
Two-stage super learner for predicting healthcare expenditures 
 
Abstract 
Healthcare utilization and associated costs have increased rapidly in recent years, making 
the study of healthcare expenditures an important area of public health research. Analysis 
of healthcare expenditure data is challenging due to heavily skewed distributions and zero-
inflation. Myriad methods have been developed for analyzing cost data; however, a priori 
determination of an appropriate method is often difficult. Super-learning, a technique that 
considers an ensemble of methods for cost estimation, provides an interesting alternative 
for modeling healthcare expenditures. The super learner has demonstrated benefits over a 
single method in recent studies across many disciplines. In this work, we propose a two-
stage super learner specifically designed for predicting zero-inflated expenditures. We 
demonstrate that the two-stage super learner has strong performance in predicting 
healthcare costs across a variety of cost distributions, in both real and simulated data. 
 
Keywords: healthcare expenditure, zero-inflation, two-part model, super learning, cross-
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Introduction 
The study of healthcare expenditures has become an important area in epidemiological and 
public health research. This is motivated by the growing interest in cost control and 
program evaluation, in view of adopting treatments and policies on the basis of cost-
effectiveness. Statistical models are often used for modeling these expenditures either for 
the purpose of prediction or to examine interventions’ effects of expenditures [1]. However, 
specific characterizations of expenditures, such as healthcare costs, length of stay, and 
utilization of health care services, often pose great challenges to statistical modeling [2]. 
Such data can exhibit a non-negligible point mass at zero due to the non-consumption of 
healthcare, in addition to substantial positive skewness arising because more severe impact 
patients often require myriad services due to clinical complications and comorbidities [3]. 
For example, in the United States, a small minority of the individuals account for a high 
proportion of health care costs. Berk & Monheit [4] report that 5% of the population 
accounts for the majority of health expenditures, a trend that has remained stable for 
decades.  
 
A common goal in studies of healthcare utilization is to model the conditional mean for a 
measure of utilization 𝑌 given demographic and diagnostic covariates 𝑋. In the remainder, 
for simplicity, we will take 𝑌to be cost. This is useful not only as an end in itself for 
generating cost predictions for future subjects, but also as a means to drawing inference on 
the causal effect of a new health policy on costs [5, 6, 7].  Here, we focus on conditional 
means as opposed to medians given it’s more sensitive to outliers and thus more sensitive 
to how estimators treat the skewness in the outcome and other statistical problems that are 
common in such data, e.g., zero-inflation [8]. Robust modeling of conditional mean costs 
is often challenging due to the presence of heavy right tails in the cost distribution. A 
common approach involves regression of log-transformed cost using ordinary least squares. 
The log-transformed outcome has decreased skewness and is often better approximated by 
a normal distribution than costs on the original scale. Duan’s smearing estimator [9] can 
be used to map estimates from the log-scale back to the original cost scale. However, this 
approach is limited in settings with zero inflation, since the log of zero is undefined. An 
alternative approach is generalized linear models (GLM), which can accommodate 
skewness which extend the normal linear model framework to allow response variables 
that are not normally distributed. GLMs provide considerable flexibility and are often 
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found to fit healthcare expenditures well [10]. Other parametric and semi-parametric 
models have also been proposed including the Cox proportional hazards model [4, 10], the 
Tobit model, the Tweedie model and quantile-based models [11]. See Jones [3] for a 
detailed overview and comparison of several regression models for healthcare costs.  
 
To better account for zero-inflation, researchers have utilized two-part models. In this 
approach, two models are specified: a model for the conditional probability of any cost, 
and a model for the conditional mean of costs amongst individuals with positive costs. 
Two-part GLMs with either a logit or probit link for the binary component and a Gamma 
distribution with log-link for the continuous component have been used in a variety of 
empirical work in health service research [12, 13, 14]. Often, the specification of the binary 
model is less important than the model for positive expenditures, which can alter results 
dramatically with different models [15]. Consequently, recent research has mainly focused 
on developing new models for the continuous part of the two-part model. The generalized 
Gamma distribution is a flexible choice with one scale and two shape parameters that has 
been shown to be relatively robust compared to the alternatives [8].  
 
Despite the proliferation of sophisticated statistical methods for modeling healthcare 
expenditures, there is, unfortunately, no "one-size-fits-all" model [15]. Moreover, many 
proposed methods rely on parametric or semi-parametric models, which require the proper 
specification of the regression formula. This can be quite challenging in many contexts 
where there is limited prior information as to how patient characteristics relate to 
expenditures. This has motivated a movement towards machine learning techniques, 
accelerated by the ubiquity of "big data", e.g., through electronic medical records [16]. 
These techniques make fewer assumptions about underlying relationships and can flexibly 
adapt to the data, thereby providing more accurate cost predictions.  
 
One particularly appealing approach in machine learning is super learning, also known as 
regression stacking [17]. Super Learning originated from “Stacked Generalization” 
(Wolpert, 1992 [18]), which is an approach to combine “lower-level” predictive algorithms 
into a “higher-level” model to increase predictive accuracy. Breiman later applied stacking 
in a regression context (“Stacked Regression”) and least squares with positive constraints 
on the higher-level model [17]. Super learning provides a generalization of these 
frameworks and strong theoretical guarantees have been established for the approach (van 
der Laan and Dudoit, 2003, [19]). Super learning entails positing a collection of potential 
methods and using cross-validation to learn the optimal way to combine predictions from 
these methods to achieve the most accurate prediction. The collection of candidate models 
could include parametric, semiparametric, or machine learning-based estimators. Under 
regularity conditions, the super learner has essentially the same large-sample predictive 
performance as an oracle estimator (i.e., the unknown, best-possible weighted combination 
among included algorithms). In this way, super learning provides a theoretically optimal 
means of combining estimators in the face of model uncertainty. Recently, Super Learner 
has shown benefits over using a  single method in several healthcare studies including 
prediction of post-traumatic stress disorder based on traumatic experiences (Kessler and 
others, 2014, [20]), prediction of mortality, both in the elderly population [21] and in 
intensive care units (Pirracchio and others, 201, [22]), as well as prediction of plan payment 
risk adjustment for total annual healthcare expenditures (Rose, 2016, [16]). 
 
The goal of the present work is to extend the super learner approach to better accommodate 
zero-inflated cost data. We propose a two-stage super learner that implements the super-
learning technique under a two-part model framework: we define a set of candidate 
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methods for predicting the presence of any costs, as well as for the positive portion of the 
cost distribution. The full super learner library then consists of all pairwise combinations 
of the two. In this way, we are able to learn the optimal model for both components in 
terms of arriving at the most accurate predictions of costs. We compare the two-stage super 
learner with the super learner, along with individual algorithms designed in other studies 
of healthcare cost and evaluate the benefits of using this Two-stage Super Learner via 
Monte Carlo simulations under various data generating processes. In addition, two 
empirical analyses are performed with the data from 2016-2017 Medical Expenditure Panel 
Survey (MEPS) and Back pain Outcomes using Longitudinal Data (BOLD) project. In both 
cases, we find that the two-stage super learner improves not only on individual algorithms 
for predicting costs, but also on a typical super learner that combines these algorithms.  
 
Methods 
MEPS Data 
The expenditure data for empirical analysis were drawn from the Medical Expenditure 
Panel Survey (MEPS) from 2016 to 2017. The MEPS is a national survey on the financing 
and use of medical care of families and individuals, their medical providers (doctors, 
hospitals, pharmacies, etc.) and employers across the United States. The Agency for 
Healthcare Research and Quality (AHRQ) has collected MEPS data every year since 1996. 
The MEPS provides an accurate measure of healthcare expenditures, as well as detailed 
measures of health status and other observable characteristics correlated with expenditures. 
Participating household components, containing families and individuals, were drawn from 
a nationally representative subsample of households that participated in the prior year's 
National Health Interview Survey. Household respondents provided demographic 
information, health status, self-reported medical conditions, medical expenditure and 
utilization, health insurance coverage and access to care for medical events. For some 
individuals, self-reported medical expenditures are supplemented with information from 
medical providers and insurers. MEPS uses a complex survey design including weighting, 
stratification, clustering and disproportionate sampling to create nationally representative 
annual estimates for U.S. civilian and noninstitutionalized population. 
 
In this study, 2016 MEPS data were used as a training sample to fit each candidate 
estimator and super learner while 2017 MEPS data were used as a testing sample to 
evaluate the performance of each estimator and super learner. The total annual healthcare 
expenditures were the outcome of interest and the covariates involve demographics, 
medical conditions and insurance characteristics collected on participants. The total annual 
healthcare expenditures include out-of-pocket payments and third-party payments from all 
sources but exclude insurance premiums. Considering the purpose of the study was to 
evaluate the benefits of the two-stage super learner rather than estimating national statistics, 
we disregard the sampling weights and survey design information of MEPS data to reduce 
data complexity. Additionally, we restrict the sample to include only adults and exclude 
observations with missing data in terms of outcome and considered covariates (refused, not 
asked, etc.). The final sample contained 10925 observations for training and 10815 
observations for testing. 
 
BOLD Data 
The Back Pain Outcomes using Longitudinal Data (BOLD) project established a large, 
community-based registry of patients aged 65 years and older who presented with primary 
care visits for a new episode of back pain (no prior visits to a health care provider for back 
pain care within 6 months) during March 2011 to March 2013 at three integrated healthcare 
systems: Harvard Vanguard, Henry Ford Health System, and Kaiser Permanente Northern 
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California. Details of BOLD registry are described in the BOLD Study Protocol [23]. The 
BOLD data comes primarily from patient self-reported questionnaires and electronic 
medical records (EMR). Expenditures in BOLD were calculated as total relative value units 
(RVU), a measure of value used in the US medicare reimbursement formula for physician 
services [24]. 
 
