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Abstract

Climate change is an issue that has been at the forefront of public concern for the past
few decades and understanding it as well as the direction it is heading is of the utmost
importance. There has been extensive research in the past that has addressed this issue
on a global scale, yet the resulting findings have been unable to resonate with and con-
vince populations of the local implications of such research. The purpose of this study is
to analyze weather data of the New England region in the United States of America to (1)
explore trends in snowfall, snow depth, precipitation and average temperature, evaluate the
significance of such trends and (2) create time series models that will accurately forecast
future values that may be of some use in understanding the future of weather in the region.
The structure of this study was organized according to each of the six states in New Eng-
land, which include Rhode Island, Connecticut, Massachusetts, Maine, Vermont and New
Hampshire. For the first of the two tasks, simple linear regression models were applied to
each metric against time to better visualize the linear trends inherent in the data, which are
valuable for explanatory purposes. As for the second task, various time series model types
were tested, but ultimately ARIMA and seasonal ARIMA models were fit to the data in an
attempt to predict future monthly values for each metric. The assumptions of these models
were also checked via diagnostic measures such as the residual auto-correlation function
(ACF), partial auto-correlation function (PACF), the Ljung-Box statistics for the residuals,
as well as the usual diagnostics for normality and constant variance. Stationarity was also
considered in the creation of these models, and as a result suitable models for prediction
for certain weather metrics were unable to be acquired since they failed to meet this re-
quirement. In total, 24 linear regression models and 24 time series models were created to
better understand the nature and trajectory of climate change in New England.
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1. Introduction

Climate change presents many challenges to the world in the forms of glacier retreat,
coral reef deterioration, rising overall temperatures, and sea levels rising causing a
multitude of problems, one of which is the complete submergence of islands in the
worlds oceans. However, as severe as the risk is for destruction caused by climate
change throughout the world it is often difficult to see its immediate and thus
potential effects in people’s own local areas. In particular, the Northeastern region
of the United States known as New England has seemingly sustained no massive
wildfire breakouts like California and no extensive ecosystem breakdowns (yet) like
in the case of Australia’s coral reefs. The effects of climate change, however, don’t
have to be so dramatic in order for them to affect our livelihoods.

In the case of Massachusetts, the iconic cranberry growing industry, which has
been the Bay state’s primary agricultural product since the early 1800s, has suffered
due to increased temperatures. Warmer Spring and Autumn seasons act as cata-
lysts for the continued emergence of pests and fungi, both of which can substantially

*Undergraduate Student in the Dept. of Mathematics, Bridgewater State University, 24 Park
Avenue, Bridgewater, MA 02325
"Dept. of Mathematics, Bridgewater State University, 24 Park Avenue, Bridgewater, MA 02325

1465



JSM 2020 - Section on Statistics and the Environment

reduce crop yields. Cranberries are thus more susceptible to rot, which is degrad-
ing the quality of cranberries being sold to distributors, costing farmers potential
profit(Gardner, n.d.). Additionally, warmer Winters are resulting in a decrease in
snowfall but more importantly in this case a lack of ice (Ellwood, Playfair, Polgar,
& Primack, 2013). This denies the plants the usual cocoon-like protection provided
by farmers when they flood the cranberry bogs during the winter for the purpose
of creating an ice sheet above the crop (CCCGA, n.d.). Normally the ice sheet
would isolate and protect the stems from damage during the winter months while
they lay in a dormant state, but with the increasing temperatures the crops will
be exposed. With the changes in the Massachusetts climate, cranberries’ growing
cycles have been interrupted as well. The plants begin to bloom with fruit when
the temperature is warm enough, so the blooming period has been arriving sooner
which causes added variability and complications to harvesting periods (Ellwood et
al., 2013). With the added uncertainty and the real risk for substantially reduced
profits, Massachusetts’s farmers have begun to exit the industry altogether, which
has begun to shift northwards to more suitable growing climates like the southern
Canadian province Quebec(Ellwood et al., 2013).

