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Abstract 

Due to various resource restrictions, there has been increased needs to measure multiple 
responses in a single experiment. Central composite designs have been broadly used for 
estimating response surfaces from experiments with multiple responses, which typically 
require a large number of runs across the super space of all relevant design factors. 
However, in many of these experiments, each individual response is often affected by only 
a subset of design factors, and such information might be obtained from earlier screening 
experiments. We propose a more cost-efficient design selection strategy based on utilizing 
this prior knowledge and the Pareto front approach to select D-optimal designs with 
balanced performance on multiple responses. A Pareto aggregate coordinate exchange 
algorithm has been adapted to efficiently identify the Pareto front based on D-efficiencies 
measured for multiple responses. The method is illustrated with two examples and 
compared with existing methods on a variety of design characteristics.  

 

Keywords:  Multiple Responses, Optimal Designs, Coordinate Exchange Algorithm, 
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1. Introduction 

 

In modern design of experiments, there has been an increased demand for measuring 
multiple responses in a single experiment. The goal in experimental design with multiple 
responses is to select appropriate designs that perform well for all the responses. Quite a 
number of design strategies have been proposed in the literature for designed experiments 
with one response variable and one or more design factors. Existing designs for multiple 
responses often are built in the super space of all design factors that are relevant to multiple 
responses and hence generally require more experimental runs than what are necessary for 
efficiently estimating each response. There are limited works for the case of multiple 
responses where different subsets of design factors might be needed to model each 
response.  
 
Response surface models are common in settings where characteristics of the system 
quantified by the response variables are to be optimized (Myers et al, 2016). One of the 
most common classical designs for estimating full second order polynomial regression 
multiple responses models is the Central Composite Designs (CCDs) (Box and Wilson, 
1951).  This design is a combination of three parts: a two-level full or fractional factorial 
points, axial points and center points. The resolution of a fractional factorial design (Box 
and Hunter, 1961) describe how the effects in a fractional factorial design are aliased with 
other effects. Resolution III, IV, and V designs are the common resolutions in literature 
used for fractional factorial designs. For resolution III designs, main effects are aliased 
with second order effects. For resolution IV, no main effects are aliased with second order 
effects, but some two-factor interactions are aliased with each other. Resolution V 
fractional factorials are commonly used in CCDs because they are the smallest fractional 
factorials that allow estimation of all first and second order effects. Because designs of 
greater resolutions require more experimental runs, fractional factorials of resolutions 
higher than V are usually avoided in CCDs. The axial points are experimental runs where 
all factors are held constant at zero except for one factor, which is set to be ±𝛼, where 𝛼 is 
a design parameter. There are  2𝑘 axial points, along with the center runs (experimental 
runs where all factors are set to zero) which allow for estimation of model parameters in 
squared terms.  
 
The CCD described above can be used in estimating full quadratic response surface models 
where all factors are treated symmetrically. However, for design problems with multiple 
responses, screening designs could be employed to identify active design factors for each 
response. For instance, with the information from screening experiment, some design 
factors may not be expected to have much impact on a certain response variable, or some 
two-factor interactions are unlikely to be active for a particular response model. Marget 
and Morris (2019) proposed the Unique Factor Central Composite Designs (UF-CCDs), 
which utilizes the information from the screening experiment to guide a more efficient 
response surface design. They consider situations where screening experiments or process 
knowledge suggests that only a subset of the factors is needed in modelling each response, 
and where these subsets are generally different for each response. The modification made 
to the CCD reflects in how the fractional factorial portion of the design is selected. As 
explained earlier, a full factorial in all factors is often a much larger design than what is 
needed for estimation of each response model. Given 𝑟 response variables and 𝑘 design 
factors, the fractional portion of the UF-CCDs were constructed such that for any given 
response, the factors associated with that response form either a full factorial or a resolution 
IV or resolution V fractional factorial. That is, the design will be a full or fractional factorial 

 
1482



for the factors related to each response, but not for all 𝑘 factors altogether, and so will 
require fewer runs than the traditional CCDs. The UF-CCDs also take advantage of 
intentional aliasing of some of the main effects. Since not all factors appear in each 
response model, pairs of factors that do not appear in any model can be aliased, permitting 
further reduction in the size of the design. More on the discussion of UF-CCDs is available 
in Marget and Morris (2019). 
 
The CCDs and UF-CCDs are both classical designs. Although classical designs are mostly 
used in the industry, they are generally less flexible in terms of the number of required 
design size. Computer optimal design methodology was developed to generate designs 
when user constraints preclude the use of classical designs. Computer-aided designs are 
experimental designs that are generated based on an optimality criterion and are generally 
referred to as optimal designs (Jin et al, 2003). As an alternative to CCDs and UF-CCDs, 
this paper considers design optimization based on D-optimality for multiple responses by 
utilizing the Pareto frontier approach for multiple objective optimization. Particularly, we 
aim to simultaneously optimize D-optimality for multiple responses surface models which 
involve different subsets of design factors by seeking the Pareto front of D-efficiencies for 
multiple responses. In order to efficiently identify the Pareto front, this article utilizes a 
customized Pareto Aggregate Coordinate Exchange (PACE) algorithm which was adapted 
from the PAPE algorithm from Lu et al. (2011) and Cao et al. (2017).  

