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Abstract 

In this paper, we consider the estimation of the parameter (𝛽) in a classical linear 
regression model by combining the ridge and Liu estimators. The biased and almost 
unbiased two-parameter estimators are proposed. The necessary and sufficient conditions 
for the superiority of the proposed estimators over the existing estimators in terms of matrix 
mean squared error are derived. Besides, we suggest the algorithm for choosing the 
shrinkage parameters (𝑘 & 𝑑) for newly developed estimators. The performance of the 
estimators is gauged through Monte Carlo simulation and empirical application. 

Key Words: Linear regression model, Multicollinearity, Ridge regression estimator, 
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1. Introduction 

The ordinary least squares estimator (OLSE) is used to estimate the unknown regression 
coefficients in the classical linear regression model (CLRM). Multicollinearity causes 
inflated variance in the model, thus making the OLSE unstable in the sense that these are 
very sensitive to minor changes in the model. Therefore, Hoerl and Kennard (1970) 
suggested the ridge regression estimator (RRE) minimize this problem by reducing the 
estimator’s variance with the cost of accepting (a small) bias. Estimating the optimal ridge 
parameter k is a crucial issue for practitioners in the RRE. See, for instance, the following 
approaches to choose k; McDonald and Galarneau (1975), Gibbon (1981), Kibria (2003), 
Månsson et al. (2010), Lukman et al. (2017) Saleh et al. (2019), Amin et al. (2020) and 
among others. Many other directions have been taken in the literature to improve the RRE 
suggested by Hoerl and Kennard (1970). One method was proposed by Liu (1993), which 
is known as Liu regression estimator (LRE). Its main advantage over the RRE is that it is 
a linear function of the shrinkage parameter. Kaçiranlar et al. (1999) improved Liu’s 
approach and introduced a restricted Liu estimator. Akdeniz and Erol (2003) compared 
some biased estimators in the linear regression in the sense of matrix mean squared error 
(MMSE). By combining the mixed estimator and the Liu estimator, Hubert and Wijekoon 
(2006) proposed the stochastic restricted Liu estimator, which outperforms Liu estimator 
and mixed estimator under certain conditions. 

The primary aim of this article is to introduce a new two-parameter estimator that provides 
an alternative method to mitigate the problem of multicollinearity in the CLRM. This new 
method encompasses OLSE and RRE as exceptional cases. We also introduce an almost 
unbiased two-parameter estimator. We compare the MMSE properties analytically and 
prove the superiority of our new methods under certain conditions. Then, we show the 
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superiority of the proposed estimator in finite samples using a Monte Carlo simulation 
study. Finally, we apply the methods on chemometric application. Regression models are 
widely used in chemistry to build efficient and robust prediction models. In the 
chemometric application, we use the classical Portland cement data that was also analyzed 
by Lukman et al. (2019). This example models the heat evolved after 180 days of curing 
cement, measured in calories per gram of cement by four highly correlated variables. 

2. Model specification and the estimators 

To describe the problem, we consider the following CLRM: 
𝑌 = 𝑋𝛽 + 𝜀,      (1) 

where 𝑌 is an (𝑛 × 1) vector of observations on the response variable, 𝑋 is an (𝑛 × 𝑝) full 
ranked design matrix consisting of the explanatory variables, 𝛽 is an (𝑝 × 1) a column 
vector of unknown regression coefficients and 𝜀 is a (𝑛 × 1) vector of random errors 
assumed to be normally distributed with 𝐸(𝜀) = 0 and 𝐸(𝜀𝜀𝑡) = 𝜎2I𝑛 where I𝑛 is an 
(𝑛 × 𝑛) identity matrix. The OLSE of the unknown parametric vector 𝛽 is: 

𝛽̂𝑂𝐿𝑆 = (𝑋𝑡𝑋)−1𝑋𝑡𝑌.     (2) 
In the presence of multicollinearity, the estimated regression coefficient using 𝛽̂𝑂𝐿𝑆 are too 
large in the form of absolute value. Therefore, Hoerl and Kennard (1970) and Liu (1993) 
proposed RRE and LRE as remedy, respectively when ‖𝛽̂𝑂𝐿𝑆‖ is too large in the situation 
of multicollinearity. Furthermore, RRE and LRE have a smaller length than the OLSE, i.e., 
‖𝛽̂𝑅𝑅‖ < ‖𝛽̂𝑂𝐿𝑆‖ and ‖𝛽̂𝐿𝑅‖ < ‖𝛽̂𝑂𝐿𝑆‖. The RRE is obtained by augmenting Eq. (1) with 
0 = 𝑘1/2𝛽 + 𝜀𝑡 to and then use the OLSE and derived following form of the estimator:  

𝛽̂𝑅𝑅 = (𝑋𝑡𝑋 + 𝑘𝐼)−1𝑋𝑡𝑌, (𝑘 > 0)    (3) 

The LRE defined by Liu (1993) as: 
𝛽̂𝐿𝑅 = (𝑋𝑡𝑋 + 𝐼)−1(𝑋𝑡𝑋 + 𝑑𝐼)𝛽̂𝑂𝐿𝑆,    (4) 

where d is known as the Liu parameter and it takes the values between zero and one. Liu 
(1993) obtained 𝛽̂𝐿𝑅 by augmenting 𝑑𝛽̂𝑂𝐿𝑆 = 𝛽 + 𝜀𝑡 to Eq. (1) and then using the OLS 
estimate. Özkale and Kaçiranlar (2007) stated that as k becomes larger for the RRE, the 
distance between 𝑘1/2𝛽 and 0 increases and the RRE have an excessive amount of bias. 
Therefore, Özkale and Kaçiranlar (2007) proposed a two-parameter estimator (TPE) and it 
is defined as follows:  

