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Abstract

Biomedical studies often monitor subjects using a longitudinal marker that may be informative
about a time-to-event outcome of interest. Examples are periodic monitoring of prostate specific
antigen (PSA) as the longitudinal marker and time to onset of prostate cancer, and CD4 cell count
as marker together with time to death from AIDS. Models that handle the two outcomes jointly
and take advantage of their dependence have potential to improve inference for each. We develop a
fully Bayesian joint longitudinal-survival model that uses a latent class structure to facilitate discov-
ery of subgroups exhibiting distinct behavior. Subgroups may vary according to covariate effects,
for example, time trends or the degree of response to intervention in the context of a clinical trial.
Our formulation incorporates estimation of the number of subgroups and offers enhanced flexibility
with a subgroup-specific piecewise linear log baseline hazard. We derive the correlation between
the longitudinal and survival outcomes induced in our formulation and graphically display this de-
pendence. We further derive prediction of the survival end point conditional on the observed longi-
tudinal marker. Using simulation, we demonstrate the ability of our joint model to recover the true
number of subgroups in the population and evaluate prediction of survival. Analysis of data from
an AIDS clinical trial illustrates the model and suggests greater precision than prior analyses in the
literature.
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1. Introduction

It is common for biomedical studies to monitor subjects using a longitudinal marker that
may be informative about a time-to-event outcome of interest. Once the event occurs or
the subject is censored, the longitudinal process is no longer recorded. For example, in
the clinical trials of AIDS patients (Abrams et al. 1994), CD4 cells per cubic millimeter of
blood was measured at baseline, Month 2, Month 6, Month 12 and Month 18, and death
was closely monitored for each participant. Jointly modeling the longitudinal biomarker
process and event process offers a way to characterize their dependence and improve in-
ferential efficiency compared to modelling each process separately. Often clinicians and
researchers are primarily interested in the survival time, e.g., time to death, remission or
relapse. The additional information from the marker process monitored for each individual
facilitates precision medicine by enabling dynamic, individualized prediction of the sur-
vival event, which can be used to tailor screening schedules or therapy. Therefore, one of
our objectives is to derive individualized prediction of the survival outcome taking account
of the individual marker process.

There are several approaches available in the literature for characterizing the depen-
dence between the two processes while targeting prediction of the event outcome. A
first approach directly models the event process using imputed marker values as a time-
dependent covariate (Andersen & Liestøl 2003). However, additional assumptions are
needed for the imputation due to nonsynchronous observations of the marker values among
the participants, which could introduce bias, especially for any ad hoc imputation with-
out careful theoretical justification. A second approach models the two processes inde-
pendently conditional on latent variables. Popular methods are the shared random effects
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model (including early works from Schluchter (1992) and De Gruttola & Tu (1994)), for
which the latent variables are continuous, and joint modeling though latent class (Lin et al.
2002), through which the latent variable is discrete. A drawback of the shared random
effects model is the need to specify the functional form of the latent variable through
which individualized information extracted from the longitudinal process affects the sur-
vival outcome. Misspecification of this functional form can lead to loss in estimation effi-
ciency (Huang et al. 2009). In contrast, the latent class joint model postulates conditional
independence of the two outcomes given latent class and requires no specification of a
functional form for the variable representing the latent class. We adopted this idea and pro-
pose a joint model with realization of the dependence between the two processes through
latent classes. A mixed effects model is used for the longitudinal marker, and flexibility for
the survival outcome is enhanced by using a log-piecewise linear baseline hazard. Param-
eterization for the longitudinal and survival submodels is designed to balance enhancing
flexibility and avoiding nonidentifiability.