The rest of the article is organized as follows. Section 2 discusses D-optimality criteria use 
for optimizing multiple responses. Section 3 describes the Pareto aggregate coordinate 
exchange optimization algorithm for generating the Pareto front of multiple criteria. 
Section 4 presents examples of using the PACE algorithm for selecting optimal designs 
with different numbers of design factors and demonstrates advantages of multiple 
responses D-optimal designs compared to existing methods. Section 5 renders the 
concluding remarks. 

2.  D-optimal Designs with Multiple Responses 

 

In generating optimal designs where the focus is on precise parameter estimations, D-
optimality is the most popular design optimality criterion due to simplicity of its 
implementation and computation. D-optimal designs are designs that maximize the 
determinant of the design moment, which is equivalent to minimizing the volume of the 
confidence region of the regression parameters (Meyers et al, 2016). The D-criterion is 
defined as: 

 |𝑀(𝝃)| = |𝑋′(𝝃)𝑋(𝝃)|/𝑁𝑘+1                                  (1) 
 
where 𝑋(𝝃) is the 𝑁 × (𝑘 + 1) model matrix for design 𝝃 with 𝑘 design factors and 𝜷 is 
the associated (𝑘 + 1) × 1 vector of regression coefficients. The D-optimal design 
maximizes |𝑀(𝝃)| over the design space spanned by all possible designs, 𝝃𝝐𝛀. The D-
efficiency of a design, 𝝃  is given by: 

𝐷𝑒𝑓𝑓(𝝃) = (|𝑀(𝝃)|/|𝑀(𝝃𝑫
∗ )|)

1
𝑘+1⁄        (2) 

where 𝝃𝑫
∗  is the D-optimal design that maximizes |𝑀(𝝃)|. D-optimal designs are often 

generated by an iterative search algorithm and seeks to minimize the covariance of the 
parameter estimates for a specified model. It is worth mentioning that other commonly 
used optimality criterions in the literatures include; the A-criterion, G-criterion and I-
criterion (Rady et al, 2009). These criterions seek to minimize the average variance of 
parameter estimates or the prediction variance across the design space. Specifically, the A-
optimality criterion is defined as 𝑚𝑖𝑛{𝑡𝑟𝑎𝑐𝑒(𝑋′𝑋)−1} and it is equivalent to minimizing 
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the average variance of the estimated regression coefficients. The A-efficiency of a design 
𝝃  is defined as; 𝐴𝑒𝑓𝑓(𝝃) = 𝑡𝑟[𝑀−1(𝝃𝑨

∗ )] 𝑡𝑟[𝑀−1(𝝃)]⁄ , where 𝝃𝑨
∗  is the A-optimal design. 

The G-optimality criterion is defined as:  

min
𝑥𝑖,𝑖=1,…,𝑛

max
𝑥∈𝜒

 𝑣𝑎𝑟(�̂�𝒙), 

where 
    𝑣𝑎𝑟(�̂�𝒙) = 𝜎2𝑓𝑇(𝑥)(𝑋𝑇𝑋)−1𝑓(𝑥).   

 
Hence, the G-optimal design seeks to minimize the maximum prediction variance over the 
design space. The G-efficiency of a design 𝝃 is defined as; 𝐺𝑒𝑓𝑓 (𝝃) = 𝑝 ⁄ max

𝑥∈𝜒
𝑣𝑎𝑟(�̂�𝒙) , 

where 𝑝 is the number of parameters in the model. The criterion that minimizes the average 
prediction variance across the design space is regarded as the I-optimality criterion and it 
can be define as 𝑡𝑟𝑎𝑐𝑒[(𝑋′𝑋)−1𝐵], where 𝐵 = ∫ 𝑓𝑇(𝑥)𝑓(𝑥)𝑑𝑥

𝜒
 is the moment matrix of 

the region of interest. That is, I-optimality criterion minimizes the average prediction 
variance by integrating over the design space. The I-efficiency of a design 𝝃 is defined as; 
𝐼𝑒𝑓𝑓(𝝃) = 𝐼(𝝃𝑰

∗) 𝐼(𝝃)⁄ , where 𝝃𝑰
∗ is the I-optimal design. Note that, all the D-efficiency, A-

efficiency, G-efficiency, and I-efficiency criteria, measure the design performance relative 
to the optimal choice based on each optimality criteria, and hence take values within the 
[0,1] range.  