𝛽̂𝑘𝑑 = (𝑋𝑡𝑋 + 𝑘𝐼)−1(𝑋𝑡𝑋 + 𝑘𝑑𝐼)𝛽̂𝑂𝐿𝑆,  𝑘 > 0, 0 < 𝑑 < 1. (5) 

2.1. Proposed estimators 

The 𝛽̂𝑘𝑑 decreases the bias of RRE, but in the presence of severe multicollinearity, the 
performance of 𝛽̂𝑘𝑑 is still not satisfactory since the value of k may be too small which is 
then further pushed to zero by d. Also, the standard errors of the regression coefficients are 
higher under certain conditions. In many real-world chemometric problems, we expect a 
situation where the multicollinearity is high but imperfect, and the value of the ridge 
parameter 𝑘 becomes too small and the performance of 𝛽̂𝑘𝑑 does not satisfactory. On the 
other hand, for large values of k, 𝛽̂𝑘𝑑 decreases the bias problem but the distance between 
𝑘1/2𝛽 and 0 still increase (sometimes substantially). Therefore, we propose another class 
of two-parameter estimator (KQE) by augmenting Eq. (1) with (

−𝑘𝑑

𝑘1/2) 𝛽̂𝑂𝐿𝑆 = 𝑘1/2𝛽 +

𝜀′, 𝑘 ≥ 0, 0 ≤ 𝑑 ≤ 1, and then apply the OLSE. The advantage of the new estimator over 
the existing estimators is that augmenting equation still gives a better fit by choosing 
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appropriate values of 𝑘 & 𝑑. Also, the proposed estimator will give minimum standard 
errors as compared to the 𝛽̂𝑘𝑑. 

2.1.1. Biased two-parameter estimator 

Following Hoerl and Kennard (1970), Liu (2003), and Kaciranlar et al. (1999), we 
proposed the new estimator as follows. Let 𝛽̂𝑘𝑞 be the new estimator of the vector 𝛽 then 
we derive it from the following function: 
Minimize (𝑌 − 𝑋𝛽̂𝑘𝑞)

𝑡
(𝑌 − 𝑋𝛽̂𝑘𝑞) 

subject to (𝛽̂𝑘𝑞 + 𝑑𝛽̂𝑂𝐿𝑆)
𝑡
(𝛽̂𝑘𝑞 + 𝑑𝛽̂𝑂𝐿𝑆) = 𝓀. 

(𝑌 − 𝑋𝛽̂𝑘𝑞)
𝑡
(𝑌 − 𝑋𝛽̂𝑘𝑞) + 𝑘 {(𝛽̂𝑘𝑞 + 𝑑𝛽̂𝑂𝐿𝑆)

𝑡
(𝛽̂𝑘𝑞 + 𝑑𝛽̂𝑂𝐿𝑆) − 𝓀}. (6) 

The final form of the proposed estimator 𝛽̂𝑘𝑞 (KQE) is defined as: 
𝛽̂𝑘𝑞 = (𝑋𝑡𝑋 + 𝑘𝐼)−1(𝑋𝑡𝑌 − 𝑑𝑘𝛽̂𝑂𝐿𝑆) = Α𝑘𝑞𝛽̂𝑂𝐿𝑆, 𝑘 > 0, 0 ≤ 𝑑 ≤ 1, (7) 

where 𝑘 and 𝑑 are the shrinkage parameters and Α𝑘𝑞 = {𝐼 − 𝑘(1 + 𝑑)(𝑋𝑡𝑋 + 𝑘𝐼)−1}. The 
proposed KQE can also be found as a solution to the linear stochastic restriction problem. 
By considering the prior information for 𝛽 in the form of linear stochastic restriction as 
follows: 

(
−𝑘𝑑

𝑘1/2) 𝛽̂𝑂𝐿𝑆 = 𝑘1/2𝛽 + 𝜀𝑡, 
where 𝑘 and 𝑑 are the shrinkage parameters, 𝜀′ is a (𝑝 × 1) vector of random errors with 
𝐸(𝜀𝑡) = 0, 𝑉𝑎𝑟(𝜀𝑡) = 𝜎2I and 𝐸(𝜀𝜀𝑡) = 0. The 𝛽̂𝑘𝑞 is the KQE which includes the 
following estimators as special cases: 

lim
𝑘→0

𝛽̂𝑘𝑞 = 𝛽̂𝑂𝐿𝑆 = (𝑋𝑡𝑋)−1𝑋𝑡𝑌, the OLSE. 
lim
𝑑→0

𝛽̂𝑘𝑞 = 𝛽̂𝑅𝑅 = (𝑋𝑡𝑋 + 𝑘𝐼)−1𝑋𝑡𝑌, the RRE. 