A major challenge when using a latent class model is selection of the number of la-
tent classes. Non-Bayesian approaches typically refit the model for a range of numbers of
latent classes and rely on post-model fitting assessment via information criteria. Within
the Bayesian framework, the Dirichlet process mixture (DPM) induces latent classes, but
is known to produce numerous small classes and so overestimate the number of clus-
ters (Miller 2014). Another approach is the mixture of finite mixtures model (Miller &
Harrison 2018), which requires a prior distribution for the number of latent classes and,
although similar to the DPM, provides unbiased estimation of the number of classes. Es-
timation in the context of our joint model can be challenging, however, requiring complex
approximation (Neal 2000) due to a lack of conjugacy, which has potential to extend com-
putation time considerably. In this paper, a method to automate selection of latent classes is
proposed using a spike-and-slab type prior to “activate” or “inactivate” the class in fitting.
We use a similar approach to achieve automatic selection of knots in the log-piecewise
formulation of the baseline hazard function.

The structure of this paper is as follows: In Section 2 we describe the details of proposed
joint latent class model with ability to automatically select the number of latent classes and
knots utilizing spike-and-slab priors. We also derive the correlation induced between the
two processes and detail posterior prediction of the survival outcome for a new individual
conditional on his/her available longitudinal marker readings. In Section 3, a simulation
using data with three latent classes is presented. In Section 4, the analysis results of the
AIDS data are shown. A discussion is included in Section 5.

2. Methodology

Denote the data as {(Yi, Ti), i = 1, 2, . . . , n}, where Yi = {Yi(t)} is the vector of ob-
served longitudinal measurements to date and Ti is the follow-up time for the i-th indi-
vidual. Let xi be a covariate such as treatment group assignment. Let C be a maximum
number of latent classes. Also let zi = {zi1, zi2, · · · , ziC} be the vector of latent class
membership, where zic = 1 indicates that individual i belongs to latent class c; define
zi ∼ Categorical(π1, · · · , πC), where πc is the membership probability of latent class c.
The longitudinal and the event processes are modeled as independent conditional on the
latent class. The longitudinal submodel is defined as

yi(t) | (zic = 1) = a0c + a1ct+ a2ct
2 + β1t · xi + β2t

2 · xi + bi + εi(t) (1)

where a0c, a1c, and a2c are the latent class-specific intercept, linear, and quadratic coeffi-
cients, respectively; β1 and β2 are the effects of the covariate on the slope and quadratic co-
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efficients; bi ∼ N(0, σ2b ) denotes the subject-specific random effects and εi(t) ∼ N(0, σ2)
is the error term. This formulation permits a latent class-specific trajectory adjusted for
covariate effect and accounts for serial correlation of measurements within subject. For the
survival submodel, we define the latent class-specific hazard function for the i-th individual
as

hi(t) | (zic = 1) = h0c(t) exp{xi ω} (2)

where log{h0c} is piecewise linear and ω is the coefficient for covariate xi. This submodel
provides additional flexibility over the formulation with common baseline hazard and class-
specific coefficient. Furthermore, the log-piecewise linear hazard function has a closed
form solution for the survival probability, which makes it possible to implement using
standard software. The log-piecewise linear hazard function is defined as

log{h0c(t)} = α0c + φ1cmin(t, ξ1) + φ2c{min(t, ξ2)− ξ1}+ · · ·+ φK+1,c{min(t,∞)− ξK}
(3)

where {ξ1, ξ2, · · · , ξK} is the vector of prespecified knots and K is the total number of
knots. Figure 1 shows an example with three internal knots.

Figure 1: Example of a piecewise linear log hazard with three internal knots.

2.1 Latent Class and Baseline Hazard Knot Selection

2.1.1 Latent Class Section

To enable automatic selection of latent classes, a prior distribution is specified on the class
membership probabilities {πc, c = 1, 2, . . . , C} and spike-and-slab ideas are adapted to
“activate” or “inactivate” each latent class. Denote the indicator for whether class c is
active as ∆0

c , where ∆0
c | πc ∼ Bernoulli(πc) with πc the membership probability for

class c. Details of the latent class selection are specified in Algorithm 1. Linking the
indicator to the corresponding membership probability enables the automatic selection: if
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the membership probability of the latent class is close to zero, it is likely the latent class will
be deactivated. One may use a symmetric Dirichlet distribution for the class membership
probabilities, but we use the first latent class as a reference when parametrizing the class-
specific baseline hazard functions. To encourage the first latent class to be the major class,
we devise an ordered prior distribution for the membership probabilities as follows:

π1 = V1 ∼ Beta(C, 1)

Vc ∼ Beta(C − c+ 1, 1) for c = 2, 3, · · · , C − 1

πc = Vc
∏
j<c

(1− Vj) for c = 2, 3, · · · , C − 1

πC = 1−
C−1∑
c=1

πc

(4)

Algorithm 1 Latent Class Selection
class membership probabilities π1, π2, · · · , πC ∼ Dirichlet
for each baseline hazard knot in first class k = 1, 2, · · · ,K + 1 do

generate slope φk1 ∼ N(0, τφ)
end for
for each class c = 2, 3, · · · , C do

∆0
c ∼ Bernoulli(πc)

γkc ∼ N(0, τφ) for k = 1, 2, · · · ,K + 1
φkc = φ1c + γkc∆

0
c for k = 1, 2, · · · ,K + 1

end for

For the remaining parameters specific to class c in the longitudinal submodel, the same
idea is applied to implement the latent class selection by a0c ·∆0

c , a1c ·∆0
c and a2c ·∆0

c . The
priors of γ, β, a0c, a1c, a2c, and ω are specified as conditionally Gaussion with variances
that arise from diffuse inverse gamma distributions.

2.1.2 Baseline Hazard Knot Selection

Baseline hazard knot selection is implemented similarly to latent class selection. The de-
tails are shown in Aglorithm 2. The first slope within each class is used as an anchor to
define the increment for subsequent knots and an indicator ∆1

kc is used to indicate whether
the knot k is selected for latent class c, with ∆1

kc | π1 ∼ Bernoulli(π1) and π1 ∼ Beta or
π1 prespecified (i.e., 0.05).

In combination with the prior distribution that orders the membership probabilities (4),
it is useful to “anchor” the initial slope φ1c in class c = 2, 3, · · · , C around the first slope
φ11 in class 1, and then to parameterize using the successive slope increments across the
knots. The extended algorithm is described in Algorithm 3.

2.2 Model Characteristics

2.2.1 Correlation

The correlation of the two processes at time t is defined to be Corr(Yi(t), I(Ti ≤ t)). It
can be visualized on a defined time grid t ∈ T . To derive this correlation, note that the
covariance is

Cov(Yi(t), I(Ti ≤ t)) = E[E(Yi(t), I(Ti ≤ t) | zi)] = E[E(Yi(t) | zi)E(I(Ti ≤ t) | zi)].
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Algorithm 2 Latent Class Selection and Baseline Knot Selection
π1, π2, · · · , πC ∼ Dirichlet
for each class c = 1, · · · , C do
φ1c = γ1c ∼ N(0, τφ)
for each knot k = 2, 3, · · · ,K + 1 do

∆0
c ∼ Ber(πc)

∆1
kc ∼ Ber(π1)

γkc ∼ N(0, τφ)
φkc = φk−1,c + γkc∆

1
kc∆

0
c

end for
end for

Algorithm 3 Latent Class Selection and Baseline Knot Selection
π1, π2, · · · , πC ∼ Dirichlet
for first class c = 1 do
φ11 ∼ N(0, τφ)
for k = 2, 3, · · · ,K + 1 do

∆1
k1 ∼ Ber(π1)

φk1 = φk−1,1 + γk1∆
1
k1

end for
end for
for rest classes c = 2, 3, · · · , C do

∆0
c ∼ Ber(πc)

∆1c ∼ Ber(π1)
γ1c ∼ N(0, τφ)
φ1c = φ11 + γ1c∆

1
1c∆

0
c

for k = 2, 3, · · · ,K + 1 do
∆1
kc ∼ Ber(π1)

γkc ∼ N(0, τφ)
φkc = φk−1,c + γkc∆

1
kc∆

0
c

end for
end for
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Writing the longitudinal marker submodel (1) more compactly as Yi(t) | (zic = 1) =
µic(t)+bi+εi(t) = µi(t)