In this study, patient self-reported questionnaire responses were used to predict future 
expenditures (as measured by RVUs) in several categories. Specifically, the covariates 
include the following measures from patient self-reported questionnaires collected at 
baseline: (1) Socio-demographics (age, sex, race, ethnicity, education, employment status, 
etc.); (2) Pain-related characteristics (back/leg pain duration, back/leg pain intensity, 
modified Roland-Morris Disability Questionnaire [25], Brief Pain Inventory Activity 
Interference Scale [26]); (3) PHQ-4 measure of anxiety and depressive symptoms [27]; (4) 
European Quality of Life 5 Dimension (EQ5D) index and Visual Analog Scale [28]; (5) 
Number of falls [29]; and (6) Recovery expectation [30, 31]. Besides, we also include the 
Quan comorbidity score [32], baseline diagnosis and total relative value units (RVU) at 
one year before index visit from EMR as covariates. In addition to covariates, 4 spine-
related total relative value units (RVUs) calculated in the 365 days after index visit from 
EMR data were used as outcomes, including: 1) Sum of spine-related RVUS; 2) Sum of 
spine-related physical therapy RVUS; 3) Sum of spine-related injection RVUs; and 4) Sum 
of spine-related imaging RVUs. The 4 spine-related RVUs varied in both scale and level 
of zero-inflation. The BOLD data used in this study were served as both training and 
validation samples through the V-fold cross-validation. We excluded observations with 
missing data in terms of outcomes and considered covariates. The final sample contained 
4397 observations for training and validation.  
 
Two-part model 
The two-part model is a flexible statistical model specifically designed to deal with 
continuous variables with a point mass at a specific value, in this case, zero. The model 
consists of a binary model for the probability of the outcome being positive and a regression 
model applied to the positive subsample. The justification for this model is that 𝐸[𝑌|𝑋] 
can be written as 

𝐸[𝑌|𝑋] = 𝑃𝑟(𝑌 > 0|𝑋)𝐸[𝑌|𝑌 > 0, 𝑋] + 𝑃𝑟(𝑌 = 0|𝑋)𝐸[𝑌|𝑌 = 0, 𝑋] 
= 𝑃𝑟(𝑌 > 0|𝑋)𝐸[𝑌|𝑌 > 0, 𝑋] 

The two pieces of this equation can be estimated separately. The first part 𝑃𝑟(𝑌	 > 	0	|	𝑋) 
is commonly modeled using logistic regression indexed by a finite-dimensional regression 
parameter 𝜃!, e.g.,  

𝑙𝑜𝑔𝑖𝑡{𝑃𝑟(𝑦 > 0; 𝜃!|𝑥)} = 𝜃!"𝑥. 
The second component 𝐸[𝑌|𝑌 > 0, 𝑋] is commonly modeled using OLS based on log-
transformed outcome with smearing estimator or Gamma GLMs with log link functions to 
appropriately account for the high skewness in the data. Other approaches such as 
accelerated failure time regression, hazard-based regressions, and quantile-based 
regressions may also be used. In principle any binary regression technique could be used 
for the first component and any regression technique for the second. This includes the usage 
of modern machine learning techniques.  Given the dizzying array of possible ways of 
building a predictor of expenditures, it could be quite useful for practitioners to have a 
formal framework for selecting amongst the many choices.  
 
Super Learning 
Super learning provides one such framework. Super learning is a general ensembling 
framework that provides a formal means of selecting a combination of algorithms that best 
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fits the true cost regression function. Here, the notion of “best” refers to a cross-validated 
risk criterion. Suppose we have a dataset of independent observations 𝑂# = (𝑌# , 𝑋#), 𝑖 =
1,… , 𝑛, where 𝑌 is the outcome of interest and 𝑋 is a p-dimensional set of covariates. 
Suppose we have access to a candidate prediction function 𝑄A , e.g., 𝑄A(𝑥) could describe a 
prediction obtained on a new observation 𝑥 based on a fitted two-stage model, where a 
logistic regression is used in the first stage and a Gamma GLM in the second stage. We 
introduce the notion of the risk of 𝑄A , which provides a global summary of how well 𝑄A 
predicts outcomes 𝑌based on covariates 𝑋. Often (Benkeser and others, 2019, [33]) we rely 
on risk measures that can be expressed as the average discrepancy between 𝑌and the 
prediction made by 𝑄A. In other words, we can define a loss function 𝐿(𝑄A)	, that takes as 
input a particular data point (𝑥, 𝑦)and returns a real number measuring the discrepancy 
between 𝑄A(𝑥) and 𝑌. A larger value of the loss indicates a further gap between prediction 
and truth. For example, in the sequel we explicitly consider the squared error loss function 
𝐿(𝑄A)(𝑥, 𝑦) 	= 	 {𝑦	 − 𝑄A(𝑥)}$; and consider mean squared error 𝑅E𝑄AF = 𝐸{𝐿(𝑄A)(𝑥, 𝑦)} as 
our risk criterion. Given a risk criterion, we can define the optimal prediction function, say 
𝑄% as the function that minimizes risk over all possible prediction functions.   
 
We pause to remark that this optimization problem can be equivalently defined as a 
statistical estimation problem. For example, it is straightforward to show that for squared 
error loss, 𝑄% 	= 	𝐸(𝑌|𝑋) . That is, the optimal function for predicting 𝑌 from 𝑋 is the 
conditional mean. Thus, the task of learning the optimal prediction function is equivalent 
to the task of estimating the conditional mean of cost given covariates. Super learner 
provides one strategy for accomplishing this task. The equivalence between the pure 
prediction task and the estimation problem of estimating the conditional mean means that 
super learning is potentially useful both for (i) predicting health care utilization and (ii) 
analyses that examine the impact of interventions on expenditures, where a key step often 
involves learning the conditional mean outcome in order to de-confound the relationship 
between intervention and outcome.  
 
In a given problem, there are often many different approaches to developing a prediction 
function. In super learning, we call these approaches an algorithm and refer to a pre-
specified collection of algorithms as a library. Here, “algorithm” is used in a general sense 
as any means of mapping a given data set into a prediction function and we use training to 
refer to the process of applying an algorithm to data. Examples of algorithms include: (i) 
fitting ordinary least squared regression and returning the linear predictor; (ii) performing 
variable screening based on a univariate significance threshold, then applying ordinary 
least squares regression; (iii) training a random forest, where tuning parameters are selected 
via cross-validation. The super learner library should be, to the greatest extent possible, 
informed by subject-area expertise, but could also utilize data-driven, machine learning 
approaches as well [34].  
 
Denote the library 𝐿 and the cardinality of 𝐿 as 𝐾. The implementation of super learner 
involves using cross-validation to split the data into several distinct training and validation 
samples. Each algorithm is applied in each training sample, while predictions are obtained 
in the respective validation samples. The fit of the validation sample predictions is 
evaluated to determine an ensemble of algorithms that constitute the super learner. The 
process is described in these several steps: 
1. Fit each algorithm in 𝐿  on the entire dataset 𝑂# = (𝑌# , 𝑋#), 𝑖 = 1,… , 𝑛  to estimate 

𝑄A&(𝑋), 𝑘 = 1,2, … , 𝐾. 
2. Split the data into V mutually exclusive and exhaustive blocks of approximately equal 
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size. Let the 𝑣'() block be the validation sample, and the remaining 𝑉 − 1 groups be 
the training sample, 𝑣 = 1,2, … , 𝑉. Define 𝑇(𝑣) as the indices of the data in the 𝑣'() 
training set and 𝑉(𝑣) as the corresponding validation set.  

3. For 𝑣 = 1,… , 𝑉, do: train each algorithm using observations 𝑇(𝑣) to generate 𝑄A&,+ . 
Obtain a prediction for each observation in 𝑉(𝑣), 𝑄A&,+(𝑋#), 𝑖	 ∈ 𝑉(𝑣). 

4. Propose a family of weighted combinations of candidate estimators indexed by 𝐾-
length weight vector 𝛼. For example, we might consider all 𝛼that are non-negative and 
sum to 1: 

𝑚(𝑥; 	𝛼) = P𝛼&𝑄A&(𝑥)
,

&-!

, 𝛼&	 ≥ 	0,P𝛼&

,

&-!

= 1	 

5. Using squared error loss, determine the 𝛼 that minimize the cross-validated risk (CV-
MSE) of the ensemble estimator. Let 𝑚R(𝑋#; 	𝛼) = ∑ 𝛼&𝑄A&,+(𝑋#),

&-!  and find 

𝛼T = 𝑎𝑟𝑔𝑚𝑖𝑛/P{𝑌# −𝑚R(𝑋#; 	𝛼)}$
0

#-!

 

6. The final super learner is 

𝑄A12 = P𝛼T&𝑄A&

,

&-!

 

 
In step 4, many choices of weights could be considered. One particular choice is to select 
weights from amongst weight vectors that assign a weight of 1 to a particular algorithm 
and 0 weight to all others. This estimator is known as the cross-validation selector or 
discrete super learner, since it represents the single algorithm with lowest cross-validated 
risk. The super learner has strong theoretical guarantees of performance [16] and has shown 
strong performance in simulation and real data across many different settings [35].  
 
