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ABSTRACT 

 

In this paper, we first define odds ratio, attributable risk, relative risk, correlation 
coefficient, membership in at least one group, difference between two proportions, a new 
estimator of single proportion when the proportion of second sensitive variable is know,  
while considering investigating two sensitive attributes in real practice. Then we define 
two estimators in each one of these cases based on simple model or crossed model 
proposed by Lee, Sedory and Singh (2013). We derive expressions for biases and 
variances of the resultant estimators. We investigate the performance of estimators based 
on the crossed model over those based on the simple model under the same choice of 
parameters, as discussed in Lee et al. (2013). Also the values of the various statistics such 
as odds ratio, attributable risk, relative risk, correlation coefficient, membership in one 
variable and the difference between two proportions are estimated based on a real data set. 
 
Keywords: Sensitive characteristics, estimation of proportion, crossed model, simple 
model. 
 
 

1.  INTRODUCTION 

 
In 1965, S. L. Warner proposed the first research method in structured survey interview. 
Lee, Sedory and Singh (2013) introduced a new methodology for estimating the 
proportions of persons in a population possessing each of two sensitive characteristics, 
say A and B, along with the proportion possessing both, BA , by using two different 
randomized response models: Simple model and Crossed model. There are many 
situations where their proposed models could be implemented in real practice. For 
example, (1) assume A is a group of smokers, B is a group of drinkers, then BA  will 
be a group of both smokers and drinkers; (2) assume A is a group of SMAC users, B is a 
group of criminals, then BA  will be a group of both smack users and criminally active 
people; and (3) assume A represents hidden membership in a terrorist group-I, B 
represents a hidden membership in a terrorist group-II, then BA  will be a hidden 
membership in both terrorist groups. Their models also allow one to estimate several 
other parameters, such as correlation coefficient, conditional proportions, and relative 
risk, etc. A pictorial representation of such a population is shown in Figure 1.1. Let A , 

B  and BA  be the true proportions of respondents possessing the sensitive 
characteristics A, B, and both BA .  Also note that  BABA Min  , . 
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In the following sub-sections we briefly review the two models introduced by the authors 
in the paper mentioned above.  
 

1.1  Simple Model 

 

In the simple model proposed by Lee, Sedory and Singh (2013), they suggest to using a 
pair of decks of cards in order: say Deck-I and Deck-II.  Each respondent, selected in a 
simple random with replacement sample of size n , is requested to draw two cards, one 
from each deck and keep the responses from Deck-I and Deck-II respectively in order. 
Deck-I consists of cards, each bearing one of two mutually exclusive statements: “I 
belong to the sensitive group A ”, with proportion P , and “I belong to the non-sensitive 
group cA ”, with proportion )1( P . Deck-II also consists of cards, each bearing one of 
two mutually exclusive statements: “ I belong to the sensitive group B ”, with proportion 
T , and “I belong to the non-sensitive group cB ”, with proportion )1( T . By following 
the notation of Lee, Sedory and Singh (2013) for the simple model, the probabilities of 
obtaining, from a given respondent, each of the following responses (Yes, Yes), (Yes, No), 
(No, Yes) and (No, No) are, respectively, given by: 
 

)1)(1()12)(1()1)(12()12)(12(11 TPTPTPTP BAAB   ,   (1.1) 
TPTPTPTP BAAB )1()12)(1()12()12)(12(10   ,                (1.2) 
)1()12()1)(12()12)(12(01 TPTPTPTP BAAB   ,                (1.3) 

and 
PTTPPTTP BAAB   )12()12()12)(12(00 .                                  (1.4) 

 
Let nn1111

ˆ  , nn1010
ˆ  , nn0101

ˆ    and nn0000
ˆ  , be the observed proportions of 

(Yes, Yes), (Yes, No), (No, Yes) and (No, No) responses, so that nnnnn  00011011 . 
Then Lee, Sedory and Singh (2013) obtained unbiased estimators for the simple model as 
following: 
 

)12(2
)12(ˆˆˆˆ

ˆ 00011011






P

P
A


 ,                                                                            (1.5) 

  

 CBA  

BA  B  A  

Fig.1.1. Population under study 
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)12(2
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 ,                                                                            (1.6) 

and 
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n
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and 

  2)12(
)1()1(ˆ,ˆ








Tn

TT

n
Cov ABAB

BAB


 .                                                           (1.13) 

 
1.2  Crossed Model 

 
In the crossed model, while the rest of the procedure remains the same as for the simple 
model, the composition of the decks is different. Deck-I consists of cards, each bearing 
one of two mutually exclusive statements: “I belong to the sensitive group A ”, with 
probability P  and “I belong to the non-sensitive group cB ”, with probability )1( P  
respectively. Deck-II also consists of cards, each bearing one of two mutually exclusive 
statements: “I belong to the sensitive group B ” with probability T  and “I belong to the 
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non-sensitive group cA ”with probability )1( T  respectively. By following the notation 
of Lee, Sedory and Singh (2013) for the crossed model, the probabilities of obtaining, 
from a given respondent, each of the following responses, (Yes, Yes), (Yes, No), (No, Yes) 
and (No, No) are, respectively, given by: 
 