T zi+bi+εi(t), where µi(t) = (µi1(t), µi2(t), · · · , µiC(t))T , we
have E(Yi(t) | zi) = µi(t)

T zi. Similarly write E(I(Ti ≤ t) | zi) = (1− Si(t))T zi, where
Si(t) = (Si1(t), Si2(t), · · · , SiC(t))T and Sic(t) = exp{−

∫ t
0 hic(t)dt}. Let Q = Var(zi)

with diagonal elements equal to πc(1 − πc) and off diagonal elements equal to −πcπc′ .
Then

Cov(Yi(t), I(Ti ≤ t)) = µi(t)
TQ(1− Si(t)),

and similarly

Var(Yi(t)) = µi(t)
TQµi(t)

Var(I(Ti ≤ t)) = (1− Si(t))TQ(1− Si(t))

Because in the longitudinal process there are additional variabilities caused by the random
effects bi and error term εi(t), we define the adjusted correlation as

Corr(Yi(t), I(Ti ≤ t)) =

µi(t)
TQ(1−Si(t))√

µi(t)TQµi(t)
√

(1−Si(t))TQ(1−Si(t))√
1 +

σ2
b+σ

2

µi(t)TQµi(t)

. (5)

Given realizations from the posterior sampler j ∈ {1, 2, · · · ,n.iter} (post conver-
gence), the correlation Corr(Yi(t), I(Ti ≤ t)) is computable for each t ∈ T , providing the
means to determine pointwise credible bands. One characteristic of this correlation: it can
be shown that the parameters in the longitudinal submodel common across classes, i.e., β1
and β2, do not affect the value of the correlation. Note that because the determinant of Q is
always zero by definition, to ensure

√
(1− Si(t))TQ(1− Si(t)) is evaluable when Si(t)

close to zero, a small number (1E-16) is added to the diagonal elements ofQ in calculation.

2.2.2 Prediction of Survival Outcome Conditional on Longitudinal Observations

Consider now that our model has been fit to training data D = {(Yi, Ti), i = 1, · · · , n},
and we seek prediction for a new subject n + 1. More specifically, at time s, we have
observed Yn+1, the longitudinal marker for subject n + 1 at discrete visit times prior to
s, and our goal is to predict the survival outcome Tn+1 given that Tn+1 > s. We derive
Pr(Tn+1 ≥ u | D,Yn+1, Tn+1 ≥ s) as follows (where u > s throughout):

Pr(Tn+1 ≥ u | D,Yn+1, Tn+1 ≥ s) =
Pr(Tn+1 ≥ u,Yn+1 | D)

Pr(Tn+1 ≥ s,Yn+1 | D)
.

The numerator is

Pr(Tn+1 ≥ u,Yn+1 | D)

=

∫
Pr(Tn+1 ≥ u,Yn+1 | θ)p(θ | D)dθ

=

∫ ∑
c

Pr(Tn+1 ≥ u | θ, zn+1,c = 1)f(Yn+1 | θ, zn+1,c = 1) Pr(zn+1,c = 1 | θ)p(θ | D)dθ

=
1

n.iter

∑
j

∑
c

Pr(Tn+1 ≥ u | θ(j)c )f(Yn+1 | θ(j)c )π(j)c ,

where n.iter is the number of iterations of the selected posterior sampler, θ denotes all
the parameters and θ(j)c denotes the j-th posterior sample specific to latent class c, and
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Table 1: Simulation setting.

Class-specific
Submodel Parameter Class 1 Class 2 Class 3 Common

Longitudinal a0c 15 2 8 -
a1c -2 3 1 -
a2c 0.5 -0.5 0.5 -
β1 - - - 2
β2 - - - 0.5
σ2b - - - 1
σ2 - - - 1

Survival α0 -8 -6 -6 -
Knots (2,3,4) (2,4,6) (2,3,5) -
φ (1,0,2,1) (2,1,-0.5,-2) (2,-1,0.5,3.5) -
ω - - - 2

π
(j)
c denotes the j-th posterior membership probability of latent class c. Similarly, the

denominator is

Pr(Tn+1 ≥ s,Yn+1 | D)

=
1

n.iter

∑
j

∑
c

p(Tn+1 ≥ s | θ(j)c )f(Yn+1 | θ(j)c )π(j)c .