2.1.2. Almost unbiased two-parameter estimator 

Since unbiasedness is a desirable property in real-world applications, so we derive the 
almost unbiased two-parameter estimator (AUKQE) with adjustment for the bias of the 
𝛽̂𝑘𝑞. The bias of 𝛽̂𝑘𝑞 is: 

Bias(𝛽̂𝑘𝑞) = −𝑘(1 + 𝑑)(𝑋𝑡𝑋 + 𝑘𝐼)−1𝛽. 
Based on the bias of 𝛽̂𝑘𝑞, it is possible to derive the AUKQE, 𝛽̂𝑎𝑢𝑘𝑞 

𝛽̂𝑎𝑢𝑘𝑞 = 𝛽̂𝑘𝑞 − Bias(𝛽̂𝑘𝑞) = 𝛽̂𝑘𝑞 + 𝑘(1 + 𝑑)(𝑋𝑡𝑋 + 𝑘𝐼)−1𝛽. 
The AUKQE may now be defined by following the methods in Ohtani (1986) where the 
parameter vector 𝛽 is replaced with the KQE, 𝛽̂𝑘𝑞 as follows: 

𝛽̂𝑎𝑢𝑘𝑞 = 𝛽̂𝑘𝑞 + 𝑘(1 + 𝑑)(𝑋𝑡𝑋 + 𝑘𝐼)−1𝛽̂𝑘𝑞. 
The final form of the AUKQE is defined as 

𝛽̂𝑎𝑢𝑘𝑞 = (2𝐼 − 𝐴𝑘𝑞)𝐴𝑘𝑞𝛽̂𝑂𝐿𝑆.    (8) 
 
 

3. The MMSE properties 

This section explains the necessary and sufficient conditions for the superiority of the 
proposed estimators over the existing estimators in the sense of MMSE. In addition, we 

 
1707



 

 

illustrate the bias comparison between the KQE and the AUKQE. The MMSE of an 
estimator 𝛽̂ of 𝛽 can be defined as 

𝑀𝑀𝑆𝐸(𝛽̂) = 𝐸(𝛽̂ − 𝛽)
𝑡
(𝛽̂ − 𝛽) = 𝐶𝑜𝑣(𝛽̂) + 𝐵𝑖𝑎𝑠(𝛽̂){𝐵𝑖𝑎𝑠(𝛽̂)}

𝑡
,  (9) 

where 𝐶𝑜𝑣(𝛽̂) is represent the covariance matrix of 𝛽̂ and 𝐵𝑖𝑎𝑠(𝛽̂) = 𝐸(𝛽̂) − 𝛽 is the bias 
vector. The MMSE of OLSE, RRE, LRE, TPE, KQE and AUKQE is defined as 

𝑀𝑀𝑆𝐸(𝛽̂𝑂𝐿𝑆) = 𝜎2(𝑋𝑡𝑋)−1.     (10) 

𝑀𝑀𝑆𝐸(𝛽̂𝑅𝑅) = 𝜎2𝐴𝑅𝑅(𝑋𝑡𝑋)−1(𝐴𝑅𝑅)𝑡 + (𝐴𝑅𝑅 − 𝐼)𝛽𝛽𝑡(𝐴𝑅𝑅 − 𝐼)𝑡, (11) 

𝑀𝑀𝑆𝐸(𝛽̂𝐿𝑅) = 𝜎2𝐴𝐿𝑅(𝑋𝑡𝑋)−1(𝐴𝐿𝑅)𝑡 + (𝑑 − 1)2(𝑋𝑡𝑋 + 𝐼)−1𝛽𝛽𝑡{(𝑋𝑡𝑋 + 𝐼)−1}𝑡,(12) 

𝑀𝑀𝑆𝐸(𝛽̂𝑘𝑑) = 𝜎2𝐴𝑘𝑑(𝑋𝑡𝑋)−1(𝐴𝑘𝑑)𝑡 + 𝑘2(𝑑 − 1)2(𝑋𝑡𝑋 + 𝑘𝐼)−1𝛽𝛽𝑡{(𝑋𝑡𝑋 +

𝑘𝐼)−1}𝑡, (13) 

𝑀𝑀𝑆𝐸(𝛽̂𝑘𝑞) = 𝜎2𝐴𝑘𝑞(𝑋𝑡𝑋)−1(𝐴𝑘𝑞)
𝑡

+ (𝐴𝑘𝑞 − 𝐼)𝛽𝛽𝑡(𝐴𝑘𝑞 − 𝐼)
𝑡. (14) 

𝑀𝑀𝑆𝐸(𝛽̂𝑎𝑢𝑘𝑞) = 𝜎2(2𝐼 − 𝐴𝑘𝑞)𝐴𝑘𝑞(𝑋𝑡𝑋)−1{(2𝐼 − 𝐴𝑘𝑞)𝐴𝑘𝑞}
𝑡

+ 

(𝐼 − 𝐴𝑘𝑞)
2

𝛽𝛽𝑡 {(𝐼 − 𝐴𝑘𝑞)
2

}
𝑡
.   (15) 

 
where 𝐴𝑅𝑅 = {𝐼 + 𝑘(𝑋𝑡𝑋)−1}−1, 𝐴𝐿𝑅 = (𝑋𝑡𝑋 + 𝐼)−1(𝑋𝑡𝑋 + 𝑑𝐼), 𝐴𝑘𝑑 = (𝑋𝑡𝑋 +
𝑘𝐼)−1(𝑋𝑡𝑋 + 𝑘𝑑𝐼) and (𝐴𝑅𝑅 − 𝐼) = −𝑘(𝑋𝑡𝑋 + 𝑘𝐼)−1. 