Similar to Massachusetts, the state of Maine suffers from increased temperatures
but also from a lack of snow cover that is the direct result of a warmer climate. This
results in the decline of numerous tree species like the sugar maple, red maple, and
birch trees since snowfall is important to their annual growth cycles . As with the
Massachusetts cranberry crop, colder temperatures have historically deterred pests
from damaging these deciduous tree species in Maine (Fernandez et al., 2020).
These types of trees, particularly the sugar maple, are the main sources of sap
refined into the maple syrup so coveted by the nation’s consumers. Declines in these
tree populations causes greater difficulty in meeting demand and higher prices for
consumers. This not only has the potential to disrupt the natural ecosystem in
Maine, but also directly impacts the American people’s wallets.

Vermont is a state where more varied climatological impacts can be seen, in-
cluding a similar impact on tree populations like members of the maple tree family
as well as birch. Vermont’s maple syrup industry is consistently the largest pro-
ducer of maple syrup in the United States year after year, on average producing 3
to 4 times the amount of maple syrup Maine produces. In 2019, Maine produced
approximately 580,000 gallons of the sweet syrup while Vermont achieved a stag-
gering 2,070,000 gallons (of Agriculture, n.d.). However, climate change is expected
to make hitting these target numbers more difficult, and it is often that experts
claim the only reason production is maintained is that advancing technology makes
up for fewer trees to tap for sap (McDonald & Schoen, n.d.). In addition to the
negative impacts on maple syrup production, increased rainfall and variability with
all weather patterns have made extreme precipitation weather events like storms
more intense but also more frequent. In 2011, hurricane Irene passed over much
of the northeast, but had its greatest impact when it landed in Vermont. Due to
the existing vulnerabilities of Vermont’s rivers and the added rerouting of rivers
for irrigation purposes, the storm caused statewide flooding that resulted in $800
million of damages and lost income for farmers and residents at the expense of the
state and federal taxpayer (State of Vermont, 2020).

In Connecticut, rising temperatures have been observed to be one of the greatest
areas of concern regarding a changing climate. There are multiple reasons for this,
including the effects that rising temperatures will have on the dairy industry in the
state. Cows produce less milk when continuously exposed to a warmer climate, so
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naturally increasing temperatures will contribute to decreases in profits in the dairy
industry, which accounts for approximately 13 percent of the state’s farm revenue
and is valued at around $70 million. According to the Environmental Protection
Agency (EPA), with increased temperatures there will be a subsequent increase
in the formation of smog, a dangerous pollutant that contributes to respiratory
problems, and the severity of the effects of ragweed, a plant that also damages
respiratory health(Environmental Protection Agency, 2016a).

Rhode Island is yet another state that will suffer particularly from increasing
temperatures, on land and in the ocean. Fish species that are integral to the state’s
fishing industry, like cod and lobster, are expected to decline and migrate north to
cooler waters. On land, the active season for mosquitoes is getting longer, making
the possibility of contracting dangerous diseases like the West Nile virus, Eastern
equine encephalitis (EEE), and Lyme disease ever more likely. In addition, the
threats posed by invasive species that are damaging to the New England ecosystem
are becoming more real by the day (Environmental Protection Agency, 2016b). One
example is that of the Asian longhorn beetle, which can destroy entire forests and
threatens the existence of millions of acres of America’s hardwood trees. Forestry is
an important industry in New England and sufficient tree populations are necessary
for us to combat climate change as well (United States Department of Agriculture,
n.d.). The Asian longhorn beetle poses a threat to both.

New Hampshire has been hit extremely hard by the decrease in snowfall over the
past decade. The state heavily relies on the skiing industry’s revenues, but with the
decline in snowfall the region has lost an estimated 10 to 20 percent of its ski season
days. This represents an estimated loss of $42 million to $84 million in direct and
indirect spending in New Hampshire. New Hampshire is also famous for its beau-
tiful sights and is an iconic destination for hikers and vacationing families looking
to experience a taste of nature. However, according to a 2008 New Hampshire De-
partment of Environmental Services report there has been substantial ”dulling and
browning of the foliage season due to tree die-offs, species substitution, and ’climate
stressed’ unhealthy trees.” The report goes on to note that " New Hampshire foliage
travelers on average spend a total of $292 million annually”, suggesting that this is
yet another way in which important revenue is likely to be lost due to a changing
climate, hurting the state’s economy and its residents (New Hampshire Department
of Environmental Services, n.d.).