3. Simulation

This section describes a simulation for 300 individuals in each of three classes (total n =
900). The parameter values for the longitudinal and survival submodels are shown in Ta-
ble 1. The only covariate included was treatment group assignment simulated as Bernoulli(0.5).
The longitudinal measurements were obtained for each integer time ti = {0, 1, · · · } until
the end of follow up for each subject i = 1, 2, · · · , n. The censoring for the survival
submodel was assumed to be noninformative. The true baseline hazard functions, density
estimates of observed follow-up times, and marker trajectories are shown in Figure 2.

The maximum number of classes for posterior fitting was set to be C = 5 and the
knots in the baseline hazard were pre-specified at (2, 3, 4, 5, 6). The Markov chain Monte
Carlo (MCMC) of Algorithm 3 was implemented in R using the runjags package (Den-
wood 2016) and JAGS (Plummer 2003) with multiple chains; convergence was achieved
around 25, 000 iterations (Figure 3). As shown in Figure 3, three classes with non-zero
posterior membership probabilities were selected. Posterior inferences were based on the
last 1, 000 iterations from the sampler. The posterior baseline hazard functions for the three
nonzero classes are in accordance with the true hazard functions except for the regions with
no or low event occurrences (Figure 4). Figure 4 shows the observed marker trajectories
and follow-up times color coded by class assignment as determined using a best posterior
realization in a least squares sense (Dahl 2006).

A test dataset of size of 100 subjects for each latent class was generated to evaluate the
performance of the fitted model. Conditional on the observed longitudinal marker process,
the area under the receiver-operator characteristic curve (AUC) based on the prediction of
survival at the true times was 0.83.
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Figure 2: Simulation for three latent classes: Underlying baseline hazard functions, follow-
up times density estimates, and observed marker trajectories. There are 300 subjects in each
of the three classes.

Figure 3: Simulation: Trace plots for the class membership probabilities for two MCMC
chains. Convergence is evident at about 25,000 iterations.
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Figure 4: Simulation: Posterior inference. The top panels show the posterior estimates of
the baseline hazards together with the true values. The bottom panels show the observed
trajectories and follow-up times labeled according to class assignment as determined using
Dahl’s method (Dahl 2006).

4. AIDS Data Analysis

In the clinical trial (Abrams et al. 1994) assessing the efficacy and safety of two drugs in
patients who had failed or exhibited intolerance to zidovudine therapy(AZT), 467 HIV-
infected participants were recruited and randomly assigned to receive didanosine (ddI)
or zalcitabine (ddC); 51% of the participants were enrolled in ddC. Patients were fol-
lowed until death (40%) or censoring (60%). The associated biomarker was CD4 cells
per cubic millimeter of blood with measurements taken at baseline, Month 2, Month 6,
Month 12 and Month 18 (Figure 5). Additional covariates are gender (Female: 10%,
Male: 90%), previous infection status with 0 = no previous infection (34%) and 1 =
previous infection or AIDS diagnosis (66%), and a variable indicating either intolerance of
AZT (63%) or failure of AZT therapy (37%).

Figure 5: Trajectories of CD4 cell counts for 467 HIV-positive patients enrolled in a clini-
cal trial (Abrams et al. 1994).
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Figure 6: Analysis of the AIDS trial data: Classification of the 467 HIV-positive subjects
according to the best (Dahl, 2006) inferential iteration.

Table 2: Analysis of the AIDS trial data: Covariate effects with 95% credible intervals.