From earlier works on finding optimal designs for design problems with multiple 
responses, some optimal design strategies have been proposed. Fedorov (1972) proposed 
an extension of D-optimality for multiple responses called MD-optimality which requires 
that the variance-covariance matrix of the response be known, this assumption is often not 
realistic in practice. Cooray-Wijesinha and Khuri (1987) suggested an alternative where 
the variance-covariance matrix is estimated with an initial design and then used to add 
points to the design. Although their approach avoids Fedorov’s assumption, it may pose 
difficulty in implementation if sequential operation is inconvenient. Chang (1997) 
suggested a design that does not share either of these shortcomings but does not offer the 
flexibility to use different models for each response as suggested by screening experiments 
or previous knowledge. His proposed design allows for each response to have either a 
complete first or second order model, but all response models contain all factors.  
 
As an improvement to these earlier works on design problems with multiple responses, the 
objective in this work is to generate D-optimal designs such that the D-efficiency values of 
multiple responses are maximized simultaneously. This can be viewed as a multiple 
objective optimization problem where the goal is to simultaneously optimize the D-
efficiency for each response. In the derivation of the D-criterion for each response model, 
𝑋(𝝃)  from equation (1) describe the design matrix for each response model. As described 
in examples in section 4, prior knowledge from an earlier screening design about which 
factors affecting which response is used to determine the design matrix for each response 
model. Thus, for a particular response model, the first order terms, two factor interaction 
terms and squared terms of the influencing factors form the model matrix for that response. 
Therefore, the design matrix for each response varies due to the difference in the subsets 
of factors influencing each response and potential active effects.  
 
Various techniques for obtaining the optimal set for multiple criteria design problem have 
been proposed in the literature. In the works of DuMouchel and Jones (1994) and Allen et 
al (2003), criteria based on mean squared error were developed in an effort to 
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simultaneously minimize variance and bias. Jones and Nachtsheim (2011) used conditional 
optimization to find designs which optimize one objective while achieving at least some 
threshold for a secondary criterion. The desirability function approach (see Harrington 
1965 and Derringer and Suich 1980) considers optimizing a linear combination of two or 
more criteria. Linear combinations are formulated by predefined weighting schemes where 
the weights reflect the relative importance of each of the criteria. Optimization algorithms 
such as direct search methods (Lewis et al, 2000), mathematical programming approaches 
(Del Castillo and Montgomery 1993), simulated annealing (Kirkpatrick et al, 1983), or the 
genetic algorithm (Holland 1975) are popular choices when desirability functions are 
utilized. Although the desirability function approach has been used extensively in 
literature, it fails to consider the trade-offs between criteria directly and its results depend 
heavily on the user selected weights and weighting scheme. Experimenting with different 
weight choices can be time consuming and computationally intensive since every set of 
weights requires a separate search for an optimal solution.  
 

An alternative to the desirability approach in finding the optimal set for multiple criteria 
design problem is the Pareto front optimization approach. Pareto optimization has been 
extensively used for optimizing multiple responses in many disciplines (Gronwald et al, 
2008; Trautmann and Mehnen, 2009). In design of experiment, the Pareto front approach 
simultaneously considers multiple objectives by constructing a frontier of competitive 
designs while explicitly considering tradeoffs between opposing criteria. Various 
algorithms have been proposed for populating the Pareto fronts of designs and for 
evaluation and comparison of designs identified on the front (Park, 2009; Lu et al, 2011; 
Sambo et al, 2014). A major advantage of this approach is that, the search for solutions 
occurs only once and then different metrics can be easily explored to select optimal designs 
for various scenarios. In this work, we adopt the Pareto front optimization approach for 
design of experiments with multiple responses.  
 
Without loss of generality, the general goal of a multiple criteria design optimization 
problem is to maximize 𝐶 (≥ 2) criteria simultaneously given constraints on the input 
factors. Let 𝝃 = (𝒅1

′ , 𝒅2
′ , … , 𝒅𝑁

′ )′𝜖𝛀 denote a design matrix of dimension 𝑁 × 𝑘 where 𝑁 
is the number of design points and 𝑘 is the number of design factors; the set of all possible 
𝑁 × 𝑘 design matrices for a given candidate set of points is denoted by 𝛀. The candidate 
set is a collection of treatment combinations from which the search algorithm chooses the 
treatment combinations to include in the design. Let 𝑦 = 𝐹(𝝃) =

(𝑓1(𝝃), 𝑓2(𝝃), … , 𝑓𝐶(𝝃)) 𝑇 denote the vector of criteria values corresponding to the design 
matrix, 𝝃. Then, the space containing all obtainable criteria vectors is called the criterion 
space. A solution 𝝃1 is said to Pareto dominate another solution 𝝃2 if 𝑓𝑗(𝝃1) ≥ 𝑓𝑗(𝝃2) for 
all 𝑗 ∈ {1,2, … , 𝐶} and there exists at least one 𝑗 ∈ {1,2, … , 𝐶} such that 𝑓𝑗(𝝃1) > 𝑓𝑗(𝝃2). 
In this case, the criteria vector 𝐹(𝝃2) is said to be dominated by 𝐹(𝝃1). In this work, the 
criteria vector corresponding to a particular solution is referred to as a point in the criterion 
space. A solution is Pareto optimal if and only if no other solution dominates it and its 
corresponding criteria vector is a non-dominated vector. We refereed to the Pareto optimal 
set as the set of Pareto optimal solutions and the corresponding set of criteria vectors as the 
Pareto front. Marler and Arora (2004) provides a good overview of the Pareto front 
concepts.  
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3.  Pareto Aggregate Coordinate Exchange (PACE) Algorithm 

