
A Bayesian Approach to Linking a Survey and a Census

Balgobin Nandram∗

Abstract
We predict the finite population proportion of a small area when individual-level data are available from

a survey and more extensive household-level (not individual-level) data (covariates but not responses) are
available from a census. The census and the survey consist of the same strata and primary sampling units
(PSUs or wards) that are matched, but the households are not matched. There are some common covariates
at the household level in the survey and the census and these covariates are used to link the households
within wards. There are also covariates at the ward level, and the wards are the same in the survey and the
census. Using a two-stage procedure, we study the multinomial counts in the sampled households within the
wards and a projection method to infer about the nonsampled wards. This is accommodated by a three-stage
hierarchical Bayesian model for multinomial counts as it is necessary to account for heterogeneity among the
households. To proceed, we obtain samples from the distributions of the proportions for each multinomial
cell, and then we use these samples to do projective inference for the finite population proportions. Using
two projection procedures (parametric and nonparametric), we compare the heterogeneous model and a
homogeneous model without household effects. An example on the second Nepal Living Standards Survey
is presented.

Key Words: Data integration, Iterative re-weighted least squares, Metropolis sampler, Multinomial-
Dirichlet model, Nested error regression model, Projective inference

1. Introduction

In a study on health, one might need to know how many people are in good heath, average
health or poor health in different households within different counties in a state. The second Nepal
Living Standards Survey has sparse counts of household members within wards (a district consists
of wards) for four health status groups. We want to predict the finite population proportion of
people in each health category in each ward based on a sample from the households within wards.
Undoubtedly there is heterogeneity within wards, the small areas, and not taking this into consider-
ation when inference is made about the finite population proportions within each ward, could lead
to biased estimates and to incorrect variability (e.g., Rao and Molina 2015).

The World Bank has developed a method to link a sample survey to a Census using a clustered
bootstrap method for poverty estimation (i.e., continuous income data). But this method is biased
for several reasons; one of them is that survey and the Census are never done at the same time.
Another problem is the method that is used by the World Bank is Empirical Bayes that typically
underestimates variance and can also be biased. Recently Corral, Molina and Nguyen (2020) have
improved this method considerably by incorporating survey weights and heteroscedasticity. Our
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method is different from theirs because it uses count data, not continuous income data, and it is fully
Bayesian, not Empirical Bayes. Another major difference is that our method is computationally
intensive.

Let the cell counts for the ℓ contingency tables of c cells be ni jk,k = 1, . . . ,c, j = 1, . . . ,mi, i =
1, . . . , ℓ. That is, there are ℓ one-way contingency tables each with mi households having ni j· indi-
viduals partitioned into c cells. There are Mi sub-areas (households) within the ith area (ward) in
the population and mi of these sub-areas are sampled. There are L areas in the population and ℓ of
them are sampled. Here, we take

˜
n′i j = (ni jk,k = 1, . . . ,c), where c is the number of health status.

We use the dot notation (e.g., ni j· = ∑c
k=1 ni jk). All individuals respond in a household.

We first consider a homogeneous area (ward) level model and we will write down the model
for the sample (the model is assumed to hold for the whole population). We assume

˜
ni j |

˜
pi

ind∼ Multinomial(ni j·,
˜
pi), j = 1, . . . ,mi.

Here
˜
ni· are sufficient statistics and under this assumption, the hierarchical Bayesian model is

˜
ni· |

˜
pi

ind∼ Multinomial(ni··,
˜
pi),

˜
pi |

˜
µ,τ iid∼ Dirichlet(

˜
µτ), i = 1, . . . , ℓ,

p(
˜
µ,τ) =

(c−1)!
(1+ τ)2 ,τ > 0,

where, without any prior information, we have taken
˜
µ and τ to be independent; see Nandram

(1998) for computations and Nandram and Sedransk (1993) for an interpretation of τ .
The conditional posterior density of

˜
pi |

˜
µ,τ,

˜
ni·

ind∼ Dirichlet(
˜
ni·+

˜
µτ), i = 1, . . . , ℓ. Thus, one

can obtain Rao-Blackwellized density estimators of
˜
pi having obtained a sample of (

˜
µ,τ) from

their joint posterior density. It is easy to show that

π(
˜
µ,ρ |

˜
n) ∝

ℓ

∏
i=1

{
∏c

k=1 ∏ni·k−1
s=0 {ρs+(1−ρ)µk}

∏ni··−1
s=0 {ρs+(1−ρ)}

}
,0 ≤ ρ ≤ 1,0 < µk < 1,

c

∑
k=1

µk = 1,

where we have transformed τ to ρ = 1/(1+ τ), and any of the arguments must be set to unity if
ni·k = 0 or ni·· = 0, a very likely for some cells. So that this posterior density is well defined for all
ρ , 0 ≤ ρ ≤ 1. It is easy to use the Gibbs sampler, not the Metropolis-Hastings sampler (Nandram
1998), to draw samples from π(

˜
µ,τ |

˜
n). We will call this model the homogeneous model or

the area-level model. This model incorporates only the multinomial counts in the ℓ areas, and it
does not take account of the sub-areas, hence the name homogeneous or area-level model. When
inference about the sub-area is of interest, one can use the area-level model with the conditional
posterior density,