Two-stage Super Learning 
The super learner framework provides a natural approach to handling two-stage modeling 
problems. We propose a two-stage Super Learner model, wherein we propose a library for 
𝑃𝑟(𝑌 > 0|𝑋)	and for 𝐸[𝑌|𝑌 > 0, 𝑋] . The overall super learner library consists of all 
pairwise combinations of these two models, thereby providing great flexibility in building 
a robust super learning library to simultaneously handle zero inflation and skewed 
outcomes. Assuming the stage-1 library 𝐿! includes 𝐾! estimators and the stage-2 library 
𝐿$  includes 𝐾$  estimators, then the two-stage super learner’s “whole library” 𝐿! × 𝐿$ 
would contain 𝐾! × 𝐾$  candidate estimators with each one representing a specific 
combination of algorithms from the first stage and second stage.  
 
The steps for implementing the two-stage super learner is similar to the super learner. To 
compute prediction function 𝑄A , it involves fitting two models, one for each stage, and 
taking the product of their prediction. Models at stage 1 should be limited to classification 
models for binary outcomes and models at stage 2 should be limited to regression models 
for continuous outcomes. This yields the candidate estimators constituting the two-stage 
super learner library. The two-stage super learner is then constructed by taking the 
weighted combination of estimators in the library that minimize the cross-validated risk 
(CV-MSE). By basic applications of theoretical results from the super learner, the two-
stage super learner is believed to perform asymptotically as well as the best possible 
weighted combination of estimators and outperform any of the single estimators in the two-
stage super learner library.  
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We developed a R package that implements the two-stage super learner and overcame some 
of the additional challenges associated with super learning in the context of healthcare 
expenditure data. The package uses a modified assigning scheme for cross-validation that 
ensures approximately equal split of zeros and outliers over the folds. Secondly, we 
proposed a scaled quadratic programming to calculate the best convex combination of 
weights, which avoids the problems of overflow and constraints inconsistency by shrinking 
the matrix and vectors in quadratic functions. For more details see the supplementary 
material. 
 
Simulation studies 
To evaluate the performance of the two-stage super learner, a Monte Carlo simulation was 
used to show how each estimator behaves under a wide variety of data circumstances that 
are common in health economics and health service studies.  

Data generating process 
For simulation studies, the participants’ covariates were generated under a design that was 
similar to MEPS data and comprehensive to include as many scenarios as possible. 
Specifically, the participants’ characteristics were simulated as follows: 

𝑋!	~	𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5);			𝑋3	~	𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.2); 
𝑋$	~	𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1, 1);			𝑋4	~	𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1); 
𝑋5	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1);			𝑋6	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 3) 

𝑋7	~	𝐺𝑎𝑚𝑚𝑎(1, 0.5);			𝑋8	~	𝐺𝑎𝑚𝑚𝑎(0.5, 1) 
𝑋9	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(1);			𝑋!%	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2) 

𝑋!	～	𝑋9	were used for generating the simulation data while 𝑋3～	𝑋!%  were served as 
confounding variables during the model fitting of each estimator. To assess how the sample 
size, zero percentage, non-zero distribution, and model complexity affects the estimations, 
we consider four data generating settings for tuning in simulation:  

Setting 1: sample size – small (500) vs. large (2000);  

Setting 2: zero percentage – low (5%) vs. high (70%); 

Setting 3: non-zero distribution – Log-normal, Gamma, Tweedie, Mixture;  

Setting 4: model complexity (two-way interactions among covariates) – Yes vs. No  

The combination of four settings above result in a total of 32 different data scenarios and 
covers a broad range of situations that occur in the real world. The healthcare cost was 
simulated using a two-stage procedure to allow for point mass at zero. Specifically, in the 
first stage, the sample was first generated from a Bernoulli distribution with the probability 
of zero determined by a logistic model: 

𝑙𝑜𝑔𝑖𝑡{𝑃𝑟(𝑌 = 0|𝑥)} 	= 𝑙𝑜𝑔 c
𝑃𝑟(𝑌 = 0|𝑥)

1 − 𝑃𝑟(𝑌 = 0|𝑥)
d 	= 𝑋:𝛽 

Where 𝑋 = (1, 𝑋!, … , 𝑋9) and 𝛽 = (𝛽%, 𝛽!, … , 𝛽9). The value of estimated coefficients 𝛽 
was controlled by data generating settings 2 & 4 listed above. In the second stage, we focus 
on the subsample with non-zero value in the Bernoulli sample. To determine the effect of 
skewness level on the estimation, we studied the performance of estimators under four 
different skewed probability density functions (PDF) that yield positive outcomes skewed 
to the right. We allowed these skewed distributions to depend on covariates 𝑋 through a 
linear combination 𝑋:𝛾  with 𝛾  corresponding to estimated coefficients and remained 
unchanged across four different distributions. 
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Lognormal Distribution: The true model assumed is as follows: 

𝑙𝑛	(𝑦) = 𝑋:𝛾 + 𝜀 
Where 𝑋 = (1, 𝑋!, … , 𝑋9), 𝛾 = (𝛾%, 𝛾!, … , 𝛾9), 𝜀~𝑁(0, 𝜎$), 𝐸(𝑋:𝜀) = 0. The conditional 
expectation of 𝑦 is given by 𝐸(𝑦|𝑥) = 𝑒𝑥𝑝	(𝑋:𝛾 + 0.5𝜎$). For log-normal distribution, 
the raw-scale mean, variance, skewness and kurtosis are all increasing functions of 
variance on the log-scale. Specifically, the raw-scale skewness (S) is 𝑆;<= = (𝑒𝑥𝑝(𝜎$) +
2)(𝑒𝑥𝑝	(𝜎$) − 1)%.9 . The logarithm of outcome 𝑙𝑛	(𝑦)	 was normally distributed with 
mean determined by 𝜇 = 𝑋:𝛾 and variance set to 𝜎$ = 0.3. 
 
Gamma Distribution: Gamma distribution has a PDF that can be either monotonically 
declining throughout the support or bell-shaped, but skewed right. The PDF of Gamma 
distribution is: 

𝑓(𝑦) =
1

𝛤(𝛼)𝑏<
𝑦/'!𝑒'

?
@  

Where 𝑏 is the shape parameter and 𝛼 is the scale parameter. The mean is equal to 𝛼𝑏 and 
the skewness (S) is a decreasing function of the shape parameter 𝑆 = $

√/
. The shape 

parameter was determined with	𝑏 = 𝑒𝑥𝑝	(𝑋:𝛾) and the scale parameter was set to 𝛼 = 1.3 
in the simulation study. 

 
Tweedie Distribution: Tweedie distributions are defined as a subfamily of exponential 
dispersion models (ED) with a special mean-variance relationship. A random variable 𝑌 is 
Tweedie distributed 𝑇𝑤B(𝜇, 𝜎$), if its mean 𝜇 = 𝐸(𝑌) and 𝑣𝑎𝑟(𝑌) = 𝜎$𝜇B, where 𝜎$ is 
the dispersion parameter and 𝑝 ∈ 𝑅  is the power parameter. The PDF for the Tweedie 
family is complex and cannot be expressed in closed form, but the Tweedie family includes 
common distributions like Normal (𝑝 = 0), Poisson (𝑝 = 1) and Gamma (𝑝 = 2). In the 
simulation, the mean was determined with 𝜇 = 𝑋:𝛾, the scale and power were set to 𝜎$ =
1.8, and 𝑝 = 1.5, respectively.  
 
Mixture distribution: The mixture distribution is a mixture of log-normal and gamma 
distribution. Specifically, it was generated by first drawing a binary random variable with 
a pre-specified probability, 𝐺~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) . We subsequently generated a gamma 
distribution if 𝐺 ≤ 𝑝 , or a log-normal distribution if 𝐺 > 𝑝 . In the simulation, the 
probability was set to 𝑝 = 0.5. We wanted to evaluate the two-stage super learner in 
situations where a simple parametric model does not capture the true distribution, as we 
expect to be the case in practice. 

 
Estimators 
In a two-stage super learner, the probability of the outcome being positive was estimated 
in stage 1 and the positive level of outcome was estimated in stage 2. Previous study [15] 
has shown that alternative specifications of the binary choice model (stage-1) yield nearly 
identical results but the choice of model for the distribution of the outcome conditional on 
it being positive (stage-2) can yield quite different results with different models. As a result, 
in this study, we mainly focus on the specification of estimators in stage 2. We used a 
diverse library for the two-stage super learner, with the library in stage 1 including 3 
estimators and the library in stage 2 including 10 estimators. Additionally, we are interested 
in how the performance of a two-stage super learner compared to that of a super learner, 
thus we also fit a super learner with a library of 8 estimators, resulting in a total of 38 
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estimators. The details are shown in table 1 below. 
 
Table 1. Candidate estimators for the simulation study 
Super Learner Stage Method 

 
 
 
 
 

Two-stage 

1 GLM (logistic regression) 
1 Lasso (logistic regression) 
1 Random Forest 
2 GLM (log link, Gamma family) 
2 GLM (identity link, Gamma family) 
2 Log OLS + smearing 
2 Lasso (OLS) 
2 Adaptive GLM 
2 AFT (generalized Gamma) 
2 Cox hazard 
2 Adaptive hazard 
2 Quantile regression 
2 Random forest 

 
 
 

Standard (one-stage) 

GLM intercept only (mean) 
OLS 
Lasso (OLS) 
Zero-inflated Poisson 
Zero-inflated Negative Binomial 
Tobit 
Tweedie 
Random Forest 

 
Evaluation metrics 
Each of the estimators is evaluated on 1000 simulated replicate samples from each of the 
data generating processes. This allows us to reduce the Monte Carlo simulation variance 
by holding the specific draws of the underlying random numbers constant when comparing 
alternative estimators. Each estimator was evaluated based on two evaluation metrics: 
(1) The mean squared error (MSE). The MSE uses a squared difference for error 

calculation and indicates how well the estimator minimized the residual error on the 
raw-scale of the replicate sample. For each replicate r with sample size n, 

𝑀𝑆𝐸 =
1
𝑛
P(𝑦;# − 𝑦T;#)$
0

#-!