)1)(1()1)(1()1)(1()}1)(1({*
11 TPTPTPTPPT BAAB   ,  (1.14) 

TPTPTPTPPT BAAB )1()1(}1)1{()}1)(1({*
10   ,              (1.15) 

)1(}1)1({)1()}1)(1({*
01 TPTPTPTPPT BAAB   ,              (1.16) 

and 
PTPTPTTPPT BAAB   )}1)(1({*

00 .                                                (1.17) 
 
Let nn*

11
*
11
ˆ  , nn*

10
*
10
ˆ  , nn*

01
*
01
ˆ   and nn*

00
*
00
ˆ  , be the observed proportions of 

(Yes, Yes), (Yes, No), (No, Yes) and (No, No) responses so that nnnnn  *
00

*
01

*
10

*
11 . 

Lee, Sedory and Singh (2013) obtained unbiased estimators for the crossed model as 
following: 
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In this paper, we introduce two more parameters, odds ratio and attributable risk, bridging 

on the article by Lee, Sedory and Singh (2013) and provide a detailed study of the other 

parameters including the correlation coefficient, relative risk, estimation of  membership 

to at least one group, difference between two proportions. We also introduce  two new 

difference type estimators of the proportion of one of two sensitive variables when the 

proportion of the other is known.  Fox (2016) has renamed the crossed model as a double 

decker model. To our knowledge, the problem of estimating the odds ratio and the 

attributable risk using randomized response sampling were first introduced and presented 

by Lee, Sedory and Singh (2016) at the Joint Statistical Meetings.  

In the next section, we consider two estimators of odds ratio (OR); one based on the 
simple model and the other based on the crossed model.  
 

2.  ESTIMATION OF ODDS RATIO 

 
In case of two sensitive characteristics A  and B , the four cells of the 22  contingency 
table can be labeled as: 
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Attributes B  cB  Total 
A  AB  )( ABA    

A  
cA  )( ABB    )1( ABBA    )1( A  

Total B  )1( B  1 
 
Thus, we consider a measure of odds ratio (OR) in case of two sensitive variables A  and 
B  as: 

 
  ABBABA

ABBAAB










1OR                                                                            (2.1) 

 
In the following sub-sections, we consider estimators of the odds ratio (OR) defined in 
(2.1) by using the simple model and the crossed model. 
 
 

2.1  ESTIMATION OF ODDS RATIO USING SIMPLE MODEL 

 
By using the same notations for the simple model from Lee et al. (2013), we consider 
first estimator of the odds ratio (OR) as: 
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Theorem 2.1.  The bias, to the first order of approximation,  in the estimator 
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are constants. 
 

Proof.  The estimator 
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of the odds ratio (OR). 
 
Theorem 2.2. The mean squared error, to the first order of approximation, of the 
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which proves the theorem. 
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2.2  ESTIMATION OF ODDS RATIO USING CROSSED MODEL 

  
By using the same notations for the crossed model from Lee et al. (2013), we consider 
second estimator of the odds ratio (OR) as: 
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Proof.  The estimator 
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Proof. By the definition of mean squared error, we have 
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Expanding and taking the expected value, we have the theorem. 
 
In the next section, we consider the problem of estimation of attributable risk. 
 
 

3.  ESTIMATION OF ATTRIBUTABLE RISK 

 
In order to define an attributable risk, we have the following theorem. 
 
Theorem 3.1.  The attributable risk  ABAR |  is given by: 
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3.1  ESTIMATION OF ATTRIBUTABLE RISK USING SIMPLE MODEL 

 
By using the same notation for the simple model as found in Lee et al. (2013), we 
consider our first estimator of the attributable risk as: 
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By the definition of bias, we have 
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which proves the theorem. 
 

Note that   0| 






 

ABARB  as n , thus the estimator  ABAR |


 is a consistent 

estimator of the attributable risk  ABAR | . 
 
Theorem 3.3.  The mean squared error, to the first order of approximation, of the 

estimator  ABAR |


 of the attributable risk  ABAR |  is given by: 
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(3.4) 

Proof. By the definition of mean square error, we have  
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which proves the theorem. 
 
 

3.2  ESTIMATION OF ATTRIBUTABLE RISK USING CROSSED MODEL 

 
By using the same notation for the crossed model as found in Lee et al. (2013), we 

consider our second  estimator of the attributable risk as: 
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Now, we have the following lemma: 
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(3.6) 

Proof. It follows from the previous section. 