˜
pi j |

˜
µ,ρ,

˜
ni j

ind∼ Dirichlet(
˜
ni j +

˜
µτ), j = 1, . . . ,mi, i = 1, . . . , ℓ (i.e., draws of pi j

can be made from it).
We will obtain a sub-area heterogeneous model for the multinomial counts in which there are

both sub-area effects and area effects. The Nepal Living Standards Survey (NLSS) have covariates
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that are different from those of the Census and they do not affect health directly, and we will call
them indirect covariates. These are the nine covariates commonly used for some studies of these
data. In this project, we have NLSS data in individual level and census data in household level. So
one way to proceed is to ignore the covariates in the NLSS in order to proceed to inference about
the finite population proportions, where we can use the covariates. We describe how to use these
covariates in the concluding remarks. A further problem is that while the wards in the NLSS match
the wards in the Census, the households do not (i.e., there are no labels to make this matching). So
we have to match the households in the Census and the NLSS using a record-linkage procedure.
There are six variables at the household level (including household sizes) and three variables at the
ward level; these latter variables cannot be used for matching but they can be used for prediction.
Most of the variables are either discrete or just proportions.

We matched the Census and the NLSS as follows (see Nandram, Chan and Manandhar 2018
for the the six covariates used for matching). We started by matching all six covariates, and this
procedure provides a majority of the matches. For those that did not match, we went down to five
variables at a time (five sets of matching), then four variables and so on. At the end there were
some variables that did not match. For these we used a nearest neighbor matching procedure via
a distance function. Then, the final data set consists of households within wards, sampled and
nonsampled. The sampled households have responses (counts in different health status). There
are also wards not sampled. There are 101 sampled wards (one lost by matching) and 12,133
nonsampled wards. Prediction is needed for the sampled households in the sampled wards and the
households of the 101 sampled wards and all the households of the 12,133 nonsampled wards.

Our complete procedure is the following. First, we develop the sub-area model for the multino-
mial counts. We fit both the homogeneous and heterogeneous models using a Markov chain Monte
Carlo sampler. For the small-area model, we use the Gibbs sampler and for the sub-area model we
use the Metropolis-Hastings sampler. Nandram, Chen and Manandhar (2018) made approximation
to do the posterior density and showed empirically that the approximation is reasonable. However,
we use this approximation to construct a proposal density in the sub-area model. From these mod-
els, we generate the super-population proportions that are then linked to the Census data through
the covariates. Noting that the proportions are the same for each household in a ward, we generated
independent and identical proportions for the households within a ward. Then, we fit regression
models to the logarithm of the proportions (iterates) to get the regression coefficients. We have
used either iterative re-weighted least squares (IRLS) or the nested error regression (NER) model
to get the regression coefficients that are then used to generate the counts for both the sampled and
nonsampled households in both the sampled wards and the nonsampled wards. The rest is standard
Monte Carlo procedures to infer a posteriori the finite population proportions for the wards.

The paper has four more sections. In Section 2, the three-stage hierarchical Bayesian model is
described. In Section 3, we describe how to make inference about the finite population proportions.
Specifically, we show how to connect the NLSS to the Census. In Section 4, we show how to
analyze Nepal’s data. We also describe how to calibrate to survey weights to the Census. Section
5 has concluding remarks and there are discussions on how to improve the current method. A
technical detail is given in the appendix.
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2. Three-Stage Hierarchical Bayesian Models

We extend the three-stage hierarchical Bayesian model of Nandram (1998) to three stages to
capture heterogeneity within areas by modeling the sub-area counts.

2.1 General Model

Here, we write down the model for the sample ni jk,k = 1, . . . ,c, j = 1, . . . ,mi, i = 1, . . . , ℓ, but
the model is assumed to hold for the entire population of areas and sub-areas, ni jk,k = 1, . . . ,c, j =
1, . . . ,Mi, i = 1, . . . ,L.

Therefore, letting
˜
ni j =(ni j1, . . . ,ni jℓ)

′, for the sample the multinomial-Dirichlet-Dirichlet model
assumes that

˜
ni j |

˜
pi j

ind∼ Multinomial(ni j·,
˜
pi j),

˜
pi j |

˜
µi,τ

ind∼ Dirichlet(
˜
µiτ), j = 1, . . . ,mi, i = 1, . . . , ℓ,

˜
µi |

˜
ψ,η iid∼ Dirichlet(

˜
ψη),

p(
˜
ψ,η ,τ) =

(c−1)!
(1+ τ)2(1+η)2 ,η > 0,τ > 0,

where, without any prior information, we have taken
˜
ψ , η and τ to be independent. For simplicity,

we have used a single τ (i.e., not depending on area). It is important to note the dependence of the

˜
pi j on j (i.e., household effects).

Inference about the
˜
pi j and the µi under the homogeneous model can be obtained by using

samples from their joint posterior densities. This is an intermediate step to make inference about
the finite population proportions.

It is straightforward to see that

˜
pi j |

˜
µi,τ,

˜
ni j

ind∼ Dirichet(
˜
ni j +

˜
µiτ), i = 1, . . . , ℓ.

Again, Rao-Blackwellized density estimators of
˜
pi j can be easily obtained. It is useful to note that

this conditional posterior density depends only on
˜
µi and τ , but not on the other parameters. Then,

integrating out the
˜
pi j, we get the joint posterior density of

˜
µ,

˜
ψ,η ,τ |

˜
n,

π(
˜
µ,

˜
ψ,η ,τ |

˜
n) ∝

1
(1+ τ)2

1
(1+η)2

ℓ

∏
i=1

g(
˜
µi,τ |

˜
ni){

∏c
k=1 µψkη−1

ik
D(

˜
ψη)

},

where, D(·) is the Dirichlet function, and for convenience, we use

g(
˜
µi,τ |

˜
ni) =

mi

∏
j=1

D(
˜
ni j +

˜
µiτ)

D(
˜
µiτ)

, i = 1, . . . , ℓ.