Keeping in mind the severity of the impacts of changing weather outlined above,
the abilities to quantify trends in such weather, monitor them, and realistically
predict how they will change in the future is imperative. This paper aims to use
multiple statistical techniques, including linear regression and ARIMA time series
analysis, to address these concerns. Six states are discussed, with four types of
weather being examined for the years 1999-2018 per state: average temperature,
snowfall, snow depth, and precipitation. Thus, 24 linear regression models and 24
ARIMA time series models were needed to adequately assess the weather of each
state.

The structure of this paper is as follows. In section 2 the intuition behind the
use of linear regression is explained and visuals for the data and each model are
produced. In section 3 the ARIMA modeling is introduced and applied to the
data, again for each weather type. The process for creating the ARIMA models
is much more laborious, and is explained step by step. The resulting models will
be compared with various criteria like the Akaike information criterion (AIC), root
mean square error (RMSE), mean absolute error (MAE), and more. Lastly, the
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forecasts of the chosen models will then be compared to the real data collected
for the year of 2019. Without a loss of generality, we discuss in depth the model
creation process for only the case of Massachusetts and discuss the results of the
analyses of the other states later.

2. Trend Analysis

2.1 Notes on Data Preparation

It is important to note a few things before discussion of the data analyses be-
gins. The data used were all taken from the Global Historical Climatology Network
(GHCN) and United States Historical Climatology Network (USHCN) databases,
provided by the National Oceanic and Atmospheric Administration (NOAA). All
data was either obtained or coerced into a monthly format for this study. It is im-
portant to note that the data spanned the years between 1999 and 2018, inclusive.
It made sense to include every month within this time frame for precipitation and
average temperature since year round information about the metrics was desired
for the study. However, it did not make good sense to include all of the months
within the time frame for snow depth and snowfall for obvious reasons. The study
only wished to analyze months that have historically yielded substantial amounts
of snow, thus a new “period of interest” was used that included months between
October and May, inclusive. This is an 8 month period, so the data sets for these
two metrics consist of 160 observations, while the previous two metrics have 240.
Lastly, it is important to explain the difference between the snowfall and snow depth
metric, as the two terms are easily confused. As defined by the NOAA, snowfall
refers to the amount of fresh snow that has fallen between time points, whereas
snow depth is the the total amount of snow present at the time of measurement,
including both old and new snowfall.

2.2 Linear Regression

Simple linear regression is a tool that has been used for many years and has been
an invaluable way for scientists to explore relationships between two variables and
to ascertain if they are correlated or not. The method simply regresses one vari-
able against another on the two axes of the two-dimensional Cartesian plane and
estimates an ideal equation that minimizes the mean square error between the data
and the estimated equation line. As a result, an equation is obtained that most
accurately represents the data. In this case, a regression of each weather metric
was performed against time. The features of the regression equations that are most
important to this study are the sign and magnitude of the slope coefficient found
using the least-squares method. The regression equation used has the following
form:

Y= Bo+ BT+ &

where Y; is the weather metric, T; is time (in months), 5y is the intercept coeffi-
cient, 1 is the estimated slope coefficient, and ¢; is the error term. Linear regression
is valuable since it only provides a representation of the linear association between
two variables, and it is precisely a linear trend that will show if there is a general
decrease/increase in the observed weather.
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2.3 Trends in Massachusetts Weather

As mentioned above, the features of interest regarding the least squares regression
line are the sign of the slope and its magnitude. These together represent the
direction of the trend within the data and the severity of it. Below in Figure 1 are

visualizations of the regressions of each weather metric against time.
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Figure 1: Regressions of Weathers Metrics against Time in Massachusetts

It can be seen that there is a general increasing trend in the amount of monthly
average temperature in Massachusetts over the last 20 years, which corroborates the
theory that the regional climate is warming. Monthly precipitation also exhibits a
slight increasing trend, as does snowfall. The only metric that exhibits a decreasing
trend is snow depth.

In Table 1, the equations for each linear regression relation can be seen. The
slope coefficients for each type of weather tend to be small, however changes in
climate tend to always be small and gradual over time. It is also important to
keep in mind that small changes in weather tend to result in larger impacts on the
stability of things like the health of wildlife in the corresponding area.