Note that   0|* 
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estimator of the attributable risk  ABAR |  
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Lemma 3.2.  The mean squared error, to the first order of approximation, of the estimator 
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(3.7) 

 
Proof. It follows from the previous section. 
 
 

4. ESTIMATION OF RELATIVE RISK   

Here we consider the problem of estimating the relative risk of a respondent 
belonging to group B  given that the respondent belongs to group A .  For 
example, it could be used to estimate the relative risk of involving a terrorist 
(group B) given that an accident (say A) happened (say, any type of domestic 
violence). The relative risk of event B given that the event A occurred is defined 
as; 
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Thus we consider the problem of estimating relative risk (RR) defined as: 
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4.1 ESTIMATION OF RELATIVE RISK USING SIMPLE MODEL 

 
We define an estimator of the relative risk as: 
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Theorem 4.1. The bias in the estimator )|(
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ABRR ,  to the first order of 
approximation, is given by 
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 which proves the theorem. 
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estimator of the relative risk  ABRR |  
 

Theorem 4.2.The mean squared error of  the estimator )|(
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order of approximation, is given by 
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Proof. By the definition of mean squared error, we have 
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which proves the theorem. 

 
4.2 ESTIMATION OF RELATIVE RISK USING CROSSED MODEL 

 

We define an estimator of the relative risk as: 
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  Proof. It follows from previous section. 
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Proof.  The proof proceeds the same as in the previous section. 
 
 
 5 ESTIMATION OF CORRELATION COEFFICIENT BETWEEN 

TWO SENSITIVE CHARACTERISTICS 

In this section, we consider the problem of estimating the correlation coefficient 
between the two sensitive characteristics A  and B  defined as: 
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Now we have the following theorems: 
 
Theorem 5.1. The bias in the estimator AB̂ , to the first order of approximation, 
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Proof. By the definition of bias and using the approximation in (5.3), we have 
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which proves the theorem. 
 
Note that   0ˆ ABB   as n , thus the estimator AB̂  is a consistent estimator of 
the correlation coefficient AB .  
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Theorem 5.2. The mean squared error of the estimator AB̂ , to the first order of 
approximation, is given by 
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(5.5) 

Proof. By the definition of mean squared error and using the approximation (5.3), 
we have 
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which proves the theorem. 
 

5.2. ESTIMATION OF CORRELATION COEFFICIENT WITH THE 

CROSSED  MODEL 

We consider an estimator of the correlation coefficient AB  as: 

            )ˆ1(ˆ)ˆ1(ˆ
ˆˆˆˆ

****

***
*
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BAAB
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(5.6) 

 
Now we have the following theorems: 

Theorem 5.3. The bias in the estimator *ˆ
AB , to the first order of approximation, 

is: 
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(5.7) 

Proof. Obvious from the previous section. 
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Note that the   0ˆ* ABB   as n , thus the estimator *ˆ AB  is a consistent estimator of 
the correlation coefficient AB .  
Theorem 5.3. The mean squared error of the estimator *ˆ

AB , to the first order of 
approximation, is given by 
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(5.8) 

Proof. Obvious from the previous section. 

6 ESTIMATION OF PROPORTION OF PERSONS POSSESSING AT 

LEAST ONE OF THE CHARACTERISTICS 

  
Here we consider the problem of estimation of proportion of those persons in the 
population who possess at least one of the characteristics A  or B  defined as: 
 
 ABBABA         (6.1)          
 

6.1. AT LEAST ONE CHARACTERISTICS WITH SIMPLE MODEL 

 
Then we have the following theorem: 
 
Theorem 6.1.  An unbiased estimator of BA  is given by 
 
 ABBABA  ˆˆˆˆ           (6.2) 
 

Proof. By taking expected value on both sides of (6.2), we have 
 

          BAABBAABBAABBABA EEEEE    ˆˆˆˆˆˆˆ  
 
which proves the  unbiased property of the estimator.   
 
Theorem 6.2.  The variance of the estimator of BÂ  is given by; 
 
                  ABBABABAABBABA CovCovCovVVVV  ˆ,ˆ2ˆ,ˆ2ˆ,ˆ2ˆˆˆˆ    

(6.3) 
Proof. By the definition of variance, we have 
      

   ABBABA VV  ˆˆˆˆ   
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           ABBABABAABBA CovCovCovVVV  ˆ,ˆ2ˆ,ˆ2ˆ,ˆ2ˆˆˆ 

 
which proves the theorem. 
 
 

6.2. AT LEAST ONE CHARACTERISTICS WITH CROSSED MODEL 

 
Then we have the following theorem: 
 
Theorem 6.3.  An unbiased estimator of BA  is given by 

            

**** ˆˆˆˆ
ABBABA  

                            
 (6.4) 

Proof. By taking expected value on both sides of (6.4), we have 

        BAABBAABBABA EEEE    **** ˆˆˆˆ  

which proves the  unbiased property of the estimator.   