 

Different data settings have a different scale for the outcome. To compare the 
performance of the prediction algorithms across diverse data settings we used the 
relative mean squared error where the denominator is the mean squared error of a pre-
specified baseline model: 

𝑟𝑒𝑙𝑀𝑆𝐸(𝑘) =
𝑀𝑆𝐸(𝑘)

𝑀𝑆𝐸(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
,			𝑘 = 1,2, … , 𝐾 

(2) The coefficient of determination, or R2. R2 is another metric to evaluate the model and 
it is closely related to MSE but has the advantage of being scale-free. R2 is always 
between [−∞, 1] no matter how large or small the MSE is. For each replicate r with 
sample size n, 
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𝑅$ = 1 −
∑ (𝑦;# − 𝑦T;#)$0
#-!

∑ (𝑦;# − 𝑦s;#)$0
#-!

 

When R2 is negative it means the model is worse than predicting the mean. Besides R2 
itself, we also calculated the relative efficiency (RE) for each algorithm, which we 
defined as the ratio of 𝑅$ for an algorithm to the R2 for the two-stage Super Learner. 
The larger the RE, the better the performance of an algorithm compared to two-stage 
Super Learner.  

𝑅𝐸 =
𝑅$(𝑘)

𝑅$(𝑇𝑤𝑜 − 𝑠𝑡𝑎𝑔𝑒	𝑆𝐿)
,			𝑘 = 1,2, … , 𝐾 

All the evaluation metrics listed above are evaluated via cross-validation to more 
accurately assess the out-of-sample performance. 
 
Results 
Simulation results 
The numerical results of top 10 estimators, summarized in Table 2, were based on 1000 
times replication for each of the 32 data generation processes. Within each data generating 
mechanism, the outcomes were skewed to the right and heavy-tailed with a point mass at 
zero. Each estimator was evaluated via average MSE and R2, along with their 
corresponding standard error across 32 different data settings. The relative MSE, calculated 
using the MSE of S1: GLM + S2: GLM-Gamma-Log as a reference, was provided to better 
visualize the performance of various estimators relative to a assumed default model for 
analyzing healthcare expenditure. The boxplots of MSE for each estimator across 32 data 
settings were shown in figure 1, with the diamond inside the box indicating the mean MSE 
over 1000 simulations. For all the boxplots following, the estimators were ordered 
descendingly according to their mean value. In general, with the given library, the two-
stage super learner was able to adapt to the underlying structure of different data generating 
functions with the smallest average MSE and largest average R2. As expected, the super 
learner behaved worse than the two-stage super learner. The two-stage super learner also 
appeared to improve on the discrete super learner with better prediction. The selection of a 
single algorithm based on cross-validated risk minimization was unstable and changed 
every time under different data settings, while the two-stage super learner can average a 
few of the best algorithms in the library to give a more stable estimator to model 
misspecification. Other estimators with favorable performances included combinations of 
logit model and Lasso at stage 1 with GLM (log-link & gamma distribution), quantile 
regression, and log-transformed OLS at stage 2, together with zero-inflated Negative 
Binomial model. By contrast, estimators based on cox hazard, GLM (identity link & 
gamma distribution) at stage 2 as well as Tweedie and Tobit model were less efficient with 
larger MSE, indicating poor predictions. 
 
Table 2. The MSE, relative MSE, and R2, averaged over 1000 repetitions of top 10 
estimators across 32 data generating processes 

Algorithm MSE 
(108) 

Relative MSE R2 

Two-stage Super Learner 3.251 0.907 0.622 
Discrete Super Learner 3.307 0.923 0.616 
Super Learner 3.382 0.944 0.611 
S1: Lasso + S2: GLM-Gamma-Log 3.563  0.994  0.609 
S1: Lasso + S2: Quantile regression 3.567  0.996  0.608 
S1: Lasso + S2: Log OLS-smearing 3.570  0.996  0.608 
Zero-inflated Negative Binomial (ZINB) 3.582  1.000  0.607 
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S1: GLM + S2: GLM-Gamma-Log 3.583  1.000  0.607 
S1: GLM + S2: Quantile regression 3.589  1.002  0.606 
S1: GLM + S2: Log OLS-smearing 3.590 1.002 0.606 

Note: Algorithms are presented in ascending order according to average MSE. S1 refers to stage-1 and S2 refers 
to stage-2. GLM in S1 refers to logistic regression and Lasso in S1 refers to logistic Lasso regression. GLM-
Gamma-Log refers to GLM with Gamma family and Log link function. The relative MSE is calculated using 
the MSE of S1: GLM + S2: GLM-Gamma-Log as a reference. 

 
Figure 1. Simulation – Boxplot of MSE across 32 data settings 

 
Figure 2 contains the MSE from all estimators on small vs. large datasets as well as low vs. 
high zero percentage. Similar results were seen for small (figure 2a) and large (figure 2b) 
sample sizes, where the super learner-based methods all out-performed the 
parametric/semiparametric methods due to the latter being probably mis-specified. For a 
small sample size, we found the standard super learner yielded the minimal average MSE, 
followed by the two-stage super learner, though their observed differences were trivial 
within the bounds of Monte Carlo error. For a large sample size, the two-stage super learner 
surpassed the standard super learner and their difference in MSE is more evident. The MSE 
of the two-stage super learner in small sample size was smaller than that of the discrete 
super learner compared to a large sample size, justified the improved performance of super 
learner under the finite-sample setting. Investigation of the estimator ranking showed that 
the performances of each estimator remained fairly consistent regardless of the sample size. 
Nonetheless, the results from low zero percentage (figure 2c) and high zero percentage 
were quite different. Generally, the MSE for data with high zero percentages was smaller 
than that for data with low zero percentages. When the number of zeros was low (5%), the 
standard super learner did reasonably well and outperformed the two-stage super learner. 
This was owing to the limited number of zeros that obviated the need to specify an 
additional ensemble for zero-point mass issues, as can be seen in figure 2c where the 
Tweedie and zero-inflated model beat all the two-part models in the library. When the zero 
percentage was high (70%), the two-stage super learner started to exceed the standard super 
learner. This was in line with expectations as the presence of excess zeros was serious and 
an extra layer was in need to deal with zero-point mass issues, as can be seen in figure 2d 
where the performances of the one-part models in high zero-percentage samples were not 
quite as good as that in low-zero-percentage samples.  
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Figure 2. Simulation – Boxplot of MSE for small vs. large sample size and low vs. high 

zero percentage 
 
Figure 3 contains the MSE for the top 10 estimators under four different distributions. We 
additionally added the MSE of the Tweedie model in Figure 3c for illustration. It's shown 
that the estimators behaved pretty differently under different data generating distributions, 
leading to slightly disparate performance of the super learner. For log-normal and gamma 
generated data, the log-OLS with smearing retransformation and GLM/adaptive GLM 
were able to achieve the minimum MSE among all single algorithms respectively since 
these algorithms were able to well approximate the true underlying data structure. However, 
under the mixture distribution, the quantile regression by Wang & Zhou had a better model 
fit than other single algorithms. This is probably because this algorithm was distribution-
free and was able to flexibly estimate the outcome through regressing on the quantiles of 
the outcome, while other algorithms were not enough to approach the underlying 
distribution. Surprisingly, the Tweedie model exhibited relatively bad performances even 
under the Tweedie data-generating scenario. This may be due to the instability of the 
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Tweedie model, as can be seen by the large interquartile and extreme outlier in figure 3c. 
A comparison of different distributions revealed that the two-stage super learner was 
always best behaved and had the minimum MSE across almost all data generating 
distributions. The only exception occurred at the gamma distribution, where the best results 
were obtained on the discrete super learner, perhaps indicating a deleterious effect in finite 
samples of including mis-specified methods in the library of a two-stage super learner. The 
Cox hazard model was generally very bad, possibly because the proportional hazards 
assumption was violated in all four data generating distributions. 
 

