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Abstract

Ordinal mixed models constitute a flexible class of models to analyze ordinal data from various

fields. Examples are data that originates from the heavily used online reviewing systems of movies,

music, pain reports and customer surveys. Ordinal mixed models take the ordinal nature of data into

account and allow modelling of more complex dependency structures. Furthermore, they provide a

flexible and simple skeleton to model the information at hand, i.e. selecting terms in a modelling

process as known from classical statistics. Ordinal mixed models can among others be estimated

through the Laplace Approximation, for example using the ordinal package in R. However, this

package is not optimized for large datasets. We propose to implement ordinal mixed models with

the Template Model Builder (TMB) package in R. TMB provides a simple and flexible framework

that enables fast optimization of the Laplace Approximation to the marginal log-likelihood. It is

optimized to make fast computations for models with both many random effects and parameters

(Kristensen et al. 2016). We compare an implementation using the TMB package to the ordinal

package through timings on both simulated and real data. We find that an implementation with TMB

gives substantial speed-ups for models with many observations, parameters and random effects and

allow estimation of ordinal mixed models with even larger datasets.
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1. Introduction

The size of data is ever increasing. This includes ordered categorical data, or ordinal data,

which for example occur in recommender systems, customer surveys, and pain assess-

ments. A commonly used approach is to treat this type of data as continuous (Agresti

2012). However, this is too restrictive as this implies a fixed distance between the classes

dependent on the arbitrary class-coding and ignores the categorical nature (Tutz 2011).

Treating ordinal data as categorical is not appropriate either, as this ignores the information

on order (Tutz 2011).

Ordinal mixed models are regression models that are designed to model the ordinal nature

of data appropriately. The models allows for complex dependency structures that makes it

possible to relax the assumption of independent observations whenever this is relevant.

These models can be estimated by the maximum likelihood method optimizing the Laplace

Approximation of the marginal log-likelihood. The clmm function from the R package

ordinal can estimate ordinal mixed models by this method. At the time of writing, this

package has 683 citations on google scholar which testify to the popularity of this package.

However, this package is not optimized for large data sets.

The TMB package in R offers fast and efficient optimization of the Laplace Approximation.

TMB is optimized to estimate models with both many random effects and parameters (Kris-

tensen et al. 2016). This makes TMB ideal to extend the size of data sets for which ordinal
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mixed models can be estimated within reasonable time.

The proceeding is arranged as follows: section 2 introduces ordinal mixed models, estima-

tion of them by the Laplace Approximation and the two R packages ordinal and TMB.

Section 3 describes the experiments that are used to compare computation times between

the two packages and section 4 presents the results of the experiments. The last section,

section 5, finalizes this proceeding with a discussion and a conclusion.

2. Methods

2.1 Ordinal Mixed Models

Ordinal Mixed Models also named cumulative link mixed models are motivated by the

assumption that the ordinal response is build from an underlying continuous latent variable

(Tutz 2011). Denote the continuous latent variable y∗i for observation i. The continuous

latent variable transforms into the ordinal response by introducing C+1 ordered thresholds

−∞ ≡ θ0 ≤ θ1 ≤ . . . ≤ θC−1 ≤ θC ≡ ∞

that splits the real axis into C separate regions, where C is the number of ordered categories

for the ordinal response variable. The ordinal response for observation i, yi, is thus C−1 if

y∗i falls between θC−1 and θC (Tutz 2011). Note that θ0 and θC are special, as they are fixed

to be equivalent to −∞ and ∞, respectively. Thus only C − 1 thresholds are parameters.

For ordinal mixed models it is assumed that the continuous latent variable is modeled by a

mixed model of the form

y∗i = x⊤

i β + z⊤i u+ ǫi, (1)

where u ∼ N(0,Στ ) and ǫi is assumed to follow a distribution with cumulative distribu-

tion function F . β contains the fixed effects parameters and is a vector of size p. u contains

the random effects and is a vector of size q. xi and zi are rows of the design matrices for the

fixed effects and the random effects, respectively. τ is a vector of parameters that param-

eterize the variance-covariance matrix Σ (Christensen 2012). Ordinal mixed models are

thus an extension of ordinal regression models (Mccullagh 1980) which include random

effects.