Note that the conditional posterior density of (
˜
µi,τ) given (

˜
ni,

˜
ψ,η) is the product of two

parts. The first part is g(
˜
µi,τ |

˜
ni), which is complicated, and the second part is π(

˜
µi,τ |

˜
n,

˜
ψ,η) ∝
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∏c
k=1 µψkη−1

ik
D(

˜
ψη) , the Dirichlet prior distribution. We can think of the posterior density π(

˜
µi,τ |

˜
ni,

˜
ψ,η)

as the product of two densities, one proportional to g(
˜
µi,τ |

˜
ni), and the other one is ∏c

k=1 µψkη−1
ik

D(
˜
ψη) . In

fact, we can think of g(
˜
µi,τ |

˜
ni j), as the posterior density for each area (in a sub-area model) as

in Nandram (1998). That is, this is just the posterior density that Nandram (1998) used to obtain
a Metropolis-Hastings sampler to draw samples from; see Appendix A of Nandram, Chen and
Manandhar (2018).

Note that
˜
ψ and η are not directly connected to the counts even after integrating out the

˜
pi j.

This indicates that there will be difficulties in running a Markov chain Monte Carlo sampler. There-
fore, further integration is necessary. That is, we also need to integrate out the

˜
µi (i.e., need to draw

the parameters simultaneously), but this is not possible analytically.

2.2 Sampling the Joint Posterior Density

We will describe a numerical method to to integrate out the
˜
µi. Nandram, Lu and Manandhar

(2018) has an analytical approximation that we have emphasized therein. Our method to integrate
out the

˜
µi is to use a representation of the Dirichlet distribution that is a product of beta distribu-

tions; see Darroch and Ratcliff (1971) and Connor and Mossimann (1969).
Let

˜
x be a vector with c components such that ∑c

j=1 x j = 1 x j ≥ 0, j = 1, . . . ,c. Assume that

˜
x ∼ Dirichlet(

˜
a), where

˜
a is a vector with c known elements. Then,

p(x1, . . . ,xc−1) ∝ (
c−1

∏
j=1

xa j−1
j )(1−

c−1

∑
j=1

x j)
ac−1.

Let ν1 = x1, ν j = x j/(1−∑ j−1
s=1 xs), j = 2, . . . ,c−1. Then, ν j

ind∼ Beta(a j,∑c
s= j+1 as), j = 1, . . . ,c−1.

Using this characterization on µ
˜

i | ψ
˜
,η ind∼ Dirichlet(ψ

˜
η) with ψ1 +ψ2 +ψ3 = 1, we get

π(ψ
˜
,η ,τ | n

˜
) ∝

1
(1+ τ)2

1
(1+η)2

ℓ

∏
i=1

{∫ 1

0

∫ 1

0
g∗(ν

˜
i,τ | ni

˜
)

×
νψ1η−1

i1 (1−νi1)
(ψ2+ψ3)η−1

B{ψ1η ,(ψ2 +ψ3)η}
νψ2η−1

i2 (1−νi2)
ψ3η−1

B(ψ2η ,ψ3η)
dνi1dνi2

}
.

Here, g(µ
˜

i,τ | ni
˜
) transforms to g∗(ν

˜
i,τ | ni

˜
) and the middle Riemann sum for integration. The

integration is easy to carry out by discretization over the range of the independent beta random
variables, νi1 and νi2.

We can now draw ψ
˜
,η ,τ using a Metropolis sampler. The candidate generating density is the

analytic approximation discussed in Nandram, Chen and Manandhar (2018). We draw a sample
of M = 10,000 iterates using the Gibbs sampler (to allow a “burn in” and thinning to get 1,000
samples). We showed how to construct a proposal density for (ψ

˜
,η ,τ) to run the Metropolis sam-

pler (Nandram, Chen and Manandhar 2018). We used a grid method to draw ψ
˜

in this preliminary
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sample. Thus, we have samples from the approximate posterior density of (ψ
˜
(h),η(h),τ(h)),h =

1, . . . ,M. We transform these to β
˜
(h),h = 1, . . . ,M where β (h)

i = log{ψ(h)
i /(1−∑c−1

j=1 ψ(h)
j )}, i =

1, . . . ,c−1, β (h)
c = log(η(h)), βc+1 = log(τ(h)). Then, we fit a multivariate normal density to β

˜
(h),

where θ̂
˜

and Σ̂ are the mean and covariance matrix of the samples, and κ/σ2 ∼ Gamma(κ/2,1/2)
to complete the (p+ 1)-variate Student’s t density on κ degrees of freedom, where κ is a tuning
constant. We restart the algorithm if it is necessary. The order restriction on ψ

˜
(see below) is

enforced by rejection sampling. Both the Metropolis sampler for the exact computations and the
Gibbs sampler show good performance as evident by the trace plots, auto-correlations, Geweke test
of of stationarity, the effective sample sizes and the jumping rate of the Metropolis sampler.

To draw the µ
˜

i, we use a Metropolis algorithm with the approximate Dirichlet distribution
(Nandram 1998) as the proposal density to draw samples of µ

˜
i independently given ψ

˜
,η ,τ and

data. We ran each Metropolis sampler 100 times (500 times did not make a significant difference)
and picked the last one. If the Metropolis step fails (jumping rate is not in (.25, .75)), we use the
griddy Gibbs sampler within this Metropolis step. Parallel computing can also be used in this latter
step. This is performed in the same manner for the exact method (i.e., numerical integration). For
our application with 101 wards, this latter step runs very fast. Of course, with much larger number
of wards, the computing time will be substantial, but now parallel (embarrassingly) computing is
available.