Let 𝛽̂1 and 𝛽̂2 be the two estimators of 𝛽, the estimator 𝛽̂2 is said to be superior to the 
estimator 𝛽̂1 if and only if 

Θ =  𝑀𝑀𝑆𝐸(𝛽̂1) − 𝑀𝑀𝑆𝐸(𝛽̂2) ≥ 0.    (16) 
We define a variety of lemmas to illustrate the MMSE properties of the proposed 
estimators: 
Lemma 1: Let 𝛽̂𝑗 = 𝒜𝑗𝓎, 𝑗 = 1,2 be the two competing estimators of 𝛽. Suppose Θ =

Cov(𝛽̂1) − 𝐶𝑜𝑣(𝛽̂2) > 0, where 𝐶𝑜𝑣(𝛽̂𝑗), 𝑗 = 1,2 denotes the covariance matrix of 𝛽̂𝑗. 
Then Θ(𝛽̂1, 𝛽̂2) =  𝑀𝑀𝑆𝐸(𝛽̂1) − 𝑀𝑀𝑆𝐸(𝛽̂2) ≥ 0 ⇔ 𝑏2

𝑡( 𝜎2Θ + 𝑏1𝑏1
𝑡)−1𝑏2 ≤ 1, where 

𝑏𝑗 denote the bias vector of 𝛼̂𝑗, 𝑗 = 1,2. 
Proof: See Trenkler and Toutenburg (1990) for more details. 
Lemma 2: Let M (𝑀 > 0) be a positive definite (p.d.) matrix, 𝛼 be a vector of nonzero 

constants, then 𝑀 − 𝛼𝛼𝑡is a non-negative definite (n.n.d.) matrix if and only if 𝛼𝑡𝑀−1𝛼 ≤
1. 

Proof: See Farebrother (1976) for more details. 

Theorem 1: Let 𝑘 > 0 and 0 ≤ 𝑑 ≤ 1 under the CLRM with correlated regressors, the 

𝛽̂𝑘𝑞 is superior to the 𝛽̂𝑂𝐿𝑆 in the MMSE sense, namely, Θ(𝛽̂𝑘𝑞, 𝛽̂𝑂𝐿𝑆), if and only if 

𝛽𝑡(𝐴𝑘𝑞 − 𝐼)
𝑡
[𝑀1]−1(𝐴𝑘𝑞 − 𝐼)𝛽 ≤ 𝜎2, where 𝑀1 = {(𝑋𝑡𝑋)−1 − 𝐴𝑘𝑞(𝑋𝑡𝑋)−1(𝐴𝑘𝑞)

𝑡
}. 

 Proof: From Eq. (10) and Eq. (13), we find the difference between MMSEs as 
Θ1 = Θ(𝛽̂𝑂𝐿𝑆, 𝛽̂𝑘𝑞) = 𝑀𝑀𝑆𝐸(𝛽̂𝑂𝐿𝑆) − 𝑀𝑀𝑆𝐸(𝛽𝑘𝑞)     

= 𝜎2 {(𝑋𝑡𝑋)−1 − 𝐴𝑘𝑞(𝑋𝑡𝑋)−1(𝐴𝑘𝑞)
𝑡
} − (𝐴𝑘𝑞 − 𝐼)𝛽𝛽𝑡(𝐴𝑘𝑞 − 𝐼)

𝑡.  (17) 
We rewrite Eq. (17) as: 
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Θ1 = 𝜎2diag {
1

𝜆𝑗
−

(𝜆𝑗 − 𝑘𝑑)
2

(𝜆𝑗 + 𝑘)
2

𝜆𝑗

}

𝑗=1

𝑝

− (𝐴𝑘𝑞 − 𝐼)𝛽𝛽𝑡(𝐴𝑘𝑞 − 𝐼)
𝑡
, 

where 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑝 > 0 are the eigenvalues of the design matrix 𝑋𝑡𝑋. It is clear that 
when 𝑘 > 0 and 0 ≤ 𝑑 ≤ 1, the matrix (𝑋𝑡𝑋)−1 − 𝐴𝑘𝑞(𝑋𝑡𝑋)−1(𝐴𝑘𝑞)

𝑡 is p.d. if 
(𝜆𝑗 + 𝑘)

2
> (𝜆𝑗 − 𝑘𝑑)

2. Therefore, using Lemma 2, Θ1 is n.n.d. if and only if 
𝛽𝑡(𝐴𝑘𝑞 − 𝐼)

𝑡
[𝑀1]−1(𝐴𝑘𝑞 − 𝐼)𝛽 ≤ 𝜎2. 

Theorem 2: Under the CLRM with correlated regressors, if (𝑏𝑘𝑞)
𝑡
[𝑀2]−1𝑏𝑘𝑞 < 1 0 for 

𝑘 > 0 and 0 ≤ 𝑑 ≤ 1, then 𝑀𝑀𝑆𝐸(𝛽̂𝑘𝑑) − 𝑀𝑀𝑆𝐸(𝛽̂𝑘𝑞) > 0, where 𝑏𝑘𝑞 = (𝐴𝑘𝑞 − 𝐼)𝛽 

and 𝑀2 = 𝜎2 {𝐴𝑘𝑑(𝑋𝑡𝑋)−1(𝐴𝑘𝑑)𝑡 − 𝐴𝑘𝑞(𝑋𝑡𝑋)−1(𝐴𝑘𝑞)
𝑡
}. 