The cumulative probability of observation i falling in the c’th category, γic, is obtained by

combining the link between the continuous latent variable and the ordinal response with

(1), such that

γic = P (yi ≤ c) = P (y∗i ≤ θc) = P (ǫi ≤ θc − x⊤

i β − z⊤i u). (2)

The formal formulation of ordinal mixed models follows directly from (2), see (Tutz 2011),

and is presented as

γic = F (ηic), ηic = θc − x⊤

i β − z⊤i u, i = 1, ..., N, c = 0, ..., C. (3)

For notational convenience and implementational ease, the notation for ordinal mixed mod-

els in (3) is changed into matrix notation. Christensen (2012) motivates the matrix formu-

lation by introducing a k-notation. Let πic be the probability of observation i falling in

category c and πi be the probability of observation i falling in its actual category. The

k-notation is then presented as

πi = γi1 − γi2 where γik = γic for j = yi − k + 1.
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Using the k-notation rewrites (3) to

γik = F (ηik), ηik = θik − x⊤

i β − z⊤i u, k = 1, 2.

The matrix form then reads

γk = F (ηk), ηk = Akθ −Xβ − Zu+ ok, (4)

where A is a design matrix of dimension N×C that takes the value of 1 at the c’th position

in row i if observation i is in category c and 0 otherwise. X and Z are the design matrices

for the fixed effects and the random effects respectively and have dimensions N × p and

N × q. θ =
[

θ1 . . . θC−1

]

and has length C − 1. A1 = A[,−C] is the A matrix

without the C’th column while A2 = A[,−1] is the A matrix without the first column.

o1 = A[, C]θ0 and o2 = A[, 1]θC are offset vectors of size N . For implementational

purposes, θ0 and θC are simply large positive and negative numbers (Christensen 2012).

2.2 Estimation

This proceeding focuses on estimation of the ordinal mixed models by the maximum likeli-

hood method. The maximum likelihood method requires specification of the marginal like-

lihood function. We obtain the marginal log-likelihood function for ordinal mixed models

(4) by integrating or marginalizing out the random effects of the joint log-likelihood such

that

ℓ(θ,β, τ ;y) = log

∫

Rq

pθ,β,τ (y,u)du (5)

= log

∫

Rq

pθ,β,τ (y|u)p(u)du (6)

where

pθ,β,τ (y|u) = π, π = γ1 − γ2,

p(u) = (2π)−
q

2 |Σ|−
1

2 exp(−
1

2
u⊤Σ−1u).

and π =
[

πi . . . πN
]

contains the probabilities of observation i falling in category c.

The conditional distribution of the data given the random effects, pθ,β,τ (y|u), is derived by

realising that the ordinal response can be viewed as multivariate. From this point of view

the multivariate response for an observation i falling in category c, ỹi is a vector of length

C, that takes the value of 1 in the c’th entry and 0 otherwise. The response then follows a

multinomial distribution ỹi = multinom(1,πi) where πi =
[

πi1 . . . πiC
]

(Christensen

2018).

The integral in (5) rarely has a closed-form solution. Direct optimization of the log-

likelihood function to estimate the parameters is therefore rarely computationally feasible

(Christensen 2012). Instead, a numerical approximation to the integral (5) is optimized.

Several techniques exist with their respective pros and cons like the Laplace Approxima-

tion, Gauss-Hermite Quadrature, Adaptive Gauss-Hermite Quadrature and Monte Carlo In-

tergration (Christensen 2012). Here the focus is the Laplace Approximation to the marginal

log-likelihood. The Laplace Approximation turns the original integration problem in to an

optimization problem. It is derived by replacing the joint log-likelihood with a second order

Taylor-expansion of the joint log-likelihood around the optimum of the joint log-likelihood
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with respect to the random effects û. The Laplace approximation to the marginal log-

likelihood is then given by

ℓLA(θ,β, τ ;y) = log pθ,β,τ (y, û) +
q

2
log(2π)−

1

2
log | −H(θ,β, τ , û)|,

where H(θ,β, τ , û) is the Hessian of the joint log-likelihood with respect to the random

effects u evaluated at the optimum û (Madsen and Thyregod 2011; Christensen 2012).

Optimization of the Laplace Approximation may then be regarded as a nested optimization

procedure. The inner optimization refers to the optimization of the joint log-likelihood

with respect to the random effects to obtain û and thereby the Laplace Approximation to

the marginal log-likelihood. The outer optimization refers to optimization of the Laplace

approximation itself to obtain the parameter estimates (Fournier et al. 2011; Madsen and

Thyregod 2011).