 
Figure 3. Simulation – Boxplot of MSE for top 10 estimators under four distributions 

 
Empirical data analysis 
MEPS Data 
We used data from the 2016-2017 MEPS to evaluate the two-stage super learner in real 
world situations. We used an identical set of algorithms as in the simulation study, with all 
candidate algorithms in the two-stage super learner library modeled under a 10-fold cross-
validation. The final sample had 10925 observations for training and 10815 observations 
for testing. Expenditures are measured in nominal US dollars. The distribution of total 
expenditures is highly skewed with a large mass at zero and heavy upper tails (Figure 4). 
The skewness is 7.2 and 6.7 for 2016 & 2017 MEPS data, respectively (compare to 0 for 
symmetric data). For MEPS data, almost 20% of observations have zero expenditures and 
in a very small fraction of observations, 2% to be precise, had expenditures over $50,000. 
Although it is tempting to drop extreme observations, we are reluctant to do so because we 
cannot be sure that they are outliers in any real sense. Summary statistics of total health 
expenditures are reported in Table 3. 
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Figure 4. Distributions of total healthcare expenditures 

 
Table 3. Summary statistics of total health expenditures for MEPS data 

 2016 MEPS 2017 MEPS 
Measures N=10925 N=10815 
0.05 Percentile 0.0 0.0 
0.25 Percentile 157.0 130.0 
0.50 Percentile 1076.0 1156.0 
0.75 Percentile  4521.0 4902.0 
0.95 Percentile 24277.8 28189.3 
Mean 5368.4 6099.7 
SD 13815.1 15992.3 
Skewness 7.2 6.7 
Zero % 17.8 19.6 
 
Covariates include demographics, education, poverty, disease conditions and insurance 
coverage. Descriptive statistics of covariates are shown in Table 4. A smaller proportion 
of females (45.5% and 45.6%) appeared in the MEPS data and the mean age was 
approximately 45.5 years. The 2016 MEPS data had similar education levels and 
distributions of race and region as the 2017 MEPS data. People in 2017 MEPS had a better 
insurance and medical care coverage than people in 2016 MEPS — likely because they are 
richer with a higher average family income as % of the poverty line (369.5% vs. 361.1%). 
Participants of 2017 MEPS are also healthier compare to participants of 2016 MEPS with 
a slightly fewer presence of diabetes (11.9% vs. 12.0%), hypertension (33.9% vs. 34.1%), 
cancer (8.7% vs. 9.0%) and heart disease (12.8% vs. 13.1%). 
 
Table 4. Descriptive statistics of covariates 

 2016 MEPS 2017 MEPS 
Covariate N=10925 N=10815 
Age  46.6 46.4 
Sex Female (%) 45.6 45.5 
 Male (%) 54.4 54.5 
Race Hispanic (%) 28.8 28.9 
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 White (%) 42.5 42.4 
 Black (%) 18.4 18.3 
 Asian (%) 7.5 7.5 
 Other (%) 2.9 2.9 
Region Northeast (%) 16.3 16.2 
 Midwest (%) 19.4 19.3 
 South (%) 37.9 38.0 
 West (%) 26.4 26.5 
Education (yrs)  12.9 12.9 
Income as percent poverty (%) 361.1 369.5 
Private insurance (%)  59.5 61.0 
Medicare (%)  22.6 23.5 
Public insurance (%)  22.9 23.6 
Uninsured (%)  12.3 11.0 
Diabetes (%)  12.0 11.9 
Hypertension (%)  34.1 33.9 
Cancer (%)  9.0 8.7 
Heart disease (%)  13.1 12.8 
 
For the prediction of annual healthcare expenditure of MEPS 2017, the two-stage super 
learner performed better than the super learner and all the single algorithms considered 
with the lowest cv-MSE (Figure 5a) and the highest cv-R2 (Figure 5b). See table 6 for 
details of MSE, R2, and relative efficiency (RE) for top 15 estimators. As expected, for 
estimators that were used both alone and at stage-2 (Random Forest, Lasso), the two-stage 
models are always better than the one-stage model. Additionally, the choices of models at 
stage-2 matters more compared to the choices of models at stage-1 as estimators with the 
same stage-2 model but different stage-1 models shared analogous behavior. Efficiency 
losses for the single algorithms compared to the two-stage super learner, with respect to 
cross-validated R2, ranged from 0 to 85%. Not surprisingly, predicting with just the mean 
was the worst-performing algorithm with R2 and RE being approximately 0. Log-
transformed OLS with smearing retransformation and Adaptive GLM used at stage 2 also 
performed poorly with less than 20% RE compared to two-stage Super Learner, no matter 
which algorithms were used at stage 1. Random forests used at stage-2 along with any 
candidate algorithms at stage 1 performed nearly as well as the two-stage super learner, 
capturing over 95% of the efficiency of two-stage super learner. Any of these three 
algorithms could be chosen as the discrete super learner in practice given the minor 
absolute differences in performance, although the random forest used at both stages had 
the highest R2. The super learner was among the best performed estimators with R2 and RE 
higher than any single algorithm as anticipated. For stage-2 algorithms, Lasso performed 
better than the GLM and quantile regression, however, its improvement over these 
algorithms was trivial. The hazard-based models (adaptive hazard, cox hazard) had better 
performances compared to the accelerated failure time (AFT) model. What remains 
consistent is that, given each algorithm used at stage 2, the performance is always better 
when the random forest is used at stage 1 compared to the logit model and Lasso. 
 
 
Table 6. Results of MSE, R2 and Relative Efficiency (RE) for top 15 estimators 

Algorithm MSE 
(109) 

R2 RE 

Two-stage Super Learner 2.180 0.147 1.000 
Discrete Super Learner 2.192 0.143 0.969 
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S1: RF + S2: RF 2.192 0.143 0.969 
S1: GLM + S2: RF 2.193 0.142 0.965 
S1: Lasso + S2: RF 2.194 0.141 0.961 
Super Learner 2.221 0.132 0.893 
RF 2.236 0.126 0.852 
Zero-inflated Poisson (ZIP) 2.257 0.119 0.810 
S1: GLM + S2: Lasso (OLS) 2.260 0.118 0.803 
S1: Lasso + S2: Lasso (OLS) 2.260 0.117 0.798 
S1: RF + S2: Lasso (OLS) 2.261 0.117 0.796 
OLS 2.264 0.116 0.789 
Lasso (OLS) 2.265 0.115 0.782 
S1: RF + S2: GLM-Gamma-Log 2.267 0.114 0.776 
S1: GLM + S2: GLM-Gamma-Log 2.268 0.114 0.770 

Note: Estimators are presented in ascending order based on MSE. S1 refers to stage-1 and S2 refers to stage-2. 
RF refers to Random Forest. GLM in S1 refers to logistic regression and Lasso in S1 refers to logistic Lasso 
regression. GLM-Gamma-Log refers to GLM with Gamma family and Log link function.  

 

 
Figure 5. MEPS results – MSE, R2 and relative efficiency (RE) 
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BOLD Data 
We further applied the two-stage super learner to analyze the BOLD data. The final dataset 
contained 4397 observations including 4 spine-related total RVUs as outcomes and 24 
variables measured at baseline as covariates. A summary of 4 outcomes is presented in 
Table 7. Despite the difference in scale, the distributions of 4 spine-related RVUs are all 
highly skewed with heavy upper tails (Figure 4). Their skewness are all above 6, compared 
to 0 of absolute symmetry. Conversely, different spine-related RVUs have different zero-
inflation, with spine-related RVU having the lowest zero-mass (5%), then comes the spine-
related imaging RVU (55%), spine-related physical therapy RVU (85%) and spine-related 
injection RVU (91%). 

 
Figure 6. Distributions of 4 total spine-related RVUs 

 
Table 7. Summary statistics of total spine-related RVUs for BOLD data 

Measures Spine-related 
RVUS 

Spine-related 
physical therapy 

RVU 

Spine-related 
injection RVU 

Spine-related 
imaging RVU 

  
0.05 Percentile 0.10 0.00 0.00 0.00 
0.25 Percentile 1.48 0.00 0.00 0.00 
0.50 Percentile 2.45 0.00 0.00 0.00 
0.75 Percentile  7.38 0.00 0.00 0.00 
0.95 Percentile 28.32 3.39 4.28 15.40 
Mean 14.83 0.54 0.75 3.30 
SD 80.60 1.85 4.20 7.69 
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Skewness 12.01 6.20 13.96 8.20 
Zero % 5.00 85.35 91.31 55.22 

 
Descriptive statistics of BOLD baseline covariates are shown in Table 8. To reduce the 
sparsity in data, excess levels in certain baseline categorical covariates were grouped 
together to facilitate the modeling process. This grouping procedure was consistent with 
previous BOLD studies [36, 37, 38]. Regarding sociodemographics, most patients in 
BOLD study were females (64.9%), Caucasians (73.4%), recruited from Kaiser site 
(66.6%),  high school graduate (54.6%), non-smokers (55.1%), retired (81.8%) and lived 
with spouse or partner (59.5%) with a mean age of 74 years old. With respect to back pain 
related measures, patients in BOLD study were more likely to be diagnosed as back pain 
only (67.6%), have no falls and injuries in last 3 weeks (92.5% & 96.6%) and have had 
back pain for less than 3 months (53.8%). They rated their back and leg pain as moderate 
intense (5.0 & 3.5), they reported minor pain interference with activities (BPI: 3.4), slight 
psychological distress (PHQ-4: 1.6), modest level of disability (RMDQ: 9.7), medium back 
pain recovery expectation (5.5) and good quality of life, as measured by the EQ-5D index 
(0.76) and EQ-5D VAS (74.4). The mean total RVUs in a year before index visit is 39.1. 
 