Because the counts in the households are sparse for many households (see discussion later) it
is necessary to adjust the heterogeneous model. The counts in the last cell are mostly zeros, so
we decided to combine the last two cells. Even as such it is still sparse. However, we noticed
an order restriction of the proportions of household members in the three cells. So we impose
the order restriction 1 > ψ1 > ψ2 > ψ3 > 0. We apply this restriction to the homogeneous model
also. The order restriction also helps to provide a better MCMC algorithm. Let us consider how
this order restriction changes the conditional posterior densities (cpd’s) of ψ1 and ψ2; notice ψ3 =
1−ψ1 −ψ2. Thus, the order restriction is really

1 > ψ1 > ψ2 > 1−ψ1 −ψ2 > 0,

and this is a key inequality. Now, we need the support of the cpd of ψ1 given the other parameters
and the support of the cpd of ψ2 given other parameters. In Appendix B of Nandram, Chen and
Manandhar (2020), we showed that that given ψ2, the support of ψ1 is max{1

3 ,ψ2,1−2ψ2}<ψ1 <
1−ψ2 and given ψ1, the support of ψ2 is 1

2(1−ψ1) < ψ2 < min{1
2 ,ψ1,1−ψ1}. We have drawn

samples from the cpds of ψ1 and ψ2 using the grid method.

3. Inference for Finite Population Proportions

We have now obtained samples
˜
p(h)i j = (pi jk,k = 1, . . . ,c = 3), j = 1, . . . ,mi, i = 1, . . . , ℓ,h =

1, . . . ,M, say M = 1000. The next step is to link these
˜
p(h)i j to the census. The census has covari-

ates
˜
xi j, a vector of (r = 10) components, including an intercept, for all households, sampled or
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nonsampled. There are three parts, the sampled households in the sampled wards, the nonsampled
households in the sampled wards and the nonsampled households in the nonsampled wards.

We use the following steps to implement the projection procedure.

a. Model the yi jk for each k = 1, . . . ,c−1 (independent regression-type analyzes)

yi jk = log{pi jk/(1−
c−1

∑
k=1

pi jk)},k = 1, . . . ,c−1,

see Agresti (2012) for the multinomial logit transformation;

b. Project yi jk for each k using the model (entire census);

c. Define new pi jk using the yi jk,

pi jk = eyi jk/(1+
c−1

∑
k′=1

eyi jk′ ), k = 1, . . . ,c−1,

and pi jc = 1−∑c−1
k=1 pi jk, j = 1, . . . ,Mi, i = 1, . . . ,L;

d. Draw the ni jk from multinomial models; obtain copies of the census counts.

This regression analysis will be performed for each of the M samples of
˜
p(h)i j . We can obtain all

the nonsampled pi jk for all M iterates in the same manner. Having obtained the cell probabilities,
the multinomial counts can be generated for each of the M iterates, thereby obtaining a large sample
(size M) of contingency tables for the entire census. We have two methods of doing this operation
in a comprehensive manner.

3.1 Iterative Re-weighted Least Squares Method

We have used the ensemble M-estimation model in small area estimation; see Chambers and
Tzavidis (2006), where the regression coefficients are estimated using iterative re-weighted least
squares (IRLS). This is an attractive nonparametric procedure for small area estimation because
there are no random effects to model, but random effects come out as summaries of q-scores.
A good review paper is given by Dawber and Chambers (2019). This is directly related to the
procedure mentioned above.

Let yi j denote the responses and
˜
xi j the covariates for unit j in area i, j = 1, . . . ,ni, i = 1, . . . , ℓ.

We string out these values and relabeling, the responses are yi and the covariates are
˜
xi for i =

1, . . . ,n = ∑ℓ
i=1 ni. In the IRLS, ˆ

˜
β

q
for each q in (0,1) is obtained by solving

n−1
n

∑
i=1

wiqψqk(
yi −

˜
xi

ˆ
˜
β

q

σ̂qk
) = 0,
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where σ̂qk are the median absolute deviation of yi −
˜
xi

ˆ
˜
β

q
and the weights are

wiqk =
ψqk(

yi−
˜
xi ˆ

˜
β

q
σ̂qk

)

yi−
˜
xi ˆ

˜
β

q
σ̂qk

with ψqκ(u) = 2[(1−q)Iu≤0 +qIu>0][−κIu≤−κ +uI−κ<u<κ +κIu≥κ ]. Here, I is the indicator func-
tion, κ is a tuning constant and the second term is the Huber influence function. In our analysis,
we have set κ = 2. In the ensemble M-estimation model, the IRLS procedure is executed for every
q on a fine grid in (0,1). Then, the ith q-score solves the equation,

˜
xi

ˆ
˜
β

q∗i
= yi, i = 1, . . . ,n.

The random effects are then obtained as a summary (e.g., median) of the q∗i for area i, denoted by
q∗. Now, ˆ

˜
β

q∗
are the estimated regression coefficients for this area.

The IRLS is performed sequentially as follows. Start up the process using standard least square
estimators, obtain the residuals and the median absolute deviation of the residuals, and finally the
weights. Then, use the weights and the median absolute deviation to get the first re-weighted least
square estimates of the regression coefficients. Now iterate the process for each value of q in a fine
grid in (0,1); we have used (.10, .90) because of computational instability.