 
Enumerating all possible designs in an experimental region tends to pose a challenge even 
for a region of moderate size. As an alternative to this, an initial design can be considered 
and successfully improved upon by exchanging existing design points with candidate 
points which produce improvement in the design criteria. The exchange algorithms are the 
most used algorithms for optimizing design criteria. Although proving to be highly 
effective, applications of the exchange algorithms can be computationally prohibitive for 
very large problems and in situations for which design criteria are sufficiently complex; 
thereby precluding efficient evaluation (Rady et al, 2009). There are generally two types 
of exchange algorithms; the point exchange and the coordinate exchange algorithms 
(Nguyen and Miller, 1992).  Although point exchange and coordinate exchange algorithms 
are deterministic heuristics search methods, their implementation in practice generally 
involves a random component where multiple random starts are often used in order to 
increase the probability that the global optimum is attained. Rows in the design matrix are 
exchanged in the point exchange algorithm, while coordinates of the design matrix are 
exchanged in the coordinate exchange algorithm. Another difference is that the point 
exchange procedure requires a candidate set while the coordinate exchange procedure does 
not. 
 
The point exchange procedure searches the entire candidate set to replace each row in the 
design matrix by another location from the candidate set to improve at least one of the 
criteria without deteriorating the others. This search procedure can become 
computationally intensive and even prohibitive as the number of design factors increases, 
especially for factorial design spaces that could grow exponentially in the number of 
factors. Because the point exchange only updates the current design with a strict 
improvement on the criteria values, designs which do not dominate and are not dominated 
by the current design are discarded, when in fact these might be potential solutions in the 
Pareto optimal set and could be optimal solutions when different user priorities are 
selected. Although repeating the search with multiple starts might find more points, 
however finding all points on the front can require a very large number of starts and 
potentially repeated reevaluation of same designs across the search with multiple random 
starts. Lu et al (2011) proposed a modification to the point exchange algorithm, described 
as Pareto Aggregate Point Exchange (PAPE) to improve the efficiency of the regular point 
exchange by keeping track of all the non-dominated points and building the Pareto front 
along the searching process. Thus, the PAPE algorithm efficiently explores the design 
space by populating the Pareto frontier with all possible contending designs identified 
during the search. 
 
The coordinate exchange on the other hand does not search the entire candidate set for a 
replacement. That is, it does not require a candidate set, but instead it randomly generates 
a starting design and exchanges each entries of the design matrix to search for an 
improvement. The absence of a candidate set for the coordinate exchange procedure 
reduces demands on computer memory which makes the coordinate exchange 
computationally more efficient than the point exchange. For design problems with more 
than a few factors, or in applications with large candidate sets, the PAPE can be 
computationally inefficient if not prohibitive (Cao et al, 2017). Due to the complexity of 
the factorial design spaces of the examples considered in this work and to avoid the 
limitations of the PAPE algorithm, the Pareto frontier approach developed in this article 
uses a coordinate exchange algorithm (hereafter refer to as PACE).  
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The PACE algorithm utilizes the idea of the PAPE algorithm and adapts it to searching for 
the Pareto front using the coordinate exchange.  Cao et al (2017) also proposed a Pareto 
based coordinate exchange operator, which is different from the PACE with a different 
second stage comparison. The PACE algorithm for finding the Pareto front with a single 
random start begins with a randomly generated initial design with a nonsingular moment 
matrix and then replaces each coordinate in the design matrix by another value in the levels 
of design factors considered to improve at least one of the criteria without deteriorating the 
others. In this work, the design space is the grid of points generated from the levels of 
design factors. For instance, consider a design with five factors and each factor has five 
levels, then the design space is a full five-factors five-levels factorial design points. Each 
random start is randomly selected from this grid of points. An overview of the PACE 
algorithm used in this work is described by the following steps:  

(1) From a given candidate set, randomly generate an initial design of 𝑁 runs and 𝑘 
factors with a nonsingular moment matrix (|𝑋′𝑋| ≠ 0). For this current design, 
𝝃, evaluate the user-specified C-dimensional criterion vector, 𝐹(𝝃) =

(𝑓1(𝝃), 𝑓2(𝝃), … , 𝑓𝐶(𝝃))
𝑇.  

(2) Initialize two null sets: the set of Pareto designs denoted as 𝑃 and the set 
containing the corresponding Pareto fronts, denoted as 𝑃𝐹 ; then add 𝝃 to 𝑃 and 
add 𝐹(𝝃) to PF.  