Weather Type
Average Temperature

‘ Regression Equation
Y =48.79 + 0.013T

Precipitation Y = .13+ 0.000026T
Snowfall Y = .22+ .000117
Snow Depth Y = 1.85 — 0.00089T

Table 1: Regression for Massachusetts Weather

Regarding the results of the linear regression lines for each of the other states,
many of them corroborate the claims made about New England climate change and
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reaffirm the expectations they had, whereas a few others seem to contradict. In
Table 2, the outcomes of the regressions performed on each weather metric were
colored either red or green to reflect an increasing trend (green) or a decreasing

trend (red).

State Precipitation | Snowfall | Snow Depth | Average Temperature
Connecticut Decreasing Increasing Increasing Increasing
Maine Increasing Increasing | Decreasing Increasing
Massachusetts Increasing Increasing | Decreasing Increasing
New Hampshire Increasing Increasing | Decreasing Increasing
Rhode Island Increasing Increasing | Increasing Increasing
Vermont Increasing Decreasing | Decreasing Increasing

Table 2: Trends of New England Weather

Average temperature was the only metric for which all the outcomes of its re-
gressions were consistent with their expectations. For the other three metrics, it
appears that each have varying amounts of deference from their expectations. In
general, there exists increasing trends in both average temperature and precipita-
tion, with a minor degree of inconsistency arising from Connecticut’s precipitation
regression. However, the number of states in which snowfall is increasing is larger
than what was expected. This could be due to other geographical factors that were
not considered in this study, or it could be something more obvious. This study
included data only tracing back to the year 1999, yet large scale human caused
climate changing effects in the US, like the emission of greenhouse gases, date back
to the the industrial revolution of the early 1800s. If a larger sample size was used
in this study dating back farther in US history, the resulting trends of the linear
regressions would likely be more pronounced.

3. Time Series Analysis

3.1 Motivation

Time series analysis is extremely valuable in many situations. People have a fasci-
nation about the future and have always looked for ways to predict what has yet
to pass. Time series analysis is a tool that can produce such predictions under a
given set of assumptions, making it extremely valuable to a great many fields, in
this case climate change. Knowing what the temperature will be like in the future
will serve to inform decision makers with quantitative information rather than a
general qualitative assertion that temperature is on the rise.

The time series analysis was performed using the seasonal autoregressive inte-
grated moving average (SARIMA) model, although other methods were attempted,
like the Holt-Winters exponential smoothing model. In the end SARIMA was the
easiest to implement and was needed to address the nonstationarity of the data.

3.2 Seasonal Autoregressive Integrated Moving Average Models

The seasonal autoregressive integrated moving average models are a subset of the
many time series models and includes both autoregressive (AR) terms, moving
average (MA) terms, and the use of differencing operators when the process is
nonstationary (thus integrated). The model can be represented with the following
notation:
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P P q Q
yr = 0o + Z GiYi—i + Z Dy s +€i + Z Oict—i + Z Oict—is
i1 i—1 i—1 i—1

where y; is the observation on the variable of interest at time point ¢, 0 is either
the mean of the process or a deterministic trend constant, ¢; is the ith nonseasonal
AR coefficient, ®; is the ith seasonal AR coefficient, ¢; is the ith error term, 6; is
the ith nonseasonal MA coefficient, ©; is the ith seasonal MA coefficient, and s is
the periodicity /seasonality constant (Wei, 2006). For the subsequent models, the
deterministic trend constant 6y was omitted for simplicity.

The intuition behind the ARIMA time series model is simple. It makes sense
that, for example, information about whether it rained or not today and how much
it rained will provide a decent idea about the rainfall the next day. This idea can be
observed in the ARIMA model through the inclusion of the autoregressive terms,
where y;_1, ys—2, ... , €t—p take on previous values of the series, which may be daily,
weekly, monthly data and so on. Additionally, the moving average terms include
the predictors 1, €;—2, ... , €t—q, Which take values of the previous error terms of
the series.

3.3 Building an ARIMA model for Average Temperature

A total of twenty-eight ARIMA models were created to forecast weather for this
study, but only that for average temperature in Massachusetts will be outlined in
this paper. The original time series can be seen in Figure 2.

Average Daily Temperature in Massachusetts by Month

@
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Figure 2: Time Series for Average Temperature in Massachusetts

Plotting the original time series is important because it can yield revealing in-
formation. It can be seen that the time series exhibits a constant mean with a
small amount of variation from year to year. Another important observation is that
the series tends to follow a similar pattern from year to year, with temperatures
falling in the winter months and rising again in the summer months. This is to be
expected, and this seasonality is characteristic of many weather time series.