2.3 R packages: ordinal and TMB

The R-package ordinal enables estimation of ordinal mixed models of various forms

including multiple random effects, scale effects and threshold structures, through the func-

tion clmm. The models are estimated by the maximum likelihood method using either the

Laplace Approximation or Adaptive Gauss-Hermite Quadrature to approximate the integral

in (5) (Christensen 2019). However, for this proceeding only the Laplace Approximation

is considered since this in general is the computationally fastest method of the two (Chris-

tensen 2019).

The R-package TMB is not exclusively oriented towards estimation of ordinal mixed models

but is a more general package that enables fast optimization of the Laplace approximation

to the marginal log-likelihood. TMB can therefore estimate a range of different models

and is thus very flexible. One of the main advantageous of TMB is that it uses automatic

differentiation (AD) to provide up to third order derivatives of the joint log-likelihood (Kris-

tensen et al. 2016). Automatic differentiation (AD) exploits that all computations may be

seen as a sequence of simple operations, such as addition, subtraction etc., and combines

this with the chain rule to provide an efficient differentiation method. The bookkeeping of

the simple operations to represent the function is often referred to as a tape (Madsen and

Thyregod 2011). The tape can be run in two main modes: forward mode and reverse mode

(Kristensen et al. 2016). Pros and cons of the two modes wrt. computation time are dis-

cussed later. The Laplace Approximation cannot trivially be split into a sequence of simple

operations because the Laplace approximation is a product of an optimization problem it-

self. It may therefore be difficult to see how AD can be used to obtain the gradient of the

Laplace Approximation used for optimization. However, since the Laplace approximation

is obtained using second order derivatives of the joint log-likelihood function, the gradi-

ent of the Laplace Approximation can be obtained by use of up to third order derivatives

(Jensen 2019).

The primary computational difference between the ordinal package and the TMB pack-

age is the calculations of derivatives used for the inner and outer optimizations.

The inner optimization (optimization of the joint log-likelihood wrt. the random effects

to obtain the Laplace approximation to the marginal log-likelihood) employs a Newton’s

method for both packages. This requires the gradient and the Hessian of the joint log-

likelihood. The ordinal package provides the analytic gradient and Hessian (Christensen
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2012) whereas TMB obtains them by AD (Kristensen et al. 2016).

A quasi-Newton method performs the outer optimization (optimization of the Laplace Ap-

proximation itself) using the nlminb package in R in both the ordinal and TMB pack-

age. This requires the gradient of the Laplace approximation to the marginal log-likelihood.

The ordinal package approximates the gradient by the finite difference methods (Chris-

tensen 2012) whereas the TMB package calculates the gradient by AD (Kristensen et al.

2016).

If the number of parameters is s then the cost, in terms of computations, required to ap-

proximate the gradient using the finite difference method corresponds to the cost of s + 1
evaluations of the log-likelihood (Madsen and Thyregod 2011). The cost of forward mode

AD is less than the cost of 4s evaluations of the log-likelihood (Skaug and Fournier 2006)

whereas the cost of reverse mode AD is less than the cost of 4 evaluations of the log-

likelihood (Griewank 2000; Madsen and Thyregod 2011). Note that the cost of reverse

mode AD does not depend on the number of parameters and therefore obtains an advantage

computationally (Madsen and Thyregod 2011). However, the drawback of reverse mode

AD is the memory usage. The memory required for reverse mode can be huge, if the se-

quence of simple operations needed to represent the function is long, as all intermediate

steps need to be stored (Madsen and Thyregod 2011; Jensen 2019).

Both the ordinal package and the TMB package explores the sparsity of the Hessian of

the random effects to make the computations more efficient (Kristensen et al. 2016; Chris-

tensen 2012). Additionally, TMB also gives easy access to parallelization of the code, using

the type parallel accumulator that gives potential for speed-ups (Kristensen et al.

2016).