Effect Longitudinal CD41/2 Survival
ddC on int 0.033 (-0.11, 0.16) -0.49 (-0.94, -0.07)
ddC on t -0.032 (-0.06, -0.01)
ddC on t2 0.002 (-0.00, 0.00)
AIDS dx -0.67 (-0.94, -0.42) 1.97 (1.25, 2.67)

AZT intol. 0.15 (-0.04, 0.32) -0.08 (-0.57, 0.38)
Male 0.37 (0.18, 0.58) -1.54 (-2.25, -0.65)

The data was split into training (70%) and test (30%). The biomarker CD4 was trans-
formed by

√
CD4. The longitudinal and survival submodels used in this analysis are as

follows:

CD1/2
ic (t) = a0c + a1ct+ a2ct

2 + β1t · ddCi + β2t
2 · ddCi

+ βddC · ddCi + βAIDS · AIDSi + βintolerance · AZTintoli
+ βmale ·malei + bi + ei(t)

hic(t) = h0c(t) exp[ωddC · ddCi + ωAIDS · AIDSi + ωintolerance · AZTintoli
+ ωmale ·malei]

The number of classes for posterior fitting was set to be C = 5 and the knots were pre-
specified at (2, 4, · · · , 18). MCMC was run for 30, 000 iterations with multiple chains and
convergence was achieved around 27, 000 iterations. Posterior inference was based on the
last 1, 000 iterations. From the realization with the best cluster configuration according to
least squares (Dahl 2006), four classes were selected with 10, 205, 4, and 108 subjects each
(Figure 6).

From Table 2, there is evidence for significant effects of ddC, previous AIDS infection
or diagnosis (AIDS dx), and sex (see highlighted). This analysis reveals more covariate
effects than Guo & Carlin (2004), which found only prior AIDS dx statistically significant,
suggesting greater precision. The correlation plot for subjects enrolled in the ddC treatment
group and with AIDS diagnosis are shown in Figure 7, together with the ddI and no prior
diagnosis situation as reference. As can be seen, the marginal correlation for subjects with
AIDS diagnosis is of slightly greater magnitude and better precision than the correlation
for the other two groups shown. The calculated AUC is 0.68 for the prediction of death
in the test data (30% holdout) conditional on observed CD4 readings. Figure 8 shows the
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Figure 7: Analysis of the AIDS trial data: Correlation between the CD4 and time-to-death
processes with 90% credible bands.

Figure 8: Analysis of the AIDS trial data: Prediction of survival conditional on observed
CD4 cell counts for selected subjects.

predicted survival probability for three selected test subjects given observed CD4 readings
to Month 6. As can be seen, with higher level of CD4 at baseline or increasing trend,
subjects 456 and 316 have higher predicted survival probability than subject 140.

5. Discussion

The proposed model with automatic selection of number of latent classes shows the abil-
ity to recover the true number of latent classes effectively by specifying a relatively large
maximum number of classes for fitting as shown in Section 3. The derived correlation and
plot provides a way to visualize the relationship between the longitudinal marker and the
event process; it enriches our understanding of the strength of the dependence and aids in-
terpretation. In AIDS data analysis, negative correlations are observed for each time t ∈ T
in general, which means higher CD4 cell counts are associated with higher probability of
survival; moreover, the lack of a prior diagnosis of AIDS further increases the association
with higher probability of survival. As compared to the findings from Guo & Carlin (2004),
our analysis reveals better precision for covariate effects. The prediction of survival condi-
tional on the observed longitudinal marker makes it possible for individualized prediction,
which has great utility for helping practitioners tailor screening and therapy schedules.

There are a number of ways to further explore or extend this model. First, since this
model uses a spike-and-slab method for selection of latent classes and knots, variable se-
lection using spike-and-slab could be also easily incorporated. Second, there is a need for
diagnostics to verify the underlying model assumption of conditional independence to en-
sure the validity of the analysis. Third, the goodness-of-fit needs to be examined in order
to support our conclusions for the AIDS clinical trial data analysis and the comparisons to
the work of Guo & Carlin (2004). Last, it is necessary to directly compare the performance
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of our method to other joint model formulations such as the shared random effects model
to further assess the strengths.
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