3.2 Nested Error Regression Method

The second method is the nested error regression (NER) model; see Battese, Harter and Fuller
(1988). We use the full Bayesian version of the NER model which was originally developed by
Toto and Nandram (2010) and later applied to poverty estimation by Molina, Nandram and Rao
(2014).

Letting, yi j = zi jk for each k, k = 1, . . . ,c−1, the Bayesian NER model is

yi j
ind∼ Normal(

˜
x′i j

˜
β +νi,σ2), j = 1, . . . ,ni,

νi | ρ,σ2 ind∼ Normal(0,
ρ

1−ρ
σ2), i = 1, . . . , ℓ,

π(
˜
β ,σ2,ρ) ∝ 1/σ2.

Again, the Bayesian NER model is applied c−1 times for each of the M samples.
The joint posterior density is proper provided the design matrix is full rank. Molina, Nandram

and Rao (2014) need an additional condition for posterior propriety, and it turns out that this condi-
tion is not necessary. However, we note here that the NER model is not robust against outliers and
non-normality (e.g., see Chakraborty, Datta and Mandal 2019 and Gershunskaya and Lahiri 2018).
There is a clear advantage to use M-estimation, albeit it is more complicated and computationally
intensive.

 
1676



The posterior density of ρ can be obtained apart from the normalization constant, and all the
other conditional posterior densities, in order to use the multiplication rule to get the joint posterior
density, are in standard forms. Therefore, it is easy to get a sample from the joint posterior density
using the composition method (i.e., the multiplication rule of probability). Draws from the posterior
density of ρ is obtained using a fine grid on (0,1). This method is very fast, and much faster than
the IRLS, because it simply uses random draws, not a Markov chain, and the IRLS has to be done
on a fine grid. While the IRLS projection method took more than ten hours even with a parallel
system with 32 processors, the NER method took about 5 hours on a single processor.

Of course, the ensemble M-quantile estimation model is nonparametric, but there may be some
difficulties in finding the q-scores near 0 and 1, if these are actually needed.

3.3 Bayesian Projective Inference

We can perform either a Bayesian predictive inference or a Bayesian projective inference about
the finite population proportions for each ward or even at a more micro level for each household.
Predictive inference means that the nonsampled households are filled in while projective inference
means that all households (sampled and non-sampled) are filled in. We have actually used the
projective method for the NLSS sampled households and the Census because smoothed estimates
of the household proportions may be needed for the sampled households.

Finally, in a projective method, we will obtain all the pi jk for both the samples and the nonsam-
ples. Then, we will draw the cell counts for all households. For each ward, sum all the cell counts
of the households in a ward, and divide by the population size (known) to get the finite population
proportions in the three cells. Then, draw all the cell counts. For each ward, we will add these
counts to the already observed counts. For the nonsampled households, use the IRLS estimates at

˜
x′i j

˜
β.5. For the NER model, we would need to use

˜
x′i j

˜
β +νi for the nonsampled households within

sampled wards via the posterior samples of the νi (already drawn). For the nonsampled wards, we
will need to use a draw from the the prior distribution of νi (no-data posterior density) and compute

˜
x′i j

˜
β +νi.

4. Analysis of Nepal’s Data

We use data from the Nepal Living Standards Survey (NLSS II, Central Bureau of Statistics,
2003-2004) to illustrate our methods. In Section 4.1, we describe the 2001 Census and NLSS II. In
Section 4.2, we apply our method to Terai Rural stratum, the narrow strip of rural areas in southern
side of Nepal bordering India; see Figure 1 that shows the districts, not the lower levels of wards
and households. We note that in the Terai Rural stratum the wards are scattered in the whole strip.
[In this region, there are 29 Mertropolitan areas, each with at least 9 wards, roughly 300 wards in
total, and these are obviously not included in the Terai Rural stratum.]
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Figure 1: Map of Nepal showing the Terai Region

4.1 Census and NLSS II

The Census and NLSS II (simply NLSS) are the same as described in Nandram, Chen and
Manandhar (2018). So we do not repeat the discussion here in detail, but below we give the key
points.

NLSS is a national household survey in Nepal, actually population based (i.e., interviews are
done for individual household members). NLSS follows the World Bank’s Living Standards Mea-
surement Survey methodology with a two-stage stratified sampling scheme, which has been suc-
cessfully applied in many parts of the world. It is an integrated survey which covers samples from
the whole country and runs throughout the year. The main objective of the NLSS is to collect data
from Nepalese households and provide information to monitor progress in national living stan-
dards. The NLSS gathers information on a variety of subjects. It has collected data on demograph-
ics, housing, education, health, fertility, employment, income, agricultural activity, consumption,
and various other subjects. We choose the polychotomous variable, health status, from the health
section of the questionnaire.

Health status is covered in Section 8 of the questionnaire, which collected information on
chronic and acute illnesses, uses medical facilities, expenditures on them and health status. The
health status questionnaire is asked about every individual that was covered in the survey, and the
questionnaire has four options (excellent, good, fair, poor), but because the fourth cell is overly
sparse, we combine fair and poor into a single cell (renamed poor).
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In the NLSS, Nepal is divided into wards/sub-areas (psu’s) and within each ward/sub-ward
there are a number of households. The sample design of the NLSS used two-stage stratified sam-
pling. A sample of psu’s was selected using PPS sampling and then twelve households were sys-
tematically selected from each ward. Thus, households have equal probability of selection. But
while individuals in a household have equal probability of selection, the survey weights have vari-
ous adjustments, so they vary with the size of the households and the individuals. For this project
we will ignore the survey weights because this needs a multinomial logit model that we are cur-
rently studying. But we have discussed alternatives in the concluding remarks.