Theorem 6.4.  The variance of the estimator of *ˆ
BA  is given by; 

       
     ******

****

ˆ,ˆ2ˆ,ˆ2ˆ,ˆ2                

ˆˆˆˆ

ABBABABA

ABBABA

CovCovCov

VVVV







  
 

(6.5) 

Proof. By the definition of variance, we have 
   **** ˆˆˆˆ

ABBABA VV    
 

             ********* ˆ,ˆ2ˆ,ˆ2ˆ,ˆ2ˆˆˆ
ABBABABAABBA CovCovCovVVV    

 
which proves the theorem. 
 

7.  DIFFERENCE BETWEEN TWO PROPORTIONS 

 
We consider the problem of estimation of the difference between two proportions 
defined as: 
             BAd    (7.1) 
7.1 DIFFERENCE WITH SIMPLE MODEL 

 
We consider an unbiased estimator d  as: 

             BAd  ˆˆˆ   (7.2) 
Then we have the following theorem: 
 
Theorem 7.3. The variance of the estimator d̂  is given by 

            )ˆ,ˆ(2)ˆ()ˆ()ˆ( BABAd CovVVV    (7.3) 
Proof. It follows from the definition of variance. 
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7.2 DIFFERENCE WITH CROSSED MODEL 

 
We consider an unbiased estimator d  as: 

            
*** ˆˆˆ
BAd    (7.4) 

 
Then we have the following theorem: 
 
Theorem 7.4. The variance of the estimator *ˆ

d  is given by 

            )ˆ,ˆ(2)ˆ()ˆ()ˆ( *****
BABAd CovVVV    (7.5) 

Proof. It follows from the definition of variance. 
 

8 REGRESSION TYPE ESTIMATOR FOR SINGLE PROPORTION 

 
In this section we suggest a new estimator for estimating the proportion of one 

sensitive variable when the proportion of the second sensitive variable is known. 

 
8.1 REGRESSION TYPE ESTIMATOR FOR SINGLE PROPORTION 

WITH SIMPLE MODEL 

 
Here we first define a new difference estimator of the population proportion A  
by assuming the population proportion B   is known as follows: 

                    BBAdA  ˆˆˆ      (8.1) 
where   is a known constant.  Then we have the following theorems: 
 
Theorem 8.1.  The difference estimator )(ˆ

dA  is an unbiased estimator of A . 
Proof. Taking expected value on both sides, we have 
 

                ABBABBABBAdA EEEE   ˆˆˆˆˆ    
 

which proves the theorem. 
 
Theorem 8.2.  The minimum variance of the difference estimator )(ˆ

dA  is given 
by 

            
    2

)( 1ˆˆ
ABAdA VV  

     
    (8.2) 

Proof. By the definition of variance, we have 
           BABABBAdA CovVVVV  ˆ,ˆ2ˆˆˆˆˆ 2 

     
    (8.3) 

The variance will be minimum if 
  

0
ˆ








 dAV
   or      0ˆ,ˆ2ˆ2  BAB CovV      
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or if  
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  (8.4) 

On substituting the value of   from (8.4) into (8.3), the minimum variance of the 
difference estimator is given by 
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  21ˆ
ABAV   , where 10 2  AB     

The estimator  dÂ  is more efficient than Â  if     AdA VV  ˆˆ    
 

    AABA VV  ˆ1ˆ 2     
or  if 

20 AB  

 

which is always true. Thus the difference estimator  dÂ   is always more efficient 
than the usual estimator Â . Thus we conclude that although both characteristics 
A  and B  are sensitive in nature, but if the true proportion one of the sensitive 
character is known (or leaked by some agency) then that information can be used 
to improve the estimator of proportion of the second sensitive characteristic in the 
population. 
 
One of the major problems with the difference estimator  dÂ  is that it depends 
upon the value of an unknown constant   which further depends upon the true 
parameters of interest. 
 
Thus, we suggest estimating the value of the unknown constant   as 

       

 
 B

BA

V

Cov






ˆˆ
ˆ,ˆˆ




     

  
    

(8.5) 

Then we suggest a linear regression type estimator as 

        
 BBALRA

 ˆˆˆˆ ˆ 
     

  (8.6) 

Then it is easy to show that to the first order of approximation, we have 
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          )(ˆ ˆˆ dALRA
VMSE  

 
Thus the regression type estimator has the same approximate mean squared error 
value as the variance of the difference estimator. 
 
Theorem 8.2.  The difference estimator *

)(ˆ
dA  is an unbiased estimator of A . 

Proof. Obvious. 