Proof: The difference between the MMSE functions of 𝛽̂𝑘𝑑 and 𝛽̂𝑘𝑞 is obtained as 
Θ2 = Θ(𝛽̂𝑘𝑑, 𝛽̂𝑘𝑞) = 𝑀𝑀𝑆𝐸(𝛽̂𝑘𝑑) − 𝑀𝑀𝑆𝐸(𝛽̂𝑘𝑞)      

Θ2 = 𝜎2 {𝐴𝑘𝑑(𝑋𝑡𝑋)−1(𝐴𝑘𝑑)𝑡 − 𝐴𝑘𝑞(𝑋𝑡𝑋)−1(𝐴𝑘𝑞)
𝑡
} + 𝑘2(𝑑 − 1)2(𝑋𝑡𝑋 +

𝑘𝐼)−1𝛽𝛽𝑡{(𝑋𝑡𝑋 + 𝑘𝐼)−1}𝑡 − 𝑏𝑘𝑞𝑏𝑘𝑞
𝑡. (18) 

We can write the expression (18) as; 

= 𝜎2diag {
(𝜆𝑗+𝑘𝑑)

2

𝜆𝑗(𝜆𝑗+𝑘)
2 −

(𝜆𝑗−𝑘𝑑)
2

(𝜆𝑗+𝑘)
2

𝜆𝑗

}
𝑗=1

𝑝

+ 𝑘2(𝑑 − 1)2(𝑋𝑡𝑋 + 𝑘𝐼)−1𝛽𝛽𝑡{(𝑋𝑡𝑋 + 𝑘𝐼)−1}𝑡 −

𝑏𝑘𝑞𝑏𝑘𝑞
𝑡. 

= 𝜎2diag {
4𝜆𝑗𝑘𝑑

𝜆𝑗(𝜆𝑗+𝑘)
2}

𝑗=1

𝑝

+ 𝑘2(𝑑 − 1)2(𝑋𝑡𝑋 + 𝑘𝐼)−1𝛽𝛽𝑡{(𝑋𝑡𝑋 + 𝑘𝐼)−1}𝑡 − 𝑏𝑘𝑞𝑏𝑘𝑞
𝑡. 

Since 𝑏𝑘𝑞𝑏𝑘𝑞
𝑡 is n.n.d., then it is noticeable that (𝐴𝑘𝑑(𝑋𝑡𝑋)−1(𝐴𝑘𝑑)𝑡 −

𝐴𝑘𝑞(𝑋𝑡𝑋)−1(𝐴𝑘𝑞)
𝑡
) + 𝑘2(𝑑 − 1)2(𝑋𝑡𝑋 + 𝑘𝐼)−1𝛽𝛽𝑡{(𝑋𝑡𝑋 + 𝑘𝐼)−1}𝑡 will be p.d. It can 

be easily shown that 𝐶𝑜𝑣(𝛽̂𝑘𝑑) − 𝐶𝑜𝑣(𝛽̂𝑘𝑞) is a p.d. matrix for 𝑘 > 0 and 0 ≤ 𝑑 ≤ 1. 

Hence, we can state that 𝛽̂𝑘𝑞 has a smaller sampling variance and covariance matrix than 
the 𝛽̂𝑘𝑑. Thus, the proof is completed through Lemmas 1 and 2. 

Theorem 3: Let 𝑘 > 0 and 0 ≤ 𝑑 ≤ 1 under the CLRM with correlated regressors, then 

𝑀𝑀𝑆𝐸(𝛽̂𝑅𝑅) − 𝑀𝑀𝑆𝐸(𝛽̂𝑘𝑞) > 0 if 𝛽𝑡(𝐴𝑘𝑞 − 𝐼)
𝑡
[𝑀3]−1(𝐴𝑘𝑞 − 𝐼)𝛽 ≤ 1, where 𝑀3 =

𝜎2 {𝐴𝑅𝑅(𝑋𝑡𝑋)−1(𝐴𝑅𝑅)𝑡 − 𝐴𝑘𝑞(𝑋𝑡𝑋)−1(𝐴𝑘𝑞)
𝑡
}. 

Theorem 4: Let us consider two biased competing estimators, namely 𝛽̂𝐿𝑅 and 𝛽̂𝑘𝑞 of 𝛽. 
If 𝑘 > 0 and 0 ≤ 𝑑 ≤ 1 under the CLRM with correlated regressors, the estimator 𝛽̂𝑘𝑞 is 

superior to the estimator 𝛽̂𝐿𝑅 in the MMSE form, namely 𝑀𝑀𝑆𝐸(𝛽̂𝐿𝑅) − 𝑀𝑀𝑆𝐸(𝛽̂𝑘𝑞) >

0 if 𝛽𝑡(𝐴𝑘𝑞 − 𝐼)
𝑡
[𝑀4]−1(𝐴𝑘𝑞 − 𝐼)𝛽 < 1, where 𝑀4 = 𝜎2 {𝐴𝑅𝑅(𝑋𝑡𝑋)−1(𝐴𝑅𝑅)𝑡 −

𝐴𝑘𝑞(𝑋𝑡𝑋)−1(𝐴𝑘𝑞)
𝑡
}. 