(3) For the current design 𝝃, the PACE algorithm is carried out as follows; for 𝑖 = 1 
to N and 𝑗 = 1 𝑡𝑜 𝑘, swap each (𝑖, 𝑗) coordinate of 𝝃 with the remaining levels of 
factor 𝑗 to produce a new design 𝝃∗. Two sets of comparisons are then made:  

(i) First comparison: updating the current design.  
This first comparison is between the current design 𝝃 and the new design 𝝃∗ to 
determine if the current should be replaced by the new one. If the new design 
improves at least one of the criteria without deteriorating any other criteria (i.e if 
𝝃∗ > 𝝃), then the current design is replaced with the new one (i.e., 𝝃 = 𝝃∗). This 
procedure is done for every coordinate in the design until no improvements can be 
made. 
(ii)        Second comparison: updating the Pareto front and the Pareto optimal set. 
The second comparison is between the new design, 𝝃∗ and the ones in the “current” 
set of non-dominated designs 𝑃. If 𝝃∗dominates at least one of the designs in the 
“current”, then add  𝝃∗ to 𝑃 and remove the designs dominated by 𝝃∗. If 𝝃∗neither 
dominates nor is dominated by any designs in the current generation of 𝑃, then just 
add  𝝃∗to 𝑃. If 𝝃∗ is dominated by at least one of the designs in the “current” set, 
then discard 𝝃∗ and no update is needed for the current Pareto set. 
 
The procedure above is stopped when the current designs cannot be improved 
upon. At the end of the search, there will be 𝑚 non-dominated designs in the set 
𝑃(𝑖. 𝑒 𝑃 = {𝝃1, 𝝃2, … , 𝝃𝑚}) and 𝑚 associated criterion vectors in the set 𝑃𝐹 
(𝑖. 𝑒 𝑃𝐹 = {𝐹(𝝃1), 𝐹(𝝃2), … , 𝐹(𝝃𝑚)}). 

(4) Repeat steps 1 to 3 with 𝑆 different random starts (𝑆 is usually chosen to be a 
large number to ensure the identification of a complete Pareto front). The set of 
non-dominated designs are updated by combining the Pareto fronts obtained from 
different random starts.  
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4. Examples 

 
In this section, we illustrate the proposed method and the PACE algorithm using two 
examples which involve five and ten design factors, respectively, and multiple responses. 
We then compare the selected multiple responses D-optimal designs with the UF-CCDs 
developed by Marget and Morris (2019).  

4.1 Example 1: Five Factors with Four Responses 

Consider the results of a screening experiment summarized in Table 1. This is the same 
screening experiment which was discussed in Marget and Morris (2019) (see Table 3 of 
the paper)). A screening experiment is a study focused on identifying the factors that 
influence each response, rather than a more detailed study to quantify those relationships. 
An X in the table indicates that the response associated with that row is related to the factor 
associated with that column. 

Table 1: Five factors screening experiment  
 

Response 
Factor 

1 2 3 4 5 
1 X X X   
2  X X X  
3 X  X  X 
4 X   X  

 

The goal here is to select a 20-run D-optimal design that simultaneously perform well for 
estimating all four response variables. We consider five levels for each design factor at -2
, -1,0,1,2, in order to make a direct comparison with the Resolution IV Unique Factor CC
D (Res IV UF-CCD) from Marget and Morris (2019). This has resulted in a candidate set 
of 55 = 3125 design points.  The starting design was randomly selected from the candida
te set. By using 20000 random starts, the PACE algorithm resulted in a single dominating 
point on the Pareto front. No other design has been found to have higher D-efficiency val
ues for any of the four responses after running up to 40000 random starts. Our interest her
e is in precise estimation of the parameter estimates of each response model. Thus, for a g
eneral linear regression model given by; 

𝑌 = 𝑋𝛽 + 𝜀, 
where, 𝑣𝑎𝑟(𝜀) = 𝜎2𝐼, the standard deviation of the estimate of any element of 𝛽 is 𝜎 times 
the square root of the corresponding diagonal element of (𝑋𝑇𝑋)−1. If the estimated 
standard deviation of a parameter of a model  is denoted by 𝑠 and the unknown true standard 
deviation is 𝜎, then the normalized standard deviation is define as 𝑠

𝜎
, and it is only a function 

of the design matrix, 𝑋. This quantity reflects the performance of inference that can be 
expected from a given design. For each response, we fit a second order linear regression 
model and then estimate the standard deviations of the model coefficients. Figure 1 shows 
the averages of normalized standard deviations for all term coefficients (all effects), first-
order term coefficients (main effects), interaction term coefficients (interaction effects), 
and squared term coefficients (squared effects) for the D-optimal design obtained and that 
of the Res IV UF-CCD. These indices are estimated to reflect how well a given design 
performs with respect to estimation of different groups of coefficients in each response 
model. 
 