Theorem 8.3.   The minimum variance of the difference estimator *
)(ˆ

dA  is given 
by 

            
    2***

)( 1ˆˆ
ABAdA VV  

     
 (8.7) 

Proof. By the definition of variance, we have 

            
       ****2***
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The variance will be minimum if 
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(8.9) 

On substituting the value of *  from (8.9) into (8.8), the minimum variance of the 
difference estimator is given by 
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  2** 1ˆ
ABAV   , where 10 2*  AB     

The estimator *
)(ˆ

dA  is more efficient than *ˆ
A  if    **

)( ˆˆ
AdA VV      

or if  2*0 AB . 

which is always true. Thus the difference estimator *
)(ˆ

dA   is always more efficient 

than the usual estimator *ˆ
A  . Thus we conclude that although both characteristics 

A  and B  are sensitive in nature, but if the true proportion one of the sensitive 
character is known (or leaked by some agency) then that information can be used 
to improve the estimator of proportion of the second sensitive characteristic in the 
population. 

One of the major problems with the difference estimator *
)(ˆ

dA  is that it depends 

upon the value of an unknown constant *  which further depends upon the true 
parameters of interest.  Thus, we suggest estimating the value of the unknown 
constant *  as 
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(8.10) 

Then we suggest a linear regression type estimator as 

            
 ****

)( ˆˆˆˆ
BBALRA  

    
 (8.11) 

As before, it can be shown that 

)ˆ()ˆ( )(*)(*
dALRA VMSE  

             
Thus the regression type estimator has the same approximate mean squared error 
value as the variance of the difference estimator.  

 

9.  RELATIVE EFFICIENCY 

We define the percent relative efficiency of the estimator 


*OR  with respect to the 

estimator 


OR   as: 

            
%100

)(

)(RE(1)
*






ORMSE

ORMSE

    
 

 
(9.1) 

We define the percent relative efficiency of the estimator  BAAR |*


 with respect 

to the estimator  BAAR |


 as: 

            
 

 

%100

)|(

)|(RE(2)
*






ABARMSE
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(9.2) 

We define the percent relative efficiency of the estimator  ABRR |*


 with respect 

to the estimator  ABRR |


 as: 

            
 

 

%100
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(9.3) 

 
We define the percent relative efficiency of the estimator *ˆ AB  with respect to the 
estimator AB̂  as: 

            
%100

)ˆ(
)ˆ(RE(4) * 

AB
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(9.4) 
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We define the percent relative efficiency of the estimator *ˆ BA  with respect to 
the estimator  BÂ  as: 

            
%100

)ˆ(
)ˆ(RE(5) * 





BA

BA

V

V





    
  

(9.5) 

 
We define the percent relative efficiency of the estimator *ˆd   with respect to the 
estimator d̂  as: 

            
%100

)ˆ(
)ˆ(RE(6) * 

d

d
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(9.6) 

 
We define the percent relative efficiency of the estimator )ˆ*

(dA  with respect to 
the estimator )(ˆ dA  as: 

            
%100

)ˆ(

))ˆ(
RE(7) *

)(
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(9.7) 

 

We wrote FORTRAN codes, given in APPENDIX, to compute the percent 

relative efficiency values. We used 7.0TP  which is same choice as in Lee et 

al. (2013). The percent relative efficiency values so obtained for different choices 

of AB , A  and B  where all the parameters were computable are presented in 

Table 9.1. 

 

Table 9.1. Percent Relative Efficiency (RE(j), j=1,2,3,4,5,6) values. 
AB  A  B  RE(1) RE(2) RE(3) RE(4) RE(5) RE(6) RE(7) 