3.1. Bias comparison of AUKQE and KQE 

This subsection compares the bias of the KQE and AUKQE. Predominately, the almost 
unbiased estimator always provides a smaller bias than biased estimator, but it does not 
give a minimum variance of the regression coefficient. Let 𝛾 be any type of an estimator 
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of the parameter 𝛾, then the squared bias (SB) of 𝛾 is specified as SB(𝛾) = {𝐵𝑖𝑎𝑠(𝛾)}2. 
Therefore, the bias and the SB of 𝛽̂𝑘𝑞 can be defined as: 

𝑆𝐵(𝛽̂𝑘𝑞) = (𝐴𝑘𝑞 − 𝐼)𝛽𝛽𝑡(𝐴𝑘𝑞 − 𝐼)
𝑡

= 𝑘2(1 + 𝑑)2 ∑
α𝑗

2

(𝜆𝑗+𝑘)
2

𝑝
𝑗=1 ,  (19) 

where 𝛼𝑗
2 is defined as the jth element of Γ𝑡𝛽̂𝑂𝐿𝑆 and Γ is the eigenvector of the matrix 𝑋𝑡𝑋 

such that 𝑋𝑡𝑋 = Γ𝑡Λ Γ, where Λ = diag(𝜆𝑗). Using the Eq. (19), the bias and SB of the 
AUKQE are defined as:  

Bias(𝛽̂𝑎𝑢𝑘𝑞) = 𝐸(𝛽̂𝑎𝑢𝑘𝑞) − 𝛽 
= {(2𝐼 − 𝐴𝑘𝑞)𝐴𝑘𝑞 − 𝐼}𝛽  

= −𝑘2(1 + 𝑑)2(𝑋𝑡𝑋 + 𝑘𝐼)−2𝛽 

SB(𝛽̂𝑎𝑢𝑘𝑞) = (𝐼 − 𝐴𝑘𝑞)
2

𝛽𝛽𝑡 ((𝐼 − 𝐴𝑘𝑞)
2

)
𝑡

= 𝑘4(1 + 𝑑)4 ∑
α𝑗

2

(𝜆𝑗+𝑘)
4

𝑝
𝑗=1 . 

One can compare the SB of the estimators by considering the SB differences between the 
estimators as Θ1 = 𝑆𝐵(𝛽̂𝑘𝑞) − SB(𝛽̂𝑎𝑢𝑘𝑞) > 0: 

Θ1 = 𝑘2(1 + 𝑑)2 ∑
α𝑗

2

(𝜆𝑗 + 𝑘)
2

𝑝

𝑗=1

− 𝑘4(1 + 𝑑)4 ∑
α𝑗

2

(𝜆𝑗 + 𝑘)
4

𝑝

𝑗=1

 

Θ1 = ∑
𝑘2(1+𝑑)2α𝑗

2{(𝜆𝑗+𝑘)
2

−𝑘2(1+𝑑)2}

(𝜆𝑗+𝑘)
 4

𝑝
𝑗=1 .     

where 𝜆𝑗 is the eigenvalue of the matrix 𝑋𝑡𝑋, 𝑘 and 𝑑 are the shrinkage parameters. 
Reduction of bias in AUKQE is observed once we consider |𝐵𝑖𝑎𝑠(𝛽̂𝑘𝑞)

𝑗
| −

|𝐵𝑖𝑎𝑠(𝛽̂𝑎𝑢𝑘𝑞)
𝑗
| =

𝑘(1+𝑑)(𝜆𝑗−𝑘𝑑)

(𝜆𝑗+𝑘)
 2 |𝛼𝑗|. It can be easily seen that Θ1 is positive since the 

expression (𝜆𝑗 + 𝑘)
2

− 𝑘2(1 + 𝑑)2 > 0 when 𝑘 > 0 and 0 ≤ 𝑑 ≤ 1. Therefore, we can 
define that 𝑆𝐵(𝛽̂𝑘𝑞) − SB(𝛽̂𝑎𝑢𝑘𝑞) > 0. Hence, the bias of KQE is higher than the bias of 
AUKQE. Therefore, based on the theoretical comparison, we can define the following 
theorem: 
Theorem 5: Under the CLRM, we have ‖𝐵𝑖𝑎𝑠(𝛽̂𝑎𝑢𝑘𝑞)‖

2
< ‖𝐵𝑖𝑎𝑠(𝛽̂𝑘𝑞)‖

2
 for 𝑘 > 0 and 

0 ≤ 𝑑 ≤ 1 if (𝜆𝑗 + 𝑘)
2

> 𝑘2(1 + 𝑑)2. 

4. Estimating methods for selecting 𝒌 𝐚𝐧𝐝 𝒅 

The performance of the proposed estimator depends on the suitable value of shrinkage 
parameters k and d. Therefore, we derive optimal values of k and d and suggest an algorithm 
for the determination of k and d. The optimal value of 𝑑 is obtained by taking the derivatives 

of 𝑀𝑆𝐸(𝛽̂𝑘𝑞) = ∑
𝜎2(1−Φ𝑗)

2
+𝜆𝑗Φ𝑗

2α𝑗
2

𝜆𝑗

𝑝
𝑗=1 , where Φ𝑗 = 𝑘𝑑∗ (𝜆𝑗 + 𝑘)⁄  and 𝑑∗ = 𝑑 + 1 with 

respect to d for fixed k as follows: 
𝜕𝑀𝑆𝐸(𝛽̂𝑘𝑞)

𝜕𝑑
= ∑

2α𝑗
2𝑘2𝜆𝑗(1+𝑑)−2𝑘𝜎2(𝜆𝑗−𝑘𝑑)

𝜆𝑗(𝜆𝑗+𝑘)
2

𝑝
𝑗=1 . 