 
1488



 
Figure 1: Averages of standard deviations of parameter estimates for the five factors 
example. 
 
As observed in Figure 1, the standard deviations of model coefficients for each response 
model are substantially higher for the Res IV UF-CCD than that of the D-optimal design. 
This implies that the structure of the D-optimal design is more efficient in terms of precise 
parameter estimation than the Res IV UF-CCD. To further compare the performance of the 
designs, we obtained response-based D-efficiency, A-efficiency, G-efficiency and I-
efficiency values for the D-optimal design and the Res IV UF-CCD. In Figure 2, it can be 
seen that, the efficiency values of these criteria for each response model are significantly 
higher for the D-optimal design, implying that the D-optimal design generally outperforms 
the Res IV UF-CCD. For both designs, the D-efficiency value for response 4 is slightly 
lower than those of the remaining responses and its A, G and I efficiency values are 
considerably higher than those of the others. We suspect that this may be as a result of 
reduced number of parameters for response 4 model since from the screening experiment, 
only two factors were identified to influence response 4 while three factors were expected 
to influence the remaining three responses.   
 

 
Figure 2: The plot showing the D-eff, A-eff, G-eff and I-eff for the five factors D-optimal 
design and Res IV UF-CCD 
  
The geometric structure of the D-optimal design obtained for the five factors screening 
experiment with multiple responses is compared with that of the Res IV UF-CCD (see 
appendices A and B). The structure shows that there is no center run selected for the D-
optimal design and most of the runs are located at the edge of the design space. This is 
expected because in order to optimize D-efficiencies of multiple responses, more design 
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points are likely to be pushed to the edge rather than located around the center of the design 
space. Particularly, it can be observed that all the runs of the D-optimal design are 
combinations of the levels; (-2,0,2) while for the Res IV UF-CCD, some of the runs are 
combinations of the levels (-1,1) and some are combinations of the levels (-2,0,2).  

4.2 Ten Factors Design with Four Responses 

This section considers another example from Marget and Morris (2019) with ten design 
factors and four response variables. The result from the screening experiment is 
summarized in Table 2 (a recap of Table 2 from Marget and Morris (2019)). 
 

Table 2: Ten factors screening experiment 
 

Response 
Factor 

1 2 3 4 5 6 7 8 9 10 
1 X X X X X      
2   X  X X X    
3   X X   X X   
4    X    X X X 

 
The interest here is to select a 30-run D-optimal design that offers balanced performance o
n all four response variables. We again consider five levels for each design factor and hen
ce the candidate set would include 510 =9765625 design points, which will prohibit the u
se of PAPE algorithm with this large size of the candidate set. A Resolution V Unique Fa
ctor CCD (Res V UF-CCD) was proposed by Marget and Morris (2019), whose design m
atrix is shown in Appendix C. Unlike the five factors case, the PACE algorithm for this te
n factors case did not find a single dominating design on the Pareto front, instead we obtai
ned a suite of competing non-dominated designs. By running up to 100000 random starts, 
the PACE algorithm identified a Pareto front consisting of eight competing designs. To fu
rther examine the characteristics of the eight designs identified on the Pareto front, Figure 
3 shows the average normalized standard deviations of model coefficients of each respons
e for the eight D-optimal designs and Res V UF-CCD (denoted as design number 9). As w
ith the five factors case, the result indicates that the D-optimal designs have significantly l
ower standard deviations, implying that the D-optimal designs obtained are generally mor
e efficient for producing precise estimates of model parameters. 
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Figure 3: Averages of standard deviations of parameter estimates for the ten factors 
example with 30 experimental runs 
 
Although the competing designs on the Pareto fronts clearly outperform the UF-CCD 
designs based on the estimated standard deviations of parameter estimates, however; for 
the purpose of decision making, it is important to consider the trade-offs between some 
design objective criteria for the competing designs. Moreover, it is helpful to consider 
additional secondary criteria on other design characteristics to ensure a good overall 
performance of the final selected designs. Consider the scenario in which a researcher 
wishes to select a designed experiment for studying the relationship between the four 
responses and the ten potential factors (𝑋1 − 𝑋10). In other to minimize cost of experiment, 
screening experiment was conducted to obtain information about factors with the most 
significant impacts on each response as given in Table 2. As a way of illustration, the 
specified model with all main effects, interactions effects and squared effects for response 
1 can be written as:  

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5 + 𝛽12𝑋12 + 𝛽13𝑋13 + 𝛽14𝑋14 +
𝛽15𝑋15 + 𝛽23𝑋23 + 𝛽24𝑋24 + 𝛽25𝑋25 + 𝛽34𝑋34 + 𝛽35𝑋35 + 𝛽45𝑋45 + 𝛽11𝑋11 +

𝛽22𝑋22 + 𝛽33𝑋33 + 𝛽44𝑋44 + 𝛽55𝑋55                      (3) 
 
