicting the Brent crude oil price (LF variable). 
During these analyses. we observed that the number of daily observations in a month was 
not consistent, months have had different lags (from 28 up to 31 days) and some 
observation was missing due to different holidays, and weekends. We judged the number 
of observation ranges from 18 to 22. As we don’t have thumb rule to resolve this problem, 
earlier researcher solved these in different ways. Andreou et al., (2013) considered the 22 
trading days in a month for checking the predictive power of financial time series models. 
So, we fixed the 18 observations in a month, we run the model after estimating the missing 
observation by linear interpolation methods. Table 2 represents the estimation results of 
for the parametric MIDAS regression using the Amex oil stock index as the predictor 
 where  

𝜔𝑗(𝜃) =
exp (𝜃1𝑗 + 𝜃2𝑗2)

∑ exp (𝜃1𝑖 + 𝜃2𝑖2)𝑝
𝑖=0

 

The estimated parameter for forecast horizon ℎ = 1 and lag lengths 𝑝 𝜖 {10, 20, 40, 60} 
are reported along with their t-statistics. Excitingly, a low 𝑅2 for the 0.037 reported for the 
Amex index daily predictor for lag length 10, Whereas, the  𝑅2 is increased as the lag 
length increased, which shows that the daily Amex stock index is useful predictor to 
forecast the Brent crude oil prices. Unrestricted OLS estimation and simulation results 
already suggests using the hump shaped weight function, and the nonparametric one 
parameter SLS estimator, and two parameter SLS estimator smooth out these erratic 
unrestricted estimates.  
Table 2. In sample estimation of MIDAS regression: 𝑦𝑡+ℎ = 𝛼0 +
𝛼1 ∑ 𝜔𝑗(𝜃)𝑥𝑡−𝑗 + 𝑢𝑡+ℎ

𝑝
𝑗=0  

 𝒑 + 𝟏 = 𝟏𝟎 p+1=20 p+1=40 p+1=60 

𝜶𝟎 150.9 
(5.459) 

152.9 
(5.553) 

153.1 
(5.566) 
 

153.4 
(5.570) 

𝜶𝟏 0.0321 
(4.352) 

0.0425 
(5.594) 

0.0559 
(0.218) 

0.1057 
(13.92) 

𝜽𝟏 131.5 
(0.002) 

80.14 
(0.322) 

80.37 
(0.393) 

80.42 
(0.652) 

𝜽𝟐 -6.629 
(-0.002) 

-2.2679 
(-0.319) 

-2.275 
(-0.390) 

-2.280 
(-0.647) 

𝑹𝟐(𝑺𝑳𝑺) 0.03789 0.0986 0.1743 0.2935 
𝑹𝟐(𝑷𝒓𝒐𝒑𝒐𝒔𝒆𝒅 𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒐𝒓) 0.03959 0.1197 0.2034 0.3512 

 

4.3 Out of Sample Forecast 
Out of sample forecast by Kuzin et al. (2009), strategy is executed to direct forecast the 
monthly crude oil prices on the bases of Amex oil index daily predictor. For this approach, 
we regress the future values of the dependent variable (mathematically denoted as 𝑦𝑡+ℎ ) 
on current or past values of the regressor. We now crack to forecast monthly Brent crude 
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oil prices of the market. First step, we split the sample into an estimation sample 𝑡 =
1, … … , 𝑇𝑒   and a forecasting sample 𝑡 = 𝑇𝑒 + 1, … … 𝑇, where 𝑛𝑓 = 𝑇 − 𝑇𝑒  denote the 
number of forecast. The estimation sample runs from May 1993 to December 2012, and 
the forecasting exercising executed from January 2013 to March 2017. We assess forecasts 
according to the root mean squared forecast error.  
Table 3 shows the forecasting accuracy of the usual nonparametric SLS estimator relative 
to the proposed two parameter SLS estimator for different choice of lag lengths. From the 
Table 3, it can be observed that the proposed two parameter SLS estimator produces more 
accurate forecast as compare to the usual nonparametric SLS estimator for the MIDAS 
regression with small RMSE value .  All of the forecast were uninformative provided that 
the RMSE is close to the estimated standard deviation (80.02) of the target variable (Brent 
crude oil prices).   
Table 3: Out of sample forecast comparison 

horizon  𝒑 + 𝟏
= 𝟏𝟎 

p+1=20 p+1=40 p+1=60 

1 𝑹𝑴𝑺𝑬(𝑺𝑳𝑺) 79.50 79.66 79.36 78.69 
𝑹𝑴𝑺𝑬(𝑷𝒓𝒐𝒑𝒐𝒔𝒆𝒅) 79.48 79.36 79.11 77.78 

 

5. Conclusion 
Now a days, MIDAS regression is widely used in financial time series models. In Midas 
regression, we have to combine the LF and HF variables at different frequencies, and it can 
induce the difficulty and unreliable results while estimating the autoregressive lag 
distribution where LF observations are considered as an effective sample size. By 
considering the nonparametric SLS estimator (Breitung and Rolling (2015)) that gives the 
advantage over the usual NLS estimator because of its smoothness. But this estimates can 
lose predicting power when we have larger lag length, we proposed an alternative estimator 
with an additional parameter 𝑞, and we choose the MSE as a performance criteria to verify 
its utility over SLS estimator. Monte Carlo simulation and real application suggests that 
the our proposed estimator with and additional parameter substantially produces the lower 
MSE as compare to the usual SLS estimator. To assess the predictive power of daily 
indicators for the Brent Crude oil prices, applied nonparametric SLS estimator and 
proposed SLS estimator to a sample of 24-year data. It turns out that Amex Index is a useful 
one-month-ahead forecast predictor for the Brent crude oil prices. The estimated lag 
distribution covers around 30 days and is hump shaped with a maximum 6 to 9 lags.    
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