0.1 0.2 0.2 1434.8 1221.2 1445.9 1298.1 367.6 527.1 173.5 
0.1 0.2 0.3 1466.1 1302.7 1529.9 1366.8 390.4 499.1 154.3 
0.1 0.2 0.4 1571.6 1509.4 1618.8 1529.1 424.7 487.8 140.1 
0.1 0.2 0.6 1991.7 1922.3 1904.6 1998.3 568.2 504.1 118.9 
0.1 0.2 0.7 2393.1 2030.6 2124.8 2350.4 743.5 533.9 110.1 
0.1 0.3 0.2 1466.1 1355.6 1494.4 1366.8 390.4 499.1 154.3 
0.1 0.3 0.3 1511.8 1483.8 1531.4 1486.2 424.7 464.0 135.4 
0.1 0.3 0.4 1661.5 1685.1 1607.0 1703.4 478.2 445.0 121.7 
0.1 0.3 0.5 1914.6 1813.7 1731.3 1979.6 568.2 437.5 111.2 
0.1 0.3 0.6 2333.5 1814.4 1907.8 2353.5 743.5 439.5 103.4 
0.1 0.4 0.2 1571.6 1523.7 1588.5 1529.1 424.7 487.8 140.1 
0.1 0.4 0.3 1661.5 1696.6 1619.5 1703.4 478.2 445.0 121.7 
0.1 0.4 0.4 1894.4 1841.4 1712.5 1981.9 568.2 419.9 109.4 
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0.1 0.4 0.5 2313.1 1812.6 1869.2 2369.7 743.5 406.3 101.5 
0.1 0.5 0.3 1914.6 1939.0 1793.9 1979.6 568.2 437.5 111.2 
0.1 0.5 0.4 2313.1 1948.5 1926.6 2369.7 743.5 406.3 101.5 
0.1 0.6 0.2 1991.7 2032.9 1969.9 1998.3 568.2 504.1 118.9 
0.1 0.6 0.3 2333.5 2197.8 2076.5 2353.5 743.5 439.5 103.4 
0.1 0.7 0.2 2393.1 2456.3 2333.7 2350.4 743.5 533.9 110.1 
0.2 0.3 0.3 1369.3 1199.9 1258.2 1341.7 360.3 527.1 181.7 
0.2 0.3 0.4 1406.5 1300.0 1371.9 1388.9 389.4 499.1 160.3 
0.2 0.3 0.5 1492.1 1468.7 1497.1 1494.0 434.2 487.8 144.3 
0.2 0.3 0.6 1635.6 1659.4 1652.1 1644.3 507.9 489.5 131.3 
0.2 0.4 0.3 1406.5 1299.9 1353.8 1388.9 389.4 499.1 160.3 
0.2 0.4 0.4 1475.6 1436.8 1477.5 1463.5 434.2 464.0 139.4 
0.2 0.5 0.3 1492.1 1429.7 1466.9 1494.0 434.2 487.8 144.3 
0.2 0.6 0.3 1635.6 1610.3 1626.2 1644.3 507.9 489.5 131.3 
0.3 0.4 0.4 1322.6 1160.2 1175.6 1318.7 357.5 527.1 186.6 
0.3 0.4 0.5 1362.7 1271.9 1266.5 1370.1 395.0 499.1 163.3 
0.3 0.5 0.4 1362.7 1256.9 1275.4 1370.1 395.0 499.1 163.3 

 
From the Table 9.1, one can conclude that the use of crossed model also remains 
more efficient than the simple model in case of estimating odds ratio and 
attributable risk. The results are also consistent with the results obtained by the 
use of crossed model while estimating other parameters, such as the relative risk, 
the correlation coefficient, etc. Thus, we conclude that the crossed model is better 
than the simple model for all situations we have investigated. 
 
 

5.  APPLICATION BASED ON REAL DATASET 

 
Lee et al. (2013) collected real data from 75 respondents at the Joint Statistical 
Meeting (2011), Miami, FL by using crossed model with 7.0 TP  on smoking 
and drinking. Let AB , A  and B  be the true proportions of smokers, drinkers, 
and smokers and drinkers, respectively. Lee et al. (2013) reported respective 
estimates as 237.0ˆ* AB , 24.0ˆ* A , and 36.0ˆ* B . These estimates are used for 
estimating estimators of odds ratio and attributable risk. With the crossed model, 

the estimator of odds is obtained as 13.409* 


OR . Estimates of the attributable 

risks are   5504.0|* 



ABAR  and   9804.0|* 



BAAR ; and estimates of relative 

risks are 10.6)|(
^

* ABRR  and 44.140)|(
^

* BARR .  The estimate of smoker or 

drinker attendees is 363.0ˆ* 
BA

 , and an estimate of the difference between the 
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proportions of smokers and drinkers is 12.0ˆ* d . The high value of 


*OR  
indicates that smoking and drinking are highly associated to each other. The 
estimate of correlation coefficient between smoking and droning habits is found 
as .7346.0ˆ* AB   The original version of this paper was presented by Lee, Sedory 
and Singh (2020) at the Joint Statistical Meeting, American Statistical Association. 
 

REFERENCES 

 
Fox, J.A. (2016). Randomized Response and Related Methods: Surveying 

Sensitive Data. Second Edition, SAGE. 

Lee, C.S., Sedory, S.A. and Singh, S. (2013). Estimating at least seven measures 
of qualitative variables from a single sample using randomized response 
technique. Statistics and Probability Letters, 83(1), 399-409. 
 
Lee, Cheon-Sig, Sedory, S. and Singh, S. (2016). Estimation of odds ratio and 
attributable risk using randomized response techniques. Presented at the Joint 

Statistical Meeting  2016. 
 
Lee, Cheon-Sig, Sedory, S. and Singh, S. (2020). Estimation of odds ratio, 
attributable risk, relative risk, correlation coefficient and other parameters using 
randomized response techniques.  Vitually presented as the Joint Statistical Meeting, 
American Statistical Association, August 5, 2010. 
  