The specified model for the remaining responses can be obtained in a similar way. Suppose 
the goal of the experiment is to obtain optimal designs that estimate each response as 
precisely as possible, and we also want to protect against the impact of potential 
misspecification on the estimation of coefficients and error variance if any of the omitted 
factor is potentially active. Let the specified model for a particular response be 𝑦 = 𝑋𝑠𝛽𝑠 +
𝜀 where 𝑋𝑠 is an 𝑁 × 𝑘𝑠 design matrix of factors specified for that response (based on the 
result of the screening experiment) while the full response surface model for all design 
factors is 𝑦 = 𝑋𝑠𝛽𝑠 + 𝑋𝑜𝛽𝑜 + 𝜀. In our application, the set of terms 𝑋𝑠𝛽𝑠 contains the first 
order terms, two factor interaction terms and squared terms of factors specified for a 
particular response while  𝑋𝑜𝛽𝑜 includes the first order terms, two factor interaction terms 
and squared terms of factors not specified for the response. Note that 𝑋𝑜 is an 𝑁 × 𝑘𝑜 
design matrix of factors omitted for a particular response. 
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In the estimation of each response model, the bias vector of the specified model parameter 
estimates is given by 

𝐸(�̂�𝑠) − 𝛽𝑠 = [𝛽𝑠 + (𝑋𝑠
𝑇𝑋𝑠)−1𝑋𝑠

𝑇𝑋𝑜𝛽𝑜] − 𝛽𝑠 = 𝐴𝛽𝑜  (4) 

where 𝐴 = (𝑋𝑠
𝑇𝑋𝑠)−1𝑋𝑠

𝑇𝑋𝑜is the alias matrix (Myers et al, 2016). A measure of transmitted 
bias to the estimated coefficients is the sum of the squared transmitted bias (SSB) given by 
𝑆𝑆𝐵 = 𝛽𝑜

𝑇𝐴𝑇𝐴𝛽𝑜, where 𝛽𝑜 is unknown and often assumed to follow the multivariate 
normal distribution, 𝛽𝑜~𝑁(0, 𝜎𝛽𝑜

2 𝐼) (Draper and Guttman 1992). An optimal design for 
minimizing the impact of model misspecification on the estimated coefficients is the one 
that minimizes 𝑡𝑟(𝐴𝐴𝑇) (Bursztyn and Steinberg, 2006). The bias on the estimated 
coefficients minimization efficiency for a particular design is given by 𝑡𝑟(𝐴𝑜𝑝𝑡𝐴𝑜𝑝𝑡

𝑇 )/

𝑡𝑟(𝐴𝐴𝑇), where ‘opt’ designation denotes that the matrix represent optimal design 
according to the criteria. Bias can also be transmitted to the estimate of 𝜎2 due to model 
misspecification since; 
   𝐸(𝑀𝑆𝐸𝑢𝑠𝑒𝑟) − 𝜎2 = 𝛽𝑜

𝑇[𝑋𝑠𝐴 − 𝑋𝑜]𝑇[𝑋𝑠𝐴 − 𝑋𝑜]𝛽𝑜/𝑘𝑠 

           =𝛽𝑜
𝑇𝑅𝑇𝑅𝛽𝑜/𝑘𝑠                       (5) 

where 𝑀𝑆𝐸𝑢𝑠𝑒𝑟 denotes the residual mean squared error from the misspecified model and 
𝑅 = 𝑋𝑠𝐴 − 𝑋𝑜. An optimal design for minimizing the impact of misspecification on the 
estimated error variance is the one that minimizes 𝑡𝑟(𝑅𝑇𝑅)( Myers et al, 2016). The bias 
on the estimated error variance minimization efficiency for a particular design is given by 
𝑡𝑟(𝑅𝑜𝑝𝑡

𝑇 𝑅𝑜𝑝𝑡)/𝑡𝑟(𝑅𝑇𝑅).  

For the competing designs in the Pareto front , the D-efficiency values for overall precision 
of model parameter estimates; 𝑡𝑟(𝐴𝐴𝑇)-efficiency values for examining the impact of 
model misspecification on the estimated coefficients; and 𝑡𝑟(𝑅𝑇𝑅)-efficiency values for 
examining the impact of model misspecification on the estimated errors were estimated for 
each response model. Similar to the result of the five factors case, the result in Figure 4 
shows that, the eight optimal designs found on the Pareto front for the ten factors example 
have higher D-efficiency values than the Res V UF-CCD design, thus satisfying our goal 
of precise parameter estimation. From the result, we can say design 6 performed better for 
response 1 and design 5 performed better for response 2, response 3 and response 4 
respectively when considering the trade-off between the criteria values. Overall, design 5 
appears to perform best in terms of offering the best protection against model 
misspecification for all the four responses. 
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Figure 4: The plot showing the efficiency of D, 𝑡𝑟(𝐴𝐴𝑇) and 𝑡𝑟(𝑅𝑇𝑅) for the ten factors 
example with 30 experimental runs 
 
If the interest is instead on the prediction ability of the fitted models, then we can examine 
the G- and I-efficiencies which aim to minimize the maximum prediction variance and the 
average prediction variance, respectively. We observed that designs 5 and 7, design 8, 
design 4 and design 1, appears to perform better for response 1, response 2, response 3 and 
response 4 respectively as shown in Figure 5. We also explore a case with 46 runs. By 
using the PACE algorithm, twelve competing D-optimal designs were found on the Pareto 
front. Due to the limitation of space, we omit the detailed results. However, the general 
patterns are consistent with what we saw for the 30-runs design example.  