Finally, it should be mentioned that the ordinal package is very user-friendly compared

to the TMB package. The syntax to specify models in the ordinal package is similar to the

well-known notation from the lme4 package and is therefore very easy to use (Christensen

2019). The TMB package requires specification of the negative joint log-likelihood function

in a C++ file and an R-file to do data pre- and post-processing along with optimization

of the Laplace Approximation (outer optimization) (Kristensen et al. 2016). Using TMB

therefore requires both C++ experience and a much deeper understanding of the theory

behind ordinal mixed models. However, with a wrapper for the TMB interface, the TMB

implementation could be just as user-friendly as the ordinal package.

3. Experiments

The experiments compare computation times of ordinal mixed models estimated by the

ordinal package to an implementation of these models with the TMB package. To this

end, two simple models are considered. The models consist of two additive effects. The

first model consider one factor random and the other factor fixed such that:

γic = F (ηic), ηic = θc − α(fac1i)− b(fac2i), i = 1, ..., N, c = 0, ..., C (7)

where b ∼ N(0, σ2

b ).
The second model considers both effects random, giving the model

γic = F (ηic), ηic = θc − a(fac1i)− b(fac2i), i = 1, ..., N, c = 0, ..., C (8)
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where a ∼ N(0, σ2
a) and b ∼ N(0, σ2

b ). For the first block of experiments the data is

simulated according to the models. Specifications of the number of observations and the

number of levels for the factors in the simulated datasets are seen in table 1 in the appendix.

The second block of experiments is performed on subsets of the training set from the Net-

flix Prize Challenge (Netflix 2009). By working with non-simulated data that does not fit

the model under consideration, the second block of experiments better resemble compu-

tation times in reality. The Netflix Prize data set originates from a real-life recommender

system and consist of millions of observations where users have rated movies on a 5-star

scale. It additionally includes timestamps for each rating (Netflix 2009). However, since

the objective of these experiments solely concentrates on computation time we will disre-

gard the timestamp information and build two simple models from the effects of user and

movie. The first model considers the effect of user random and the effect of movie fixed

while the second model considers both effects random. Thereby the first model is equal to

model (7) and the second model is equal to model (8), where factor 1 is related to movies

and factor 2 is related to users. The subsets of the Netflix Prize data set are constructed to

be relatively dense, to yield as large data sets as possible. Further specifications of number

of observations, number of users and number of movies for each subset is seen in table 2 in

the appendix.

All computation times are obtained by taking the average of 10 repeated computations. The

computations are run on a MacBook Pro with a 2.8 GHz Quad-Core Intel Core i7 processor,

16GB 2133 MHz LPDDR3 memory, and Intel Iris Plus Graphics 655 1536 MB graphics.

4. Results

The results compare computation times for the ordinal package to computation times

for the TMB package. The comparisons consider a version where the Hessian is calculated

at optimum and a version where it is not. Additionally, the TMB package allows for easy

parallelization as described in section 2.3. Thus computation times using the parallelization

option with 4 threds are also included for TMB.

Figure 1 and 3 show the average computation times of 10 repetitions when estimating

model (7) and model (8), respectively, for the simulated data. The greatest differences in

computation time are seen for model (7) which considers one factor as fixed and one factor

as random (figure 1). TMB is 54.17 times faster than ordinal (without Hessian), with

150 levels of both the fixed factor and the random factor and thereby 22, 500 observations.

The faster computation times means that this model can now be estimated with 160, 000
observations and 400 levels of each factor within 10 minutes.

The computation times are less different for model (8), figure 3. However here, TMB is

3.42 times faster than ordinal (without Hessian), with 450 levels of both of the random

factors and thereby 202, 500 observations. TMB thus enables estimation of model (7) with

up to 800 levels of each of the random factors and 640, 000 observations within 10 minutes.

Parallelization, using TMB’s parallel accumulator() does not seem to yield a sig-

nificant speed-up for model (7) but yields a notable speedup for model (8). However, notice

from figures 2 and 4 that the differences in computation time for the smallest datasets are

small.
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Figure 1: Average computation times of 10 repetitions when estimating model (7) for

the simulated data. Computation times for the ordinal package are indicated with red.

Computation times for TMB are indicated with green and black for parallel computations.

”with Hessian” indicates that the Hessian is calculated at optimum.
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Figure 2: Zoom of figure 1. Average computation times of 10 repetitions when estimating

model (7) for the simulated data. Computation times for the ordinal package are indi-

cated with red. Computation times for TMB are indicated with green and black for parallel

computations. ”with Hessian” indicates that the Hessian is calculated at optimum.
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the simulated data. Computation times for the ordinal package are indicated with red.