For 𝜕𝑀𝑆𝐸(𝛽̂𝑘𝑞)

𝜕𝑑
= 0, simplifying the numerator of the above expression and solving for d as: 

𝑑 =
∑ (𝜎2−𝛼𝑗

2𝑘)
𝑝
𝑗=1

∑ (
𝑘𝜎2

𝜆𝑗
+𝛼𝑗

2𝑘)
𝑝
𝑗=1

, 
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where 𝜎2 and 𝛼𝑗
2 are the unknown parameters and we replace these unknown parameters 

with their unbiased estimators and propose the following estimator:  

𝑑̂ = 𝑚𝑖𝑛 (1,
(𝜎̂2−𝛼̂𝑚𝑖𝑛

2 𝑘)

(
𝑘𝜎̂2

𝜆𝑚𝑖𝑛
+𝛼̂𝑚𝑖𝑛

2 𝑘)
).     (20) 

The condition 𝜆𝑗𝜎̂2 − α̂𝑗
2𝑘𝜆𝑗 > 0 should hold for the value of 𝑑̂ to be positive and 

therefore, we propose the following restriction for 𝑑̂ as 

𝑘∗ = 𝑚𝑖𝑛 (
𝜎̂2

α̂𝑗
2)

𝑗=1

𝑝

      (21)  

The optimal value of k is determined by differentiating 𝑀𝑆𝐸(𝛽̂𝑘𝑞) for k and equating it to 
be zero;  

𝜕𝑀𝑆𝐸(𝛽̂𝑘𝑞)

𝜕𝑘
= ∑

2(1+𝑑)[{𝑑𝜎2+(α𝑗
2𝑑+α𝑗

2)𝜆𝑗}𝑘−𝜆𝑗𝜎2]

(𝜆𝑗+𝑘)
3

𝑝
𝑗=1 , 

𝑘𝑗 =
𝜆𝑗𝜎2

𝑑𝜎2+α𝑗
2(1+𝑑)𝜆𝑗

.     (22) 

When 𝑑 = 0, the expression, 𝑘𝑗 = 𝜆𝑗𝜎2 (𝑑𝜎2 + α𝑗
2(1 + 𝑑)𝜆𝑗)⁄  reduces to 𝑘𝑗 = 𝜎2 α𝑗

2⁄ , 
which is suggested by Hoerl and Kennard (1970) to estimate the ridge parameter 𝑘. It can 
be noted that the value of 𝑘𝑗 is always positive. The expression in Eq. (22) depends on the 
unknown parameters 𝜎2 and α𝑗

2, and we replaced them by their corresponding unbiased 
estimators and proposed the following ridge estimator as: 

𝑘̂𝑜𝑝𝑡 = 𝑚𝑖𝑛 [
𝜆𝑗𝜎̂2

𝑑̂𝜎̂2+α̂𝑗
2(1+𝑑̂)𝜆𝑗

].      

Following, Månsson et al. (2012) and Qasim et al. (2018 and 2020a & b), we propose the 
following estimators to estimate the value of d. 

𝑑̂𝑜𝑝𝑡 = ∑ (
𝜎2−𝛼𝑗

2𝑘∗

𝑘∗𝜎2

𝜆𝑚𝑎𝑥
+𝛼𝑚𝑎𝑥

2 𝑘∗
)

𝑝
𝑗=1 𝑝⁄ .   (23) 

Finally, we define the following algorithm to determine the value of the biasing parameters, 
k and d: 
Step 1: Compute the value of 𝑘∗ using Eq. (21). 
Step 2: Estimate 𝑑̂ from Eq. (20) by using 𝑘∗ in step 1. 
Step 3: Calculate 𝑑̂𝑜𝑝𝑡  by substituting in the value of 𝑘̂𝑜𝑝𝑡 and 𝑘∗. 

5. Simulation study 

A simulation study is carried out to compare the finite sample properties of the proposed 
estimators with the existing estimators in different empirically relevant situations. The 
correlated explanatory variables are generated by following Gibbon (1981) and Kibria 
(2003) as follows: 

𝑥𝑖𝑗 = (1 − 𝜌2)1/2𝒵𝑖𝑗 + 𝜌𝒵𝑖(𝑗+1),      

where 𝒵𝑖𝑗 are the independent standard normal pseudo-random numbers and 𝜌 is the 
degree of correlation between two regressors which is given by 𝜌2. The performance of 
the proposed estimators depends on different factors such as sample size (n), degree of 
correlation (𝜌) and value of the residual variance (𝜎2). In the design of simulation, four 
different values of 𝜌 = 0.75, 0.90, 0.95, 0.99, two different values of 𝜎2 = 1,2, and 𝑛 =
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25,50,100,200 are considered to judge the performance of the estimators. The response 
variable is generated as follows: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽4𝑥𝑖4 + 𝜀𝑖, 𝑖 = 1,2, … , 𝑛 

where 𝑦𝑖 represent the nth observations of the dependent variable 𝛽𝑗 are the regression 
coefficients and 𝜀𝑖 is the independent identically normally distributed error term with mean 
zero and variance 𝜎2. The values of 𝛽 are chosen such that 𝛽𝑡𝛽 = 1 (see, e.g., Kibria, 
2003). The AMSE is minimized when 𝛽 is the normalized eigenvector corresponding to 
the largest eigenvalue of the matrix 𝑋𝑡𝑋. Therefore, we selected slope parameters 
𝛽𝑗(𝛽1, . . . , 𝛽4) as the normalized eigenvector corresponding to the largest eigenvalue of the 
matrix 𝑋𝑡𝑋. Besides, we assume zero intercept without loss of any generality. Then the 
variables are standardized so that 𝑋𝑡𝑦 represents the vector of correlations between the 
explanatory variables and the dependent variable. We use average mean squared error 
(AMSE) as a performance criterion. The AMSE of the estimator is determined based on 
5000 replications and the entire process executed 5000 times to compute the simulated 
AMSE as follows:  