Rosner, B. (2016). Fundamentals of Biostatistics. 9th Edition, Thompson, 
Brooks/Cole. 
 
Warner, S. L. (1965). Randomized response: A survey technique for eliminating 
evasive answer bias. Journal of the American Statistical Association 60:63–69. 
 

APPENDIX 
 

      IMPLICIT NONE 

      REAL P,T,PIA,PIB,PIAB,SUM, TM1, G1, G2, G3, F1,F2,F3 

      DOUBLE PRECISION VA,VB,VAB,CABA, 

     1CABB,CAB, VAS,VBS,VABS, 

     1CABSAS,CABSBS,CASBS 

      REAL ORMSE1, ARMSE1, RRMSE1, CORMSE1, UNIONV1,DIFFV1,REGMSE1 

      REAL CT0, CT1, CT2, CT3, CT4 

      REAL ORMSE2, ARMSE2, RRMSE2, CORMSE2, UNIONV2,DIFFV2,REGMSE2 

      REAL RE1, RE2, RE3, RE4, RE5, RE6, RE7 

     

      CHARACTER*20 OUT_FILE 

       WRITE(*,'(A)') 'NAME OF THE OUTPUT FILE' 
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        READ(*,'(A20)') OUT_FILE 

        OPEN(42, FILE=OUT_FILE, STATUS='UNKNOWN') 

       P = 0.70 

       T = 0.70 

      WRITE(42,107)P,T 

107   FORMAT(2X,'P=',F6.3,2X,'T=',F6.3) 

      WRITE(42,108) 

108   FORMAT( 2X,'PIAB',2X,'PIA',2X,'PIAB',2X,'RE') 

       DO 10 PIAB = 0.10, 0.99, 0.10 

!        PIAB = 0.2 

       DO 10 PIA = 0.10, 0.991, 0.10 

       DO 10 PIB = 0.10, 0.991, 0.10 

       SUM = PIA+PIB 

       IF ( (PIA*PIB).NE.(PIAB) ) THEN 

       IF((PIAB.LE.PIA).AND.(PIAB.LE.PIB).AND.(SUM.LT.0.999)) THEN 

!     SIMPLE MODEL 

      VA =  PIA*(1-PIA)+P*(1-P)/(2*P-1)**2 

      VB =  PIB*(1-PIB)+T*(1-T)/(2*T-1)**2 

      TM1=(2*P-1)**2*T*(1-T)*PIA+P*(1-P)*(2*T-1)**2*PIB+P*T*(1-P)*(1-T) 

      VAB  = PIAB*(1-PIAB) + TM1/((2*P-1)**2*(2*T-1)**2) 

 

      CABA = PIAB*(1-PIA)+P*(1-P)*PIB/(2*P-1)**2 

      CABB = PIAB*(1-PIB)+T*(1-T)*PIA/(2*T-1)**2 

      CAB =  PIAB-PIA*PIB 

      G1 = 1/PIAB +1/(1-PIA-PIB+PIAB)+1/(PIA-PIAB)+1/(PIB-PIAB) 

      G2 = (1-PIB)/((PIA-PIAB)*(1-PIA-PIB+PIAB)) 

      G3 = (1-PIA)/((PIB-PIAB)*(1-PIA-PIB+PIAB)) 

      F1 = PIAB/(PIAB-PIA*PIB) 

      F2 = PIA*PIB/(PIAB-PIA*PIB) + (1-2*PIA)/(2*(1-PIA)) 

      F3 = PIA*PIB/(PIAB-PIA*PIB) + (1-2*PIB)/(2*(1-PIB)) 

      ORMSE1 = G1**2*VAB+G2**2*VA+G3**2*VB 

     1 -2*G1*G2*CABA-2*G1*G3*CABB+2*G2*G3*CAB 

      ARMSE1 = VAB + PIAB**2*VB/PIB**2 + (PIB-PIAB)**2*VA/(1-PIA)**2 

     1       - 2*PIAB*CABB/PIB-2*(PIB-PIAB)*CABA/(1-PIA) 

     1       + 2*PIAB*(PIB-PIAB)*CAB/(PIB*(1-PIA)) 

      RRMSE1 = PIB**2*VAB/(PIAB**2*(PIB-PIAB)**2) 

     1        + VA/(PIA**2*(1-PIA)**2)+ VB/(PIB-PIAB)**2 

     1        -2*PIB*CABA/(PIA*PIAB*(1-PIA)*(PIB-PIAB)) 

     1        -2*PIB*CABB/(PIAB*(PIB-PIAB)**2) 

     1        +2*CAB/(PIA*(1-PIA)*(PIB-PIAB)) 

       CORMSE1 = F1**2*VAB/PIAB**2 + F2**2*VA/PIA**2 

     1          + F3**2*VB/PIB**2 -2*F1*F2*CABA/(PIAB*PIA) 