 
Figure 5: The plot showing A, G and I efficiencies for the ten factors example with 30 
experimental runs 
 
Finally, worth mentioning is the computational efficiency of the PACE algorithm used. 
The algorithm takes an average of forty-eight seconds to run 100 starts on a standard 
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desktop computer for the five factors examples and five minutes for the ten factors 
example. Multiple random starts can be run in parallel to improve the computational 
efficiency. For the five factors example, the Pareto front was identified after running 20000 
random starts. Further increasing the number of random effects up to 40000 did not result 
in any change in the identified Pareto front. For the ten factors example, the number of 
points found on the pareto front initially increases as the number of random starts increases 
and then it begins to stabilize after 20000 random starts upward.   

5. Concluding Remark 

It is not unusual that in many industrial and engineering experiments which involve 
multiple responses, there is prior information on which subset of the factors is more likely 
to relate to which response. This prior information could be from the result of a screening 
experiment or from subject matter expert knowledge. Leveraging this information can lead 
to improved design selection and thus facilitate improved decision making. The Pareto 
front optimization can be applied as an alternative to the Central Composite Design 
approach for experimental design problems with multiple responses. This method allows 
us to seek optimal designs that simultaneously optimize the precision of estimated response 
surface models involving different design factors.  
 
This paper examined design optimization based on D-optimality for multiple responses. 
Specifically, we adapted the PACE algorithm for seeking D-optimal designs with multiple 
responses and then compare the results with existing methods such as the recently 
developed UF-CCDs. Both examples with different input spaces demonstrated that the 
selected D-optimal designs perform better than the UF-CCDs in terms of precise parameter 
estimation of model parameters. When multiple choices are presented on the Pareto front, 
further selection of the final design based on evaluating secondary criteria is illustrated 
through the examples.  

Appendix 

A. 

 
Figure 6: Geometric representation of the five factors D-optimal design 
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B. 

 

Figure7: Geometric representation of the Res IV UF-CCD. The blue, red and purple circles 
signifies the corner points, axial points and center points respectively 
 

C.  

Table 3: Design Matrix for the Res V UF-CCD design 

 

[1,] -1 -1 -1 -1 1 -1 -1    -1 -1    -1 
[2,]  1 -1    -1    -1      -1  1  1     1  1    -1    
[3,] -1      1    -1    -1      -1 -1      1    -1      1    -1    
[4,]  1      1    -1    -1    1  1     -1      1     -1     -1    
[5,] -1    -1      1    -1      -1 -1    -1     -1    -1      1    
[6,]  1    -1      1    -1    1  1     1      1     1      1    
[7,] -1     1      1    -1    1 -1     1     -1     1      1    
[8,]  1      1      1    -1      -1  1      0      1      0      1    
[9,] -1    -1    -1      1      -1 -1     0     -1     0     -1     
[10,]  1    -1    -1      1    1  1     2      1     2     -1     
[11,] -1      1    -1      1    1 -1     -2     -1     -2     -1     
[12,]  1      1    -1      1      -1  1      0      1      0     -1     
[13,] -1    -1      1      1    1 -1     0    -1     0     1     
[14,]  1    -1      1      1      -1  1     0      1     0      1     
[15,] -1      1      1      1      -1 -1      0     -1      0      1     
[16,]  1      1      1      1    1  1      0      1      0      1     
[17,]  2      0      0      0    0  2      0      2      0      0     
[18,] -2      0      0      0    0 -2      0     -2      0      0     
[19,]  0      2      0      0    0  0      0      0      0      0     
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[20,]  0    -2      0      0    0  0     0      0     0      0     
[21,]  0      0      2      0    0  0      0      0      0      2     
[22,]  0      0    -2      0    0  0     -1     0     -1    -2     
[23,]  0      0      0      2    0  0      1     0      1     0     
[24,]  0      0      0    -2    0  0      1     0      1     0    
[25,]  0      0      0      0    2  0     -1      0     -1      0     
[26,]  0      0      0      0      -2  0     -1      0     -1      0     
[27,]  0      0      0      0    0  0      1      0      1      0     
[28,]  0      0      0      0    0  0      1      0      1      0     
[29,]  0      0      0      0    0  0      0      0      0      0     
[30,]  0      0      0      0    0  0      0      0      0      0     
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