Nandram, Chen and Manandhar (2018) chose nine relevant covariates which can possibly in-
fluence health and they are available in the 2001 census data. Six of the covariates are at the
household level and three at ward level. At the ward level the NLSS and the Census are matched,
but the households are not matched. Therefore, only the household variables are used for matching,
but all covariates are used for projection.

There are six strata and we study the Terai Rural stratum, the largest stratum in Nepal. It
has 102 wards/sub-wards with 1,224 households in the sample of 12,239 wards in the population
(sample frame) with 1,686,317 households with 9,744,810 people. After matching we ended up
with 101 wards in the sample and 12,133 wards in the nonsampled part of Terai Rural stratum. The
number of people in the sample is 6,979 with 3901 in the first cell, 2921 in the second cell and 157
in the third cell with percentages 55.9%, 41.9%, and 2.2%. The sample of 6,979 will speak for
9,744,810 people (i.e., a sample of just 0.07%). So we have imposed an order restriction over the
three cells to assist the computations; specifically, we have taken ψ1 > ψ2 > ψ3.

4.2 Comparisons

We compare the two models (Hom, Het) and the two projection methods (IRLS, NER). The
NER method, based on the NER model, is not robust against outliers and non-normality, but M-
estimation, based on the IRLS, is robust. Here, we compare the four scenarios: (Het, IRLS), (Het,
NER), (Hom, IRLS) and (Hom, NER).

In Table 1, we see that the nonsampled part of the population dominates the inference. There
is a small, but important, selection bias. Considering the proportion of people in excellent health,
the PMs for the four groups (IRLS, Het), (IRLS, Hom), (NER, Het) and (NER, Hom) are respec-
tively .540, .608, .512, .574 for the sample and .453, .512, .378, .389 significantly larger for the
nonsample. This selection bias can be mitigated when the survey weights are incorporated into the
model.

Inference for the nonsampled part of the population is virtually the same as the whole popula-
tion. (Compare (b) and (c) of Table 1.) This is not surprising because there are 101 wards in the
sample and 12,133 wards in the nonsample (i.e., the sampling fraction, 101/12,234 ≈ .0083, is
very small).

In Figures 2 - 7, we further compare the four groups. Each of these plots contains 36,702 points
corresponding to the three health classes and 12,234 wards and the plots are for the two posterior
means of the finite population mean.
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In Figures 2 and 3, we compare the two models (Hom vs. Het). In Figure 2, we can see clearly
the difference between the two models for the NER projection method. The points are scattered
around the 45-degree straight line with smaller slope. In Figure 3, we can see clearly the difference
between the two models for the IRLS projection method. The points are scattered around the
45-degree straight line with smaller slope, but much more concentrated than the NER projection
method.

In Figures 4 and 5, we compare the two projection methods (IRLS vs. NER). In Figure 4, we
can see clearly the difference between the two models for the NER projection method. The points
are scattered around the 45-degree straight line with smaller slope, but much more spread out. In
Figure 5, we can see clearly the difference between the two models for the IRLS projection method.
The points appear to be in a rectangle with the 45-degree roughly along its diagonal.

In Figures 6 and 7, we look at the interaction of the two factors (model, projection methods).
Again, the clouds of points cross the 45-degree straight line in both plots and there is large spread.

The heterogeneous model incorporates variation among the households but the homogeneous
model does not. This is a major difference already. The IRLS method is robust against non-
normality and outliers, but the NER method is not so robust. In fact, work is being done currently
to allow for robustness in the NER projection method.

4.3 Calibration

It is necessary to calibrate the NLSS to the Census using survey weights and census covariates.
We would need to do this for each sampled ward. There are nonsampled households in each ward.
We have all the household covariates for all the sampled wards in the Census. So we have the totals
for all the households within a ward. We do not know the household sizes for the sampled wards;
we have used data fusion to fill these in by using the household sizes of the sample to donate to the
nonsampled household within a ward. While we have not done this yet, we note that this will be
an enormously useful addition to our procedure.

Let x
˜

j, j = 1, . . . ,n, denote the covariates, including an intercept, in the sample survey and w j

denote the survey weights. Let x̃
˜

j, j = 1, . . . ,N, where N is the number of households in the census.
The method is described for households but it can be used for individuals. Then, t

˜
= ∑N

j=1 x̃
˜

j.
The survey weights w j are calibrated when we can find w̃ j such that ∑n

j=1 w̃ jx
˜

j = t
˜
, where w̃ j are

the survey weights; a distance function is used to measure closeness between the w j and the w̃ j.
In a paper in Statistical Science, Haziza and Beaumont (2020) gave a very informative and clear
pedagogical review of this method.

Let the original survey weights in the NLSS be w j, j = 1, . . . ,n. We search for a calibrated
weighting system w̃ j, j = 1, . . . ,n, such that ∑n

j=1 w̃ jx
˜

j = t
˜
, the calibration equation. We want to the

w̃ j, j = 1, . . . ,n, to be as close as possible to w j, j = 1, . . . ,n. Haziza and Beaumont (2017) judge
closeness by a distance function, G(u), where

a. G(u)≥ 0 and G(1) = 0;

b. G(u) is differentiable, g(u) = G′(u),g(1) = 0, and strictly convex.
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One needs to minimize ∑n
j=1

w j
q j

G(
w̃ j
w j
) over w̃ j, j = 1, . . . ,n, where q j denote the importance of

unit j, subject to the constraint ∑n
j=1 w̃ jx

˜
j = t

˜
. We present some details here on how to solve the

Lagrangian system of equations for a general G(u),−∞ < u < ∞. (we have made some changes to
Haziza and Beaumont, 2017).