Table 8. Descriptive statistics of BOLD baseline covariates 
 No. (%) of Patients 
Covariate N=4397 
Study Site Harvard Vanguard 682 (15.5%) 
 Henry Ford 787 (17.9%) 
 Kaiser 2928 (66.6%) 
Age, mean (SD)  73.7 (6.8) 
Gender - Female  2852 (64.9%) 
Hispanic - Yes  259 (5.9%) 
Race Black 671 (15.3%) 
 Asian 185 (4.2%) 
 White 3229 (73.4%) 
 Mixed race 312 (7.1%) 
Education < High school 252 (5.7%) 
 >= High school 2399 (54.6%) 
 College graduate 972 (22.1%) 
 Graduate degree 774 (17.6%) 
Living with Spouse or partner 2616 (59.5%) 
Smoking status Never Smoked 2424 (55.1%) 
 Quit > 1 year ago 1712 (38.9%) 
 Current smoker/quit < 1 year ago 261 (5.9%) 
Employment Working Full-time/Part-time 483 (11.0%) 
 Retired (not due to ill health) 3598 (81.8%) 
 Retired/disabled because of ill health  125 (2.8%) 
 Other 191 (4.3%) 
Lawyer - Yes  26 (0.6%) 
Back Pain duration < 1 month 1488 (33.8%) 
 1 - 3 months 879 (20.0%) 
 3 - 6 months 296 (6.7%) 
 6 - 12 months 257 (5.8%) 
 1 - 5 years 645 (14.7%) 
 > 5 years 832 (18.9%) 
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Back Pain intensity (0-10), mean (SD) 5.0 (2.8) 
Leg Pain intensity (0-10), mean (SD) 3.5 (3.3) 
Back Pain Recovery Expectations in 3 months (0–10), mean (SD) 5.5 (3.7) 
Patients with one or more fall in last 3 weeks 328 (7.5%) 
Patients with an injury* caused by falls 150 (3.4%) 
RMDQ score (0-24), mean (SD) 9.7 (6.3) 
BPI interference (0-10), mean (SD) 3.4 (2.5) 
EQ-5D index (0-1), mean (SD) 0.76 (0.17) 
EQ-5D VAS (0-100), mean (SD) 74.4 (18.3) 
PHQ-4 score (0-12), mean (SD) 1.6 (2.5) 
Baseline diagnosis Back pain only 2972 (67.6%) 
 Back and leg pain 954 (21.7%) 
 Spinal Stenosis 217 (4.9%) 
 Other 254 (5.8%) 
Quan comorbidity 
score 

0 527 (12.0%) 

 1 1726 (39.3%) 
 2 and more 2144 (48.8%) 
RVUs in a year before index, mean (SD) 39.1 (89.1) 

*The injury was defined as limiting regular activities for at least a day or requiring a visit to a doctor. 
 
Considering the unknown true underlying distribution of RVUs in reality and potential bias 
caused by model misspecification, in BOLD analysis we replaced certain algorithms used 
previously in super learner and stage-2 of two-stage super learner with machine learning 
algorithms including regression splines，regression tree, bootstrap aggregating, Gradient 
Boosting and Neural Network, which are more flexible and require fewer assumptions. 
These algorithms have been used for cost estimation in previous researches of healthcare 
expenditures [39, 40]. The details are shown in table 9. Performances of all estimators were 
evaluated based on 10-fold cross-validation. Within each training fold, the candidate 
algorithms in the two-stage super learner library were also modeled under a 10-fold cross-
validation. 
 
Table 9. Candidate estimators for the BOLD data 

Super Learner Stage Method 
 
 
 
 
 

Two-stage 

1 GLM (logistic regression) 
1 Lasso (logistic regression) 
1 CV-Random Forest 
2 GLM (log link, Gamma family) 
2 GLM (identity link, Gamma family) 
2 Log OLS + smearing 
2 Lasso (OLS) 
2 Multivariate Adaptive Regression Spline (MARS) 
2 Regression Tree 
2 Bootstrap Aggregating (Bagging) 
2 CV-Random Forest 
2 Gradient Boosting Machine 
2 Neural Network 

 
 
 

OLS 
Lasso (OLS) 
Multivariate Adaptive Regression Spline (MARS) 
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Standard (one-stage) Regression Tree 
Bootstrap Aggregating (Bagging) 
CV-Random Forest 
Gradient Boosting Machine 
Neural Network 

 
For prediction of spine-related RVUs, the improvements of two-stage super learner over 
super learner and best single algorithms are modest but prevalent. See table 10 for cross-
validated MSE, R2 and relative efficiency (RE) of top 10 algorithms. Specifically, the two-
stage super learner had the best overall performance under all different zero-inflation levels, 
with the smallest cross-validated MSE and the largest cross-validated R2 among all 
algorithms considered. However, its improvement over the super learner and best single 
algorithm was humble, where the super learner had a relative efficiency ranging from 95% 
to 99% and the best single algorithm had a relative efficiency about 98% in modeling 4 
spine-related RVUs. Algorithms that perform well in one setting will not necessarily 
perform well in other settings, as can be seen in figure 7 where the top 15 algorithms in 
modeling 4 spine-related RVUs changed dramatically. Super learner worked better in 
modeling outcomes with low to medium zero-inflation, with performance ranked 2th in 
modeling spine-related RVUs (5% zero) and 6th in modeling spine-related imaging RVUs 
(55% zero). One-stage models had good behavior likewise when zero-mass were not 
serious, especially in low zero-inflation situations where the one-stage Random Forest beat 
all the two-stage models (figure 7). Overall, the regression tree and regression splines 
(MARS) had worst performance either used alone or combined with estimators at stage-1 
(appendix table). Neural Network and bootstrap aggregating also performed poorly 
compared to parametric regressions (appendix table).  
 
In terms of probability estimation at stage-1, parametric regressions were recommended 
under high zero-inflation while machine learning algorithms were recommended under 
medium zero-inflation, as suggested in figure 7 where Random Forest at stage-1 performed 
perfectly in modeling spine-related imaging RVUs while GLM and Lasso at stage-1 
performed perfectly in modeling spine-related physical therapy RVUs and injection RVUs. 
When zero-inflation was low, the choice of algorithms at stage-1 was relatively less 
important compared to that at stage-2. GLM, Lasso and Random Forest at stage-1 
performed similarly good in modeling spine-related RVUs when Random Forest or Lasso 
were used at stage-2 (figure 7). Similar recommendations applied for positive cost 
estimation at stage 2. In particular, Random Forest is good at modeling spine-related RVUs 
and spine-related imaging RVUs, Gradient Boosting is good at modeling spine-related 
imaging RVUs, while log-LOS smearing, GLM with Gamma family and identity or log 
link are good at modeling spine-related physical therapy RVUs and injection RVUs. We 
found that baseline socio-demographics and patient-reported outcomes may have signals 
for predicting various spine-related RVUs in a year after index, with a cross-validated R2 
ranging from 6.2% to 26.6% for two-stage super learner. The performance was especially 
great for modeling spine-related physical therapy RVUs. MSE varied significantly in 
modeling different spine-related RVUs, partly due to the difference in terms of scale of 
RVUs. Our results also suggest that there may exist redundancy in the covariates as Lasso 
is always among the best performed estimators in modeling spine-related RVUs with 
different zero-inflations. Spine-related RVU is responsible for approximately 20% of the 
total RVU and around 5% of patients in our sample have no spine-related consumption, so, 
while a cross-validated R2 of 6.6% may seem low, this is a stronger signal than we should 
ideally see. 
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Table 10. Top 10 algorithms + Super Learner for modeling 4 spine-related RVUs 

Algorithm  MSE R2 RE 
Spine-related RVUs (5% zero)    
 Two-stage Super Learner 6291.351 0.0618 1.0000 
 Super Learner  6307.790  0.0611  0.9899  
 Discrete Super Learner  6316.867  0.0608  0.9844  
 Single: RF  6320.680  0.0607  0.9820  
 S1: RF + S2: RF  6336.996  0.0600  0.9720  
 S1: GLM + S2: RF  6344.708  0.0597  0.9673  
 S1: Lasso + S2: RF  6344.743  0.0597  0.9673  
 S1: RF + S2: Lasso  6394.274  0.0579  0.9369  
 S1: Lasso + S2: Lasso  6395.829  0.0578  0.9359  
 SL: GLM + S2: Lasso 6396.604 0.0578 0.9355 
Spine-related imaging RVUs (55% zero)    
 Two-stage Super Learner 55.6323 0.0872 1.0000 
 Discrete Super Learner  55.7390  0.0855  0.9799  
 S1: RF + S2: GBM  55.7779  0.0849  0.9726  
 S1: RF + S2: Lasso  55.7976  0.0845  0.9689  
 S1: RF + S2: SL.RF  55.8768  0.0832  0.9540  
 Super Learner  55.8939  0.0830  0.9508  
 S1: RF + S2: GLM-Gamma-

Identity  
55.9810  0.0815  0.9344  

 S1: RF + S2: GLM-Gamma-Log  55.9972  0.0813  0.9314  
 S1: RF + S2: Log-OLS smearing 56.0175  0.0809  0.9276  
 S1: GLM + S2: Lasso 56.0735 0.0800 0.9170 
Spine-related physical therapy RVUs (85% zero)    
 Two-stage Super Learner 2.5094 0.2659 1.0000 
 Discrete Super Learner  2.5191  0.2630  0.9893  
 S1: Lasso + S2: Log-OLS 

smearing 
2.5213  0.2624  0.9869  

 S1: GLM + S2: Log-OLS 
smearing 

2.5233  0.2618  0.9847  

 S1: Lasso + S2: GLM-Gamma-
Identity 

2.5260  0.2610  0.9817  

 S1: GLM + S2: GLM-Gamma-
Identity  

2.5265  0.2609  0.9812  

 S1: GLM + S2: Lasso  2.5270  0.2607  0.9806  
 S1: Lasso + S2: Lasso   2.5294  0.2600  0.9779  
 S1: Lasso + S2: GBM  2.5298  0.2599  0.9775  
 S1: GLM + S2: GBM 2.5314  0.2594  0.9758  
 Super Learner 2.5331 0.2589 0.9739 
Spine-related injection  RVUs (91% zero)    
 Two-stage Super Learner 17.2069 0.1191 1.0000 
 Discrete Super Learner  17.2446  0.1175  0.9866  
 S1: Lasso + S2: Lasso 17.2480  0.1173  0.9853  
 S1: Lasso + S2: GLM-Gamma-

Identity 
17.2543  0.1171  0.9831  

 S1: GLM + S2: SL.Lasso  17.2564  0.1170  0.9823  
 S1: GLM + S2: Log-OLS 

smearing 
17.2571  0.1169  0.9821  
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 S1: GLM + S2: GLM-Gamma-
Identity 

17.2575  0.1169  0.9820  

 S1: Lasso + S2: GLM-Gamma-
Log  

17.2596  0.1168  0.9812  

 S1: Lasso + S2: Log-OLS 
smearing  

17.2605  0.1168  0.9809  

 S1: GLM + S2: GLM-Gamma-
Log 

17.2637  0.1167  0.9797  

 Super Learner 17.2763 0.1161 0.9752 
Note: S1 refers to stage-1 and S2 refers to stage-2. RF refers to Random forest. GLM in S1 refers to logistic 
regression and Lasso in S1 refers to logistic Lasso regression. GBM refers to gradient boosting machine. GLM-
Gamma-Identity refers to GLM with Gamma family and Identity link function. 
 