Another important tool that is used in time series analysis is the sample auto-
correlation function (ACF). This function takes all of the values of the time series
and a lag value k as inputs and outputs the correlation between values of the series
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k lags apart. These values can represented by y; and y; 1, and for every observation
at time point t of the series the observation pairs k lags apart are regressed and
their correlation computed. This is where the term autocorrelation comes from,
since it finds the correlation between a time series and a lagged version of itself in
time (Montgomery, Jennings, & Kulahci, 2016). The function can be seen in fig-
ure 3, along with another tool that is known as the sample partial autocorrelation
function (PACF).
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Figure 3: Sample Autocorrelation and Partial Autocorrelation Functions for Av-
erage Temperature in Massachusetts

The goal of plotting the ACF is to examine the autocorrelation that the time
series process exhibits at each of its time lags. Before proceeding, it is necessary
to define what stationarity of a time series is, as it is an important attribute that
is required for producing accurate forecasting models. Regarding this definition,
Montgomery et al. (2016) state that “If a time series is stationary this means that
the joint probability distribution of any two observations, say y; and 31, is the
same for any two time periods t and t 4+ k that are separated by the same interval
k” (p. 36). This is referred to as strict stationarity and does not commonly occur in
practice with real world data. Instead, it is sufficient to show that the time series
has a finite mean and variance, which is referred to as weak stationarity.
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Figure 4: Box-Cox Transformation Lambdas plotted against their Log-Liklihood
values

1472



JSM 2020 - Section on Statistics and the Environment

Examination of Figure 2 has already shown that the average temperature time
series exhibits a near constant mean and variance. Time series commonly exhibit
non-constant variance issues, which can be corrected most of the time by apply-
ing a Box-Cox transformation. Checking this assumption is worthwhile since non-
constant variance has severe consequences regarding the accuracy of forecast in-
tervals. By viewing the plot in Figure 4, it clear that the optimal A value for
a Box-Cox transformation is close to 1, so no variance-corrective transformation
should be performed. However, there also appears to be a clear seasonality, which
can be confirmed by the periodic spikes every twelve lags in the ACF plot in Figure
3. Note that the periodic spikes all seem to protrude from the bounds of the sig-
nificance limits in the plot as well, signifiying that there exists a detectable amount
of serial correlation at those lags. There are multiple ways of addressing/removing
seasonality, but the one employed here is known as seasonal differencing.

3.4 Seasonal and Non-Seasonal Differencing

Non-seasonal differencing is a process that is used for removing a positive or negative
linear trend in time series data. It subtracts the previous value of the time series
from the current value, and it can be expressed by

Wt = Yt — Yt—1,

where w; is the newly differenced value of the series. This operation is done
to every value of the series. Naturally, the first value of the series will have no
previous value and must be dropped from the newly differenced series such that the
new series has one less observation than the orginal. However, standard differencing
is not helpful here since there is no linear trend to be removed, but a seasonal trend.
Instead, a differencing operation will be performed that can be expressed by

2t =Yt — Yt—s,

where z; is the seasonally differenced value of the series, and s is the lag interval
with which the seasonality repeats. Recall that the ACF showed that there are
significant spikes that repeat every twelve lags, indicating a monthly seasonality.
This makes sense since the data are monthly observations and weather occurs in
cycles. Thus, the value of s here would be 12 and the seasonal differencing operation
will subtract from each value of the series the value that occurred 12 time steps
(months in this case) previously. As before, the resulting time series will have fewer
data points, here a difference of twelve.

After performing this operation, it is necessary to plot the differenced time series,
as well as its accompanying ACF and PACF plots. The differenced time series no
longer exhibits a clear, predictable seasonality. Instead, the tendency for the series
to commit to bouts of increasing and decreasing behavior is much more sporadic.
Note also the ACF and PACF of this series in Figure 6. The persistent oscillating
pattern in the ACF has mostly been removed. There remains autocorellation in the
time series, although to a lesser extent than before. yet it cannot be ignored, and
at this stage a SARIMA model must be fit.