𝐴𝑀𝑆𝐸(𝛽̂) =

∑ ((𝛽̂ − 𝛽)
𝑡
(𝛽̂ − 𝛽))

𝑟

5000
𝑟=1

5000
 

where 𝛽̂ is any of the estimators of 𝛽 in the rth replication. The simulation results are 
summarized in Figures 1-2 To demonstrate the finite sample properties of the estimators. 
We computed the AMSE of the OLSE, RRE, LRE, TPE, KQE and AUKQE under different 
situations that are common in a real-world application by changing the sample size (n), 
population variance (𝜎2) and degree of correlation (𝜌). Figure 1 shows the AMSE against 
different values of 𝜌 and the AMSE against different values of 𝑛 is shown in Figure 2.  In 
almost all cases, the proposed class of KQE performed well. Though in some instances, 
the performance of the LRE is reasonably fair when n is small, and there is a limited number 
of explanatory variables. The LRE does not perform well when the n, 𝜌 and 𝜎2 increase. 
As the parameters 𝑛, 𝜌2 and 𝜎2 are increased in size; the relative performance of KQE is 
substantially improved. From simulation results, it can be seen that multicollinearity has a 
positive impact on AMSE. As the value of 𝜌 increases, the AMSE is also increased. While 
the AMSE is decreased when 𝑛 is increased. Based on the simulation results, we conclude 
that the KQE is performed considerably than the existing estimators. 

  
Figure 1: Left. Estimated AMSE of the estimators vs 𝜌 when 𝑛 = 100, 𝜎2 = 1. Right. 
Estimated AMSE of the estimators vs 𝜌 when 𝑛 = 100, 𝜎2 = 2 
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Figure 2: Left. Estimated AMSE of the estimators vs 𝑛 when 𝜌 = 0.99, 𝜎2 = 1. Right. 
Estimated AMSE of the estimators vs 𝑛 when 𝜌 = 0.99, 𝜎2 = 2  

6. Numerical example 

The Portland dataset, which was initially adopted by Woods et al. (1932) and also used in 
Lukman et al. (2019) is used as a first illustration in this paper to demonstrate the 
performance of the new estimator. The dependent variable is defined as the heat evolved 
after 180 days of curing measured in calories per gram of cement. This variable is modelled 
using four correlated explanatory variables corresponding to x1 that represents tricalcium 
aluminate, x2 that represents tricalcium silicate, x3 that represents tetracalcium 
aluminoferrite, and x4 that means β‐dicalcium silicate. The condition index defined as 
√𝜆𝑚𝑎𝑥 𝜆𝑚𝑖𝑛⁄  equals 6056, indicating a severe multicollinearity problem. Therefore, we 
conclude that the Portland dataset has a multicollinearity problem. The estimated 
coefficients and scalar MSE values are displayed in Table 1. We can see that among the 
unbiased and the almost unbiased estimators the OLSE performs the worst. There is a 
substantial decrease in the scalar MSE using the AUKQE as compared to the OLSE. 
Among the biased estimators, the LRE and TPE show the worst while the KQE has the 
lowest MSE. This result is in line with the simulated result since the LRE did not perform 
well when the 𝜎2 is large (in this application it is 5.98). Hence, the KQE and AUKQE are 
the best options among the biased and the almost unbiased estimators, respectively. 

Table 1: Estimated coefficients and MSE of Portland cement dataset† 

Estimators 𝛽̂𝑜 𝛽̂1 𝛽̂2 𝛽̂3 𝛽̂4 MSE 
OLSE 62.4054 1.5511 0.5102 0.1019 -0.1441 4912.09 
RRE 42.9860 1.7509 0.7103 0.3062 0.0521 2706.36 
LRE 49.9266 1.6767 0.6394 0.2312 -0.0176 3298.65 
TPE 27.4575 1.9106 0.8703 0.4696 0.2090 4333.39 
AUKQE 38.0793 1.8013 0.7609 0.3579 0.1586 2694.80 
KQE 27.4575 1.9106 0.8703 0.4696 0.2090 2171.01 

†Note: The eigenvalues of the matrix 𝑋𝑡𝑋: 44676.21, 5965.42, 809.95, 105.42, 0.0012; The 
OLSE of 𝜎2: 𝜎̂2 = 5.98; The condition index (CI): 𝐶𝐼 = √𝜆𝑚𝑎𝑥 𝜆𝑚𝑖𝑛⁄ = 6056.3443.  

7. Conclusions 

This article introduces biased and almost unbiased two-parameter estimators. Proposed 
estimator includes the OLSE and RRE as special cases to be used to achieve the minimum 
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bias. The proposed estimators are compared theoretically with the OLSE, RRE, LRE and 
TPE in the sense of MMSE. Our proposed estimator has an advantage over the existing 
estimators since it exhibits the minimum MMSE under certain conditions. The KQE exhibit 
a minimum variance and scalar MSE compared to the TPE suggested by Özkale and 
Kaciranlar (2007) under certain conditions. Though, the performance of the proposed 
estimator depends on the appropriate selection of shrinkage parameters k and d. Therefore, 
we suggest an algorithm for selecting the shrinkage parameters. Based on the theoretical 
comparisons, simulation results, and empirically relevant real-world application, we 
conclude that the KQE is performed considerably better than the OLSE, RRE, LRE and 
the TPE. Therefore, this estimator can be recommended for practitioners. 
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