Computation times for TMB are indicated with green and black for parallel computations.

”with Hessian” indicates that the Hessian is calculated at optimum.
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Figure 4: Zoom of figure 3. Average computation times of 10 repetitions when estimating

model (8) for the simulated data. Computation times for the ordinal package are indi-

cated with red. Computation times for TMB are indicated with green and black for parallel

computations. ”with Hessian” indicates that the Hessian is calculated at optimum.

Figure 5 and 7 show the average computation times of 10 repetitions when estimating model

(7) and model (8), respectively, for the subsets of the data set from the Netflix Prize Chal-

lenge (Netflix 2009). The figures show exactly the same trends as figures 1 and 3. Thus,

the results for simulated data seem to carry over to real-life data. The greatest differences

in computation times are still seen for the model where one factor (movie) is assumed fixed

and one factor (user) is assumed random. Here, TMB is 51.62 times faster than ordinal

(without Hessian), with 150 movies and users and a total of 22, 350 observations. For
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the model where both movie and user is assumed random, TMB is 3.59 times faster than

ordinal (without Hessian), with 450 users and movies and a total of 191, 040 observa-

tions. Figures 6 and 8 show, similar to the above, that the differences in computation time

for the smallest datasets are small.
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5. Discussion and Conclusion

The results illustrate that for the simple models considered here, estimation of ordinal

mixed models are faster with the TMB package than with the ordinal package for large

data sets with many parameters and random effects. Employing the Netflix Prize data set

with 150 users, 150 movies and a total of 22, 350 observations, TMB is 51.62 times faster

than ordinal estimating a model that assumes the user effect random and the movie ef-

fect fixed. This means that using the TMB implementation we are able to estimate ordinal

mixed models with larger data sets and more parameters and random effects. There is no

significant difference in computation time between the two implementations for smaller

datasets with a low number of parameters and random effects, for all practical purposes.

However, even though we are able to estimate ordinal mixed models with larger data sets,

there is still a need for methods that can estimate ordinal mixed models for data sets as large

as the entire Netflix Prize data set (Netflix 2009). This is not possible with TMB (within

reasonable time at least).

The ordinal package is more user-friendly than the TMB package. In contrast to the

ordinal package, the TMB package is not exclusively oriented towards ordinal models,

but is a general tool that enables efficient optimization of the Laplace approximation. It

therefore requires the user to have a good theoretical understanding of ordinal mixed mod-

els and C++ programming skills in order to use TMB. However, we believe that with a

wrapper around the TMB framework, an implementation with TMB can be user-friendly too.

This is left for future work.
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6. Appendix

Observations Levels Levels Threshold

factor 1 factor 2 parameters

25 5 5 4
100 10 10 4
400 20 20 4
900 30 30 4
1600 40 40 4
2500 50 50 4
5625 75 75 4
104 100 100 4

2.25 · 104 150 150 4
4 · 104 200 200 4

6.25 · 104 250 250 4
9 · 104 300 300 4

1.225 · 105 350 350 4
1.6 · 105 400 400 4
2.025 · 105 450 450 4
2.5 · 105 500 500 4
3.025 · 105 550 550 4
3.6 · 105 600 600 4
4.225 · 105 650 650 4
4.9 · 105 700 700 4
5.625 · 105 750 750 4
6.4 · 105 800 800 4
7.225 · 105 850 850 4
8.1 · 105 900 900 4

Table 1: Number of observations, number of levels for the two factors and the number of

threshold parameters for the datasets simulated according to models (7) and (8).
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Observations Users Movies Threshold

parameters

25 5 5 4
100 10 10 4
400 20 20 4
900 30 30 4
1600 40 40 4
2500 50 50 4
5625 75 75 4
10, 000 100 100 4
22, 350 150 150 4
39, 467 200 200 4
61, 006 250 250 4
87, 216 300 300 4
117, 858 350 350 4
152, 746 400 400 4
191, 040 450 450 4
233, 088 500 500 4
279, 087 550 550 4
327, 572 600 600 4
378, 758 650 650 4
433, 463 700 700 4
490, 462 750 750 4
550, 844 800 800 4
613, 007 850 850 4
678, 713 900 900 4

Table 2: Number of observations, number of movies and users and the number of threshold

parameters for the subsets of the Netflix prize dataset.
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