3.5 Model Fitting

Now that the average temperature time series has been rendered a minimum of
weakly stationary, fitting a SARIMA model is approporiate. In addition to aiding
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Average Daily Temperature in Massachusetts by Month, Deseascnalized
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Figure 5: Seasonally Differenced Time Series for Average Temperature
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Figure 6: Sample Autocorrelation and Partial Autocorrelation Functions for Sea-
sonally Differenced Time Series

the modeler in making a nonstaionary series stationary, the ACF and the PACF
are also valuable tools in determining the orders of an ARIMA model. There is a
tendency for certain patterns that arise in the ACF and PACF that correspond with
certain ARIMA models. Therefore, by carefully observing the two correlation based
functions it is possible to determine the correct type and number of terms(AR, MA,
etc.) to include in the model.

In general, it should be noted that the ACF is used for determining the order
of the moving average and seasonal moving average terms and the PACF is used
for determining the order of the autoregrressive and seasonal autoregressive terms.
There are a few other rules that govern reading the plots, and they can be seen
in Table 3. There are also similar rules that govern the interpretation of seasonal
patterns which will be discussed after determining the nonseasonal term orders.
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Process ACF PACF

AR(p) Tails off after exponential decay or damped sine wave Cuts off
after lag

b

MA(q) Cuts off after lag ¢ Tails off
after ex-
ponential
decay or
damped
sine
wave

ARMA(p,q) Tails off after lag (¢ — p) Tails off
after lag
(»—q)

Table 3: ARIMA Model Identification Rules

Beginning with the ACF of the seasonally differenced time series found in Figure
6, it can be observed that there is an exponential decay pattern that results in the
ACF dropping off quite quickly. This and the fact that the PACF cuts off after the
very first lag imply that the nonseasonal portion of the model is an AR(1) process.
A nonseasonal moving average term is not expected to be included at this point.

As for the seasonal portion of the model, the way in which the ACF and PACF
are used is relatively the same in that we apply the same rules mentioned in the
chart above, except that we will restrict our scope to only the seasonal lags (the
ones that occur every twelve lags). The ACF seems to cut off after one seasonal lag,
which can be observed as the large spike at lag twelve, whereas the PACF seasonal
lags seem to follow a pattern of exponential decay. This implies that a seasonal
MA(1) term must be included.

Now that the terms have been identified, we can state our tentative model as
an ARIMA(1,0,0)(0,1,1)12 model. However, it is important to recognize that this
model identification process tends to be mildly subjective and should be used as a
way to acquire a rough idea of what the model should be, which is why this model
is tentative. A more accurate way to find the most appropriate model is to compare
the tentative model’s selection criteria values with those of other models that either
increase or decrease the orders of the terms by one. Criteria used for model selection
include Mean Error (ME), Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), Mean Percentage Error (MPE), Mean Absolute Percentage Error (MAPE),
Mean Absolute Scaled Error (MASE), Akaike Information Criterion (AIC), and the
Bayesian Information Criterion (BIC). A useful to make these comparisons is to
create a chart that lists each model that was fit to the data and their corresponding
values for each of the model identification criteria.

The model selection criteria all follow the same general rule that the lowest
value indicates the best model, except for Mean Error and Mean Percentage Error,
for which a value closer to 0 is best since the the error in either the negative or
positive direction are both possible and undesirable.

According to Table 4, the model with the most supporting model selec-
tion criteria (seen as the numbers highlighted in green) appears to be the
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Model | ME | RMSE | MAE | MPE | MAPE | MASE | AIC | BIC

ARIMA(0,0,0)(0,1,0)12 | 0.001 | 3.928 | 3.024 | -0.562 | 7.212 | 0.413 | 1284.549 | 1288.030
ARIMA(0,0,0)(0,1,1)12 | 0.341 | 3.093 | 2.323 | 0.128 | 5.631 | 0.318 | 1192.530 | 1199.491
ARIMA(1,0,0)(0,1,1)12 | 0.244 | 2.824 | 2.189 | -0.018 | 5.216 | 0.299 | 1156.589 | 1167.031
ARIMA(1,0,1)(0,1,1)12 | 0.188 | 2.788 | 2.150 | -0.151 | 5,101 | 0.294 | 1154.069 | 1167.991