We give the final step on how to numerically compute λ
˜

for a general G(u). Consider the
function,

ϕ(w̃1, . . . , w̃n,λ
˜
) =

n

∑
j=1

w̃ jG(
w̃ j
w j
)

q j
−λ ′(

n

∑
j=1

w̃ jx
˜

j − t
˜
),

where λ
˜
= (λ1, . . . ,λp) are Lagrangian multipliers.

Differentiating ϕ(w̃1, . . . , w̃n,λ
˜
) with respect to w̃ j, we get

w̃ j = w jg−1(q jλ
˜
′x
˜

j), j = 1, . . . ,n.

Therefore,
n

∑
j=1

w jg−1(q jλ
˜
′x
˜

j)x
˜

j = t
˜
.

Here, our method differs from Haziza and Beaumont (2020) who used the Newton-Ralphson
method. We use the Nelder-Mead algorithm to minimize ∑p

k=1 | ∑n
j=1 w jg−1(q jλ

˜
′x
˜

j)x jk − tk | over
λ
˜

, forcing each component down to zero, to get λ̂
˜

. The weights are then,

w̃ j = w jg−1(q jλ̂
˜
′x
˜

j), j = 1, . . . ,n.

In our case, we use the simple Euclidean distance. This gives close form answers; apparently
this was not recognized by Haziza and Beaumont (2017). We choose q j = 1, j = 1, . . . ,n. For
G(u) = (u−1)2,−∞ < u < ∞, is a legitimate distance function because G(1) = 0, g(u) = 2(u−1),
g(1) = 0, g′(u) = 2 > 0 and so G(u) is strictly convex. Also g−1(y) = 1+ y

2 . In this case, we have

n

∑
j=1

w j(1+
λ
˜
′x
˜

j

2
)x jk = tk,k = 1, . . . , p.

That is,
p

∑
k′=1

n

∑
j=1

λk′xik′xik = 2(tk −
n

∑
j=1

w jx jk),k = 1, . . . , p,

and

Aλ
˜
= b

˜
, A =

(
n

∑
j=1

w jx jk′xik

)
(k′,k)

, b
˜
= 2(t

˜
−

n

∑
j=1

w jx
˜

j).

Therefore, assuming A is invertible, λ̂
˜
=A−1b

˜
and the calibrated weights are w̃ j =w j(1+

λ̂
˜
′x
˜

j
2 ), j =

1, . . . ,n.
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5. Concluding Remarks

We have shown how to obtain M = 1000 copies of the contingency tables of the 12,234 wards
in the Nepal Census. We have actually studied the largest stratum among six strata of Nepal, Terrai
Rural. Our procedure can be applied to each of the six strata in much the same way. No new
methodology is needed. However, this matching procedure has been a very extensive endeavor.
One might ask about a spatial analysis. One would like to incorporate a spatial effect among the
households; unfortunately, there are no lists with the neighborhood of each household, but there is
a list of the neighborhoods of the wards and the districts. Incorporating spatial effects at the district
or ward level is not beneficial (i.e., too coarse).

It is possible to incorporate survey weights into our homogeneous and heterogeneous models.
Nandram, Chen and Manandhar (2018) described one method to incorporate survey weights. Here,
we suggest a simpler method, where our procedure described in this proposal can be used almost
immediately. Let wi jk denote the standardized survey weights of the kth individual in the jth house-
hold in the ith ward, j = 1, . . . ,mi·,k = 1, . . . ,ni j, i = 1, . . . , ℓ. Potthoff, Woodbury and Manton
(1992) showed how to obtain the standardized weights under the assumption that the individual
responses are independent but not identically distributed (each individual has a different mean and
variance); so we apply the standardization within ward but the responses of the household members
might be correlated. This result can be generalized easily to a cluster (i.e., intra-class correlation).
Let Ii jkt denote which cell the kth individual falls in the jth household within ith ward (i.e., Ii jkt = 1
if it falls in cell t and 0 for all other cells. Then, the adjusted cell counts are ñi jt = ∑ni j

k=1 Ii jktwi jk.
Our procedure can simply be applied immediately to these adjusted cell counts.

There are five relevant covariates that are normally used to study health status from the same
NLSS survey. They are age, nativity, sex, area and religion and they are mostly binary. These
health covariates are studied in Nandram, Chen, Fu and Manandhar (2018). Here, our procedure
does not apply directly. But the p(h)i jk iterates can be obtained by fitting a multinomial logit model
similar to the homogeneous and the heterogeneous models. But this is not easy. Another way is
to partition the age variable, say young and old (binary), thereby making six categorical variables
to form 26 = 64 cells and one can fit the heterogeneous model using the procedure in this paper.
However, one danger is the sparseness of the table. But one can certainly eliminate some cells that
are structural zeros.

Another problem is how to obtain a model that takes care of district estimates, a kind of bench-
marking. Because the districts are very large, it easy to obtain a reliable estimate for each district.
One can therefore benchmark the ward estimates or household estimates to the districts to obtain a
more robust model. It is also possible to do a sub-sub-area model.