 
Figure 7. BOLD results – MSE of top 15 algorithms for 4 spine-related RVUs 

 
Discussion 
Modeling healthcare expenditures frequently have challenges related to the distribution of 
outcome. Healthcare expenditure data, for those with any healthcare use, are generally right 
skewed. In the United States, the majority have zero healthcare expenditure while a small 
fraction of the population accounts for a substantial fraction of total expenditures. 
Numerous methods had been proposed to address the issues in healthcare cost analysis and 
super learner was proved to be an appealing paradigm that leverages various tools 
developed in the health economics literature for modeling health costs. However, those 
researches have mainly focused on the continuous part of the cost. In this study, I 
demonstrated that the Binomial part deserves more attention, as it is obvious that a one-
stage model cannot adequately distinguish the non-users and users if they share similar 
characteristics (i.e. they are highly correlated) and the classes are very unbalanced (i.e. the 
number of non-users is low). Specifically, a two-stage version of the super learner (two-
stage super learner) was designed where the first stage predicts whether an individual is 
likely to have healthcare expenditure and the second stage calculates the expected spending 
given the individual has healthcare services. The two-stage super learner was evaluated 
under a Monte Carlo simulation, with hypothetical cost data drawn randomly through 
different data generating processes, along with two empirical analyses where the data are 
from 2016-2017 MEPS and BOLD study. The former allows the performance of each 
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estimator to be assessed against known parameter values. The latter allows the predictive 
performance to be assessed when the estimators are confronted with the idiosyncrasies of 
the distribution of actual cost data, rather than textbook parametric distributions. 
 
Our simulation demonstrated that there is no best model among all data conditions. 
However, the proposed two-stage super learner performed quite well compared to classic 
parametric/semiparametric models as well as super learner under a wide range of 
distributions. By building an ensemble of algorithms, our method was robust and adapted 
for situations where the underlying data is mix-distributed. Our simulations also indicated 
the ability of the two-stage super learner to predict the expenditures in small sample size 
was as good as in large sample size. The two-stage super learner especially shined with 
superior predictive accuracy when the proportion of zeros was high. There exist situations, 
particularly when analyzing inpatient utilization, where more than 70% of zeros occur. 
Analysis of the MEPS data illustrates consistent results to simulation studies with the 
optimal performance achieved by two-stage super learner. The smallest CV-MSE obtained 
from a two-stage super learner was about 16% less than the largest CV-MSE obtained from 
the model with intercept only. This discrepancy represents a clinically meaningful 
difference from a hospital administrative perspective. Furthermore, we demonstrated that 
random forests provided nontrivial improvements compared to parametric regressions. 
This suggests there may be complex nonlinear relationships and interactions in our MEPS 
data that parametric regressions were not able to capture. Results in BOLD analysis 
exhibited the prevailing progress of two-stage super learner over super learner and best 
single algorithm under all different zero-inflation conditions, although such improvements 
may sometimes be modest. In addition, we observed that parametric regressions were more 
appropriate for constructing stage-1 & 2 estimators under high zero-inflation while 
machine learning algorithms were a better option for stage-1 & 2 estimators under low 
zero-inflation. It is worth noting that in both empirical studies the CV-R2 for most 
estimators were relatively low, which is common in health service studies since the 
prediction of healthcare spending is very difficult. Previous study showed that the 
diagnosis-based risk adjustment functions have an average R2 of 6.7% (Hermann, Rollins, 
and Chan 2007). This estimate was based on fitting all observations and likely 
overestimated the performance compared to cv-R2 we used here. 
 
There are a few limitations in our methodology. Firstly, we included a small set of 
algorithms in our library and many used the default tuning parameters, which may not be 
optimal. A natural expansion would be to include a much larger set of algorithms with a 
range of tuning parameter specifications. It is important to note that there is increased 
computing time and memory required in implementing ensemble super learning compared 
to standard regression techniques. Secondly, our implementation of the two-stage super 
learner did not involve an additional layer of variable screening given the dataset we used 
is relatively low-dimensional, although the Lasso and random forests performed the 
variable selection inherently. With high dimensional data, it can be useful to reduce the 
number of variables considered, thus simplifying the model formula. Finally, we only 
consider squared-error as the loss function for the two-stage super learner. In practice, there 
are several choices for loss functions that could be used to evaluate regression fit and the 
squared-error loss is the most common choice for the continuous outcome. However, this 
criterion heavily penalizes regions of poor fit in the regression function. As a result, the 
estimated cross-validated risk based on this loss will be highly sensitive to subjects with 
large healthcare costs. We could consider other loss functions that are less sensitive to the 
heavy upper tails of the cost data, such as negative quasi-log-likelihood for bounded 
continuous outcomes and Huber Loss. 
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In conclusion, machine learning can be a useful tool for cost estimation, and it provides 
researchers with alternatives to parametric regressions with ever-increasing numbers of 
covariates, which may not provide the flexibility necessary in the age of "big data". When 
additional novel estimators for prediction are developed, they can be easily added to the 
library of the two-stage super learner, as candidate algorithms. Super learning can augment 
our learning from data and provide statistical guarantees that we are leveraging the 
information collected in the strongest possible way. Furthermore, by combining estimators 
with the weights based on minimizing cross-validated risk, the two-stage super learner 
could control for over-fitting, even when using a large collection of candidate estimators. 
In practice, researchers need not spend time and energy guessing which algorithm might 
perform the best or which variables should be included; they can now use the two-stage 
super learner to run many at once. The two-stage super learner would either be the best fit 
or near the best fit. We hope the two-stage super learner proposed here has broader 
implications for general cost estimation. Those applications include the analysis of 
expenditures on health and other commodities and services, earnings, and many other 
economic outcomes that are often skewed to the right. 
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Supplement Materials 
Modifications to two-stage super learner 
We consider two modifications on (i) the weights calculation and (ii) the cross-validation 
scheme to improve the performance of the two-stage super learner on predicting costs. For 
continuous outcome, a quadratic programming algorithm designed by Goldfarb and Idnani 
was generally applied to calculate the best convex combination of weights that minimize 
the squared error loss. However, the heavy upper tails in healthcare expenditure would 
result in excessive huge numbers in the matrix and vector of quadratic function to be 
minimized. This consequently induce overflow errors and cause the quadratic 
programming constraints inconsistent. As a modification, we proposed a scaling scheme 
which divide the quadratic function by a large constant to shrink the huge matrix and vector 
in quadratic function. The scaling would not affect the results given the raw quadratic 
function is just a multiple of the scaled quadratic function. Alternatively, we consider a 
modification to the cross-validation scheme in the standard super learning procedure. The 
standard V-fold cross-validation allocates subjects randomly to each block. However, this 
random allocation could result in all observed subjects with zero costs or large costs in the 
same block of data. We might expect a better finite sample evaluation of how well methods 
fit zero as well as large costs by evenly splitting the zero and large costs amongst the blocks. 
Considering the minimum of our data is zero, we propose a snake-like assignment of 
subjects to each block. That is, the V lowest ordered costs are assigned to blocks 1 through 
V, then the next V lowest ordered cost are assigned reversely to blocks V through 1, 
respectively. This process is repeated until all subjects have been assigned a block. By 
splitting up the zero and largest costs, we ensure that every time we fit the candidate 
methods to V-1 of the blocks, there will be an adequate number of subjects with zero and 
large costs in the held-out block. 
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Table 11. The MSE, relative MSE, and R2, averaged over 1000 repetitions of different 
estimators across 32 data generating processes 

Algorithm MSE 
(108) 