Table 4: Model Identification Criteria Comparison

ARIMA(1,0,1)(0,1,1)12, which differs from our tentative model by including a
nonseasonal moving average component. Therefore, we will choose this as our fi-

nal model and examine the diagnostic plots to ensure that the assumptions for the
ARIMA model have been met.
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Figure 7: Model Diagnostics 1

The diagnostics plots in Figure 7, specifically the histogram of model residuals
and the normal probability plot, suggest that the normality assumption is satisfied.
There do seem to be some heavy tails in the normal probability plot, but the
normality assumption is robust and can be roughly assumed. According to the
ordered residual plot and the plot of the residuals against fitted values, the second
assumption of constant variance is upheld as well.

In addition to checking normality and constant variance, it is important to
ensure that the model has effectively eliminated all or most of the serial correlation
in the residuals and is stationary. The residual ACF and residual PACF in Figure 8
show the first 25 lags in the model residuals, only one of which is significant. Despite
barely extending past the significance limits, this one significant lag is most likely a
random shock in the data and it is unlikely to indicate remaining serial correlation.
Ljung-Box statistics were computed for each residual ACF lag to test for signifi-
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Figure 8: Model Diagnostics 2

cance, and the graph in Figure 8(d) plots the p-values of these statistics against
the lag number.These p-values were tested against a a = .05 threshold, which is
represented by a red line. This indicates further that no significant correlation is
present. The unit root graph shows the inverse roots of the moving average and
autoregressive terms in the model. The inverse AR root is clearly inside the unit
circle, indicating that the model’s AR term is stationary. The inverse MA roots are
less clearly inside the unit circle, but they do in fact lie within the circle, indicating
that the model’s MA terms are invertible.

3.6 Model Forecasting

Now that model assumptions have been upheld through diagnostics, we can now
use our model to forecast future observations. Using the ARIMA(1,0,1)(0,1,1);2
model we decided on, we plot the model’s fitted values overlaid with the original
time series

Judging from the the time series in Figure 9, the model captures the trend of
the temperature data rather well. In fact, most of the SARIMA models that were
compared earlier through the various criteria were able to capture the trend of the
data, and the choice of our model was simply one that minimized in sample error.
In practice, most of these models would have sufficed. The forecasts are in blue,
and can be seen in closer detail in Figure 10. Since the data used to train the model
was data from 1999 to 2018, temperature data from 2019 was used to evaluate the
accuracy of the model. All of the 2019 data falls comfortably within the forecast
intervals, indicating that the model is a functional tool for forecasting the average
daily temperature by month for the state of Massachusetts.
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Average Daily Temperature in Massachusetts Forecasts by Month
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Figure 9: Average Temperature Data and Model Overlay with Forecasts
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Figure 10: Forecasts, Forecast intervals and 2019 Data Comparison

4. Concluding Comments

Using linear regression, general linear trends were computed and observed for av-
erage temperature, snowfall, snow depth, and precipitation. The different increas-
ing/decreasing trends that were observed were purely for exploratory data analysis
and for informing the average person. Unfortunately, the stochastic nature of the
weather data results in the linear regression models being unacceptable for signifi-
cance testing since the models diagnostics indicated substantial non-normality.
The SARIMA model created for average temperature was able to successfully
capture the trends within the data and forecast future observations. Despite the suc-
cess of such a model being fit to the average temperature data, SARIMA modeling
techniques were unsuccessful in capturing the trends of the snow depth, snowfall,
and precipitation data. Future considerations for this study would be to apply
other time series modeling techniques, such as Holt-Winters exponential smoothing
for the snowfall and snow depth data since they follow a clear seasonal trend.
Precipitation, due to its nonseasonal nature (the New England precipitation
data exhibit far more consistency throughout the year than do the other weather