APPENDIX A: Bayesian BHF Model with Survey Weights

We state the conditional posterior densities from Molina, Nandram and Rao (2014). We find
that the condition, ε ≤ ρ ≤ 1− ε , where ε is a small positive constant, is not necessary. This
eliminates the sensitivity analysis on ε .
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Defining wi = ∑ni
j=1 wi j,

x̄
˜

i =
∑ni

j=1 wi jx
˜

i j

wi
, ȳi =

∑ni
j=1 wi jyi j

wi
.

If the wi j are survey weights, ∑ni
j=1 wi j = Ni, the population size, and these wi j must be normalized

so that wi = n̂i, the effective sample size; see Potthoff, Woodbury and Manton (1992). But note
that these wi j do not exist (not defined) for nonsamples. Therefore, for prediction something like
surrogate sampling (Nandram 2007) has to be done. [In our application here, the survey weights
are assumed to be unity.]

First,

νi | β
˜
,σ2,ρ,y

˜
s

ind∼ Normal
{

ρwi

ρwi +1−ρ
(ȳi − x̄

˜
′
iβ
˜
),

ρ
ρwi +1−ρ

σ2
}
, i = 1, . . . , ℓ. (A.1)

Observe that the mean and variance of νi are defined for all values of ρ in [0,1]. When ρ = 0,

νi | β
˜
,σ2,ρ,y

˜
s is a point mass at 0 and when ρ = 1, νi | β

˜
,σ2,ρ,y

˜
s

ind∼ Normal(ȳi − x̄
˜
′
iβ
˜
,σ2/wi).

Second, letting

B =
ℓ

∑
i=1

ni

∑
j=1

wi j(x
˜

i j − x̄
˜

i)(x
˜

i j − x̄
˜

i)
′+(1−ρ)

ℓ

∑
i=1

wi

ρwi +1−ρ
x̄
˜

ix̄
˜
′
i

b
˜
=

ℓ

∑
i=1

ni

∑
j=1

wi j(x
˜

i j − x̄
˜

i)(yi j − ȳi)+(1−ρ)
ℓ

∑
i=1

wi

ρwi +1−ρ
x̄
˜

iȳi,

β
˜
| σ2,ρ,y

˜
s ∼ Normal(β̂

˜
,σ2B−1), (A.2)

where β̂
˜
= B−1b

˜
. Again, observe that the mean and variance of β

˜
are defined for all values of ρ in

[0,1].
Third, letting

G =
ℓ

∑
i=1

ni

∑
j=1

wi j{yi j − ȳi − (x
˜

i j − x̄i)
′β̂
˜
}2 +(1−ρ)

ℓ

∑
i=1

wi

ρwi +1−ρ
(ȳi − x̄

˜
′
iβ̂
˜
)2,

σ−2 | ρ,y
˜

s ∼ Gamma
(

n− p
2

,
G
2

)
. (A.3)

Again, observe that σ−2 | ρ,y
˜

s is defined for all values of ρ in [0,1].
Finally,

π(ρ | y
˜

s) ∝ (1−ρ)ℓ/2 | B |−1/2 G−(n−p)/2
ℓ

∏
i=1

{
wi

ρwi +1−ρ

}1/2

, (A.4)
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and again π(ρ | y
˜

s) is defined for all values of ρ in [0,1]. Therefore, the joint posterior density,
π(ν

˜
,β

˜
,σ2,ρ | y

˜
s), obtained by multiplying (A.1), (A.2), (A.3) and (A.4), is defined for all values

of ρ in [0,1].
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Figure 2: Comparison of the homogeneous model and the heterogeneous model under the NER method for
prediction of the finite population proportions (posterior means) for all wards
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Figure 3: Comparison of the homogeneous model and the heterogeneous model for prediction of the finite
population proportions (posterior means) for all wards under the IRLS method
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Figure 4: Comparison of the NER and IRLS projection methods under the homogeneous model prediction
of the finite population proportions (posterior means) for all wards
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Figure 5: Comparison of the NER and IRLS projection methods under the heterogeneous modelfor predic-
tion of the finite population proportions (posterior means) for all wards
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Figure 6: Comparison of the homogeneous model (NER projection method) and the heterogeneous model
(IRLS projection method) for prediction of the finite population proportions (posterior means) for all wards
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Figure 7: Comparison of the heterogeneous model (NER projection method) and the homogeneous model
(IRLS projection method) for prediction of the finite population proportions (posterior means) for all wards
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Table 1: Comparison of IRLS and the NER projective methods, the sub-area (Het) and the area-level (Hom)
models with respect to posterior inference about the finite population proportions by health classes (three
proportions)

IRLS, Het IRLS, Hom NER, Het NER, Hom

a. Sample only

PM .540 .608 .512 .574
.375 .379 .425 .406
.095 .022 .069 .015

PSD .078 .073 .077 .031
.071 .068 .074 .031
.038 .008 .038 .006

b. Nonsample only

PM .453 .512 .378 .389
.454 .466 .382 .375
.093 .022 .241 .237

PSD .138 .185 .046 .053
.138 .184 .045 .052
.040 .013 .036 .042

c. Population (both sample and nonsample)

PM .453 .511 .377 .388
.454 .466 .382 .375
.093 .023 .241 .236

PSD .138 .185 .046 .053
.138 .185 .045 .052
.040 .013 .036 .042

NOTE: Entries are the medians over the 101 sampled wards in (a), 12,133 nonsampled wards in
(b), and 12,234 wards in (c) for the three health classes.
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