Relative 
MSE 

R2 

Two-stage Super Learner 3.251 0.907 0.622 
Discrete Super Learner 3.307 0.923 0.616 
Super Learner 3.382 0.944 0.611 
S1: Lasso + S2: GLM-Gamma-Log 3.563  0.994  0.609 
S1: Lasso + S2: Quantile regression 3.567  0.996  0.608 
S1: Lasso + S2: Log OLS-smearing 3.570  0.996  0.608 
Zero-inflated Negative Binomial (ZINB) 3.582  1.000  0.607 
S1: GLM + S2: GLM-Gamma-Log 3.583  1.000  0.607 
S1: GLM + S2: Quantile regression 3.589  1.002  0.606 
S1: GLM + S2: Log OLS-smearing 3.590 1.002 0.606 
Zero-inflated Poisson (ZIP) 3.601 1.005  0.598 
S1: Lasso + S2: Adaptive GLM 3.784  1.056  0.597 
S1: GLM + S2: Adaptive GLM 3.803  1.061  0.595 
S1: RF + S2: GLM-Gamma-Log 4.381  1.223  0.447 
S1: RF + S2: Quantile regression 4.385  1.224  0.446 
S1: RF + S2: Log OLS-smearing 4.390  1.225  0.442 
S1: RF + S2: Adaptive GLM 4.628  1.292  0.421 
S1: GLM + S2: RF 4.898  1.367  0.518 
S1: Lasso + S2: RF 4.900  1.368  0.520 
RF 5.304  1.480  0.454 
S1: RF + S2: RF 5.506  1.537  0.444 
S1: Lasso + S2: AFT (generalized Gamma) 6.321  1.764  0.443 
S1: GLM + S2: AFT (generalized Gamma) 6.339  1.769  0.441 
S1: RF + S2: AFT (generalized Gamma) 7.049  1.967  0.309 
Tobit 9.165  2.558  0.213 
S1: Lasso + S2: Lasso (OLS) 9.295  2.594  0.349 
S1: GLM + S2: Lasso (OLS) 9.313  2.599  0.346 
Lasso (OLS) 9.677 2.701 0.288 
OLS 9.703  2.708  0.282 
S1: RF + S2: Lasso (OLS) 9.907  2.765  0.296 
S1: Lasso + S2: Adaptive hazard 9.920  2.769  0.280 
S1: GLM + S2: Adaptive hazard 9.933  2.772  0.279 
S1: RF + S2: Adaptive hazard 10.226  2.854  0.255 
Tweedie 11.273  3.146  0.246 
S1: GLM + S2: Cox hazard 12.341  3.444  0.235 
S1: Lasso + S2: Cox hazard 12.353  3.448  0.233 
S1: RF + S2: Cox hazard 12.820  3.578  0.184 
S1: GLM + S2: GLM-Gamma-Identity 13.249  3.698  0.211 
S1: Lasso + S2: GLM-Gamma-Identity 13.263  3.702  0.210 
S1: RF + S2: GLM-Gamma-Identity 13.717  3.828  0.166 
OLS intercept only (mean) 17.512 4.888 -0.002 

Note: Estimators are presented in ascending order according to average MSE. S1 refers to stage-1 and S2 refers 
to stage-2. RF refers to Random forest. GLM in S1 refers to logistic regression and Lasso in S1 refers to logistic 
Lasso regression. GLM-Gamma-Identity refers to GLM with Gamma family and Identity link function. The 
relative MSE is calculated using the MSE of S1: GLM + S2: GLM-Gamma-Log as a reference. The standard 
error is calculated using 32 averaged metrics across 1000 repetitions. 
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Table 12. Results of MSE, R2 and Relative Efficiency (RE) for MEPS 

Algorithm MSE 
(109) 

R2 RE 

Two-stage Super Learner 2.180 0.147 1.000 
Discrete Super Learner 2.192 0.143 0.969 
S1: RF + S2: RF 2.192 0.143 0.969 
S1: GLM + S2: RF 2.193 0.142 0.965 
S1: Lasso + S2: RF 2.194 0.141 0.961 
Super Learner 2.221 0.132 0.893 
RF 2.236 0.126 0.852 
Zero-inflated Poisson (ZIP) 2.257 0.119 0.810 
S1: GLM + S2: Lasso (OLS) 2.260 0.118 0.803 
S1: Lasso + S2: Lasso (OLS) 2.260 0.117 0.798 
S1: RF + S2: Lasso (OLS) 2.261 0.117 0.796 
OLS 2.264 0.116 0.789 
Lasso (OLS) 2.265 0.115 0.782 
S1: RF + S2: GLM-Gamma-Log 2.267 0.114 0.776 
S1: GLM + S2: GLM-Gamma-Log 2.268 0.114 0.770 
Zero-inflated Negative Binomial (ZINB) 2.269 0.113 0.768 
S1: Lasso + S2: GLM-Gamma-Log 2.270 0.113 0.765 
S1: RF + S2: Quantile regression 2.271 0.112 0.760 
S1: RF + S2: GLM-Gamma-Identity 2.272 0.112 0.758 
S1: GLM + S2: Quantile regression 2.273 0.111 0.755 
S1: Lasso + S2: Quantile regression 2.273 0.111 0.754 
S1: GLM + S2: GLM-Gamma-Identity 2.275 0.110 0.749 
S1: Lasso + S2: GLM-Gamma-Identity 2.275 0.110 0.747 
Tobit 2.283 0.107 0.728 
Tweedie 2.298 0.102 0.689 
S1: RF + S2: Adaptive hazard 2.306 0.099 0.668 
S1: GLM + S2: Adaptive hazard 2.311 0.096 0.654 
S1: Lasso + S2: Adaptive hazard 2.311 0.096 0.653 
S1: RF + S2: Cox hazard 2.355 0.079 0.537 
S1: GLM + S2: Cox hazard 2.359 0.078 0.526 
S1: Lasso + S2: Cox hazard 2.359 0.077 0.521 
S1: RF + S2: AFT (generalized Gamma) 2.433 0.049 0.331 
S1: Lasso + S2: AFT (generalized Gamma) 2.436 0.047 0.321 
S1: GLM + S2: AFT (generalized Gamma) 2.436 0.046 0.317 
S1: RF + S2: Log OLS-smearing 2.489 0.028 0.190 
S1: RF + S2: Adaptive GLM 2.491 0.026 0.177 
S1: Lasso + S2: Log OLS-smearing 2.492 0.025 0.170 
S1: Lasso + S2: Adaptive GLM 2.493 0.024 0.165 
S1: GLM + S2: Log OLS-smearing 2.494 0.023 0.157 
S1: GLM + S2: Adaptive GLM 2.495 0.021 0.143 
OLS intercept only (mean) 2.593 -0.002 -0.014 

Note: Estimators are presented in ascending order based on MSE. S1 refers to stage-1 and S2 refers to stage-2. 
RF refers to Random Forest. GLM in S1 refers to logistic regression and Lasso in S1 refers to logistic Lasso 
regression. GLM-Gamma-Identity refers to GLM with Gamma family and Identity link function.  
 
Table 13. Rank of algorithms for modeling 4 spine-related RVUs 
Algorithm SR SR SR SR Over

 
1581



RVU imaging 
RVU 

physical 
therapy 
RVU 

injection 
RVU 

all 

Two-stage Super Learner 1 1 1 1 1 
Discrete Super Learner 3 2 2 2 2.25 
Super Learner 2 6 12 11 7.75 
S1: Lasso + S2: Lasso 9 11 8 3 7.75 
SL: GLM + S2: Lasso 10 10 7 5 8 
S1: RF + S2: Lasso 8 4 22 14 12 
S1: Lasso + S2: GLM-Gamma-
Identity 20 21 5 4 12.5 

S1: Lasso + S2: RF 7 17 13 18 13.75 
S1: GLM + S2: GLM-Gamma-
Identity 21 22 6 7 14 

S1: Lasso + S2: Log OLS smearing 17 27 3 9 14 
S1: GLM + S2: Log OLS smearing 19 28 4 6 14.25 
S1: RF + S2: Log OLS smearing 14 9 19 16 14.25 
S1: GLM + S2: RF 6 16 18 19 14.75 
S1: Lasso + S2: GLM-Gamma-Log 16 24 11 8 14.75 
S1: RF + S2: RF  5 5 25 25 15 
S1: RF + S2: GLM-Gamma-Identity  19 7 24 12 15.5 
S1: RF + S2: GLM-Gamma-Log  14 8 26 15 15.75 
S1: GLM + S2: GLM-Gamma-Log  18 26 14 10 17 
S1: Lasso + S2: GBM  24 15 9 22 17.5 
Single: Lasso  11 12 34 13 17.5 
S1: GLM + S2: GBM  26 13 10 23 18 
S1: RF + S2: GBM  23 3 23 28 19.25 
Single: GBM  27 19 15 20 20.25 
Single: OLS  12 18 35 17 20.5 
Single: RF  4 20 37 21 20.5 
S1: RF + S2: Bagging  25 14 27 30 24 
S1: Lasso + S2: Bagging  29 25 16 26 24 
S1: GLM + S2: Bagging  28 23 21 29 25.25 
S1: GLM + S2: Neural Net  33 30 17 24 26 
S1: Lasso + S2: Neural Net  32 31 20 27 27.5 
Single: Bagging  22 32 29 32 28.75 
S1: RF + S2: Neural Net  31 29 28 36 31 
S1: RF + S2: MARS  38 33 33 38 35.5 
Single: Neural Net  30 40 41 31 35.5 
S1: RF + S2: Single tree  35 34 40 34 35.75 
S1: Lasso + S2: MARS  39 36 30 39 36 
Single: Single tree  34 41 32 37 36 
S1: Lasso + S2: Single tree  36 38 38 33 36.25 
S1: GLM + S2: MARS  41 35 31 40 36.75 
S1: GLM + S2: Single tree  37 37 39 35 37 
Single: earth  40 39 36 41 39 

Note: Estimators are presented in ascending order based on averaged rank. SR refers to Spine-Related. RF 
refers to Random forest. GLM in S1 refers to logistic regression and Lasso in S1 refers to logistic Lasso 
regression. MARS refers ro multivariate adaptive regression splines. Bagging refers to bootstrap aggregating 
and GBM refers to gradient boosting machine. 
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