     1          - 2*F1*F3*CABB/(PIAB*PIB) 

     1          + 2*F2*F3*CAB/(PIA*PIB) 

       UNIONV1 = VA + VB + VAB +2*CAB-2*CABA-2*CABB 

       DIFFV1 = VA + VB - 2*CAB 

       REGMSE1 = 1-CAB**2/(VA*VB) 

 

!       CROSSED MODEL 
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       CT0 =  P*T+(1-P)*(1-T) 

       CT1 = (1-P)*T*CT0*(1-PIA-PIB+2*PIAB) 

       VAS = PIA*(1-PIA) + CT1/(P+T-1)**2 

       CT2 = (1-T)*P*CT0*(1-PIA-PIB+2*PIAB) 

       VBS = PIB*(1-PIB) + CT2/(P+T-1)**2 

       CT3 = P**2*T**2+(1-P)**2*(1-T)**2-CT0*(P+T-1)**2 

       VABS = PIAB*(1-PIAB) + PIAB*CT3/(CT0*(P+T-1)**2) 

     1      + P*T*(1-P)*(1-T)*(1-PIA-PIB)/(CT0*(P+T-1)**2) 

       CABSAS = PIAB*(1-PIA)+PIAB*T*(1-P)*(P-T+1)/(P+T-1)**2 

     1      +P*T*(1-P)*(1-T)*(T-P+1)*(1-PIA-PIB)/(CT0*(P+T-1)**2) 

       CABSBS = PIAB*(1-PIB) + PIAB*P*(1-T)*(T-P+1)/(P+T-1)**2 

     1        +P*T*(1-P)*(1-T)*(P-T+1)*(1-PIA-PIB)/(CT0*(P+T-1)**2) 

       CT4 = 2*P*T*(1-P)*(1-T)*(1+2*PIAB-PIA-PIB) 

       CASBS = (PIAB-PIA*PIB)+CT4/(P+T-1)**2 

      ORMSE2 = G1**2*VABS+G2**2*VAS+G3**2*VBS 

     1 -2*G1*G2*CABSAS-2*G1*G3*CABSBS+2*G2*G3*CASBS 

      ARMSE2 = VABS + PIAB**2*VBS/PIB**2 + (PIB-PIAB)**2*VAS/(1-PIA)**2 

     1       - 2*PIAB*CABSBS/PIB-2*(PIB-PIAB)*CABSAS/(1-PIA) 

     1       + 2*PIAB*(PIB-PIAB)*CASBS/(PIB*(1-PIA)) 

      RRMSE2 = PIB**2*VABS/(PIAB**2*(PIB-PIAB)**2) 

     1        + VAS/(PIA**2*(1-PIA)**2)+ VBS/(PIB-PIAB)**2 

     1        -2*PIB*CABSAS/(PIA*PIAB*(1-PIA)*(PIB-PIAB)) 

     1        -2*PIB*CABSBS/(PIAB*(PIB-PIAB)**2) 

     1        +2*CASBS/(PIA*(1-PIA)*(PIB-PIAB)) 

       CORMSE2 = F1**2*VABS/PIAB**2 + F2**2*VAS/PIA**2 

     1          + F3**2*VBS/PIB**2 -2*F1*F2*CABSAS/(PIAB*PIA) 

     1          - 2*F1*F3*CABSBS/(PIAB*PIB) 

     1          + 2*F2*F3*CASBS/(PIA*PIB) 

       UNIONV2 = VAS + VBS + VABS +2*CASBS-2*CABSAS-2*CABSBS 

       DIFFV2 = VAS + VBS - 2*CASBS 

       REGMSE2 = 1-CASBS**2/(VAS*VBS) 

        RE1 = ORMSE1*100/ORMSE2 

 RE2 = ARMSE1*100/ARMSE2 

 RE3 = RRMSE1*100/RRMSE2 

 RE4 = CORMSE1*100/CORMSE2 

 RE5 = UNIONV1*100/UNIONV2 

 RE6 = DIFFV1*100/DIFFV2 

            RE7 = REGMSE1*100/REGMSE2 

         IF ( (RE1.GT.100).AND.(RE2.GT.100).AND.(RE3.GT.100).AND. 

     1(RE4.GT.100).AND.(RE5.GT.100).AND.(RE6.GT.100).AND. 

     1(RE7.GT.100) ) THEN 

      WRITE(42, 101)PIAB, PIA, PIB, RE1,RE2,RE3,RE4,RE5,RE6,RE7 

101   FORMAT(2X,F8.4,2X,F8.4,2X,F8.4,2X,7(F9.2,1X)) 

      ENDIF 

      ENDIF 

      ENDIF 

10    CONTINUE 

      STOP 

      END 
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