1478



JSM 2020 - Section on Statistics and the Environment

State | Precipitation | Average Temperature Snowfall Snow Depth
MA | (0,0,0)(0,0,0) (1,0,1)(0,1,1)12 (0,0,0)(0,1,1)s | (1,0,0)(0,1,1)s
CT | (0,0,0)(0,0,0) (1,0,1)(0,1,1)12 (0,0,0)(1,1,1)s | (0,0,0)(1,1,1)s
ME | (0,0,0)(0,0,0) (1,0,1)(0,1,1)12 (0,0,0)(1,1,1)s | (1,0,0)(0,1,1)s
VT | (1,0,0)(1,0,0) (1,0,0)(0,1,1)12 (0,0,0)(2,1,0)s | (1,0,0)(3,1,0)s
RI | (0,0,0)(0,0,0) (1,0,0)(0,1,1)12 (0,0,0)(0,1,1)s | (1,0,0)(3,1,0)s
NH | (0,0,0)(0,0,0) (1,0,1)(0,1,1)12 (0,0,0)(2,1,1)s | (1,0,0)(3,1,0)s

Table 5: All (S)ARIMA Models for Massachusetts and other States

data mentioned), would benefit more from standard exponential smoothing tech-
niques. Additionally, there is another technique known as Improved Complete En-
semble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN). It is an
improved variation of Empirical Mode Decomposition, which was initially an impor-
tant aspect of the Hilbert-Huang Transform, and it may be able to more accurately
capture the trends within the highly volatile precipitation data.
Although this paper discusses only the modeling of the average temperature
data for Massachusetts in depth, the models for the other time series for Mas-
sachusetts and the other states can be found in Table 5. Additionally, the graphs and
code for all time series and linear regression models created can be found on GitHub
through the link https://github.com/AndrewDisher /New-England-Weather.

1479



JSM 2020 - Section on Statistics and the Environment

References

CCCGA. (n.d.). How cranberries grow: Winter. Retrieved 10/03/2020, from
https://www.cranberries.org/how-cranberries-grow/winter

Ellwood, E., Playfair, S., Polgar, C., & Primack, R. (2013, 09). Cranberry flowering
times and climate change in southern massachusetts. International journal of
biometeorology, 58. doi: 10.1007/s00484-013-0719-y

Environmental — Protection  Agency. (2016a). What  climate
change means for connecticut. Retrieved  10/03/2020, from
https://19january2017snapshot.epa.gov/sites/production/files/
2016-09/documents/climate-change-ct.pdf

Environmental ~— Protection  Agency. (2016Db). What  climate
change means for rhode island. Retrieved 10/03/2020, from
https://19january2017snapshot.epa.gov/sites/production/files/
2016-09/documents/climate-change-ri.pdf

Fernandez, 1., Birkel, S., Schmitt, C., Simonson, J., Lyon, B., Pershing, A., ...
Mayewski, P. (2020). Maine’s climate future—2020 update. Retrieved from
https://climatechange.umaine.edu/wp-content/uploads/sites/439/
2020/02/2020_Maines-Climate-Future-508-ADA-compliant.pdf

Gardner, S. (n.d.). Climate change comes  to
the cranberry bog. Retrieved 10/03/2020, from
https://www.marketplace.org/2012/11/19/climate-change-comes-
cranberry-bog/

McDonald, J., & Schoen, J. W. (n.d.). Vermont’s  maple
syrup industry s  recovering from  decades of decline. climate
change could put that at risk. Retrieved 10/03/2020, from

https://www.cnbc.com/2019/09/28/climate-change-could-hurt-vermonts-
maple-syrup-industry-recovery.html

Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2016). Introduction to time
series analysis and forecasting, 2nd edition. 111 River St. Hoboken,NJ 07030
USA: John Wiley and Sons, Inc.

New Hampshire Department of Environmental Services. (n.d.). Global climate
change and its impact on new hampshire. Retrieved 10/03/2020, from
https://www.des.nh.gov/organization/commissioner/pip/factsheets/
ard/documents/ard-23.pdf

of Agriculture, U. S. D. (n.d.). United states maple syrup production. Retrieved
10/03,/2020, from

State of Vermont. (2020). Climate change in vermont. Retrieved 10/03/2020, from
https://climatechange.vermont.gov/our-changing-climate/what-it-

means/flooding
United  States  Department of  Agriculture. (n.d.). Asian
longhorned beetle. Retrieved 10/03,/2020, from

https://www.aphis.usda.gov/aphis/resources/pests-diseases/hungry-
pests/the-threat/asian-longhorned-beetle/asian-longhorned-beetle

Wei, W. S. (2006). Time series analysis; univariate and multivariate methods, 2nd

edition. 1 Lake Street Upper Saddle River, NJ 07458 United States: Pearson
Education, Inc.

1480





