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Abstract 

While Watkins et al. (2014) concluded that the “Simulation of the Sampling Distribution 
of the Mean Can Mislead,” Lane (2015) concluded that the “Simulations of the Sampling 
Distribution of the Mean Do Not Necessarily Mislead and Can Facilitate Learning.” Given 
such controversy in conclusions, instructors have to rethink about specific learning 
objectives and examples for better outcomes in the simulation of the sampling distribution 
of means while teaching. This paper proposes some specific objectives and examples which 
is expected to reduce controversy and misconceptions in teaching statistics. 
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1. Introduction 

 

The simulation of the sampling distribution of the mean (SSDM) can mislead students 
(Watkins, Bargagliotti, and Franklin, 2014), and can facilitate learning (Lane, 2015). Due 
to these contradictory conclusions, instructors interested in implementing SSDM in 
pedagogy require specific learning objectives and examples that could reduce controversy 
and misconceptions. It appears that most of the reported misconceptions could be explained 
via the implication of the law of large numbers. Therefore, it is good idea to introduce the 
law of large number with examples and demonstration before approaching the SSDM. It is 
also important to address the distinction of exact sampling distribution of mean (SDM) 
from the SSDM. In addition, expectation should be made clear via supervised and guided 
engagement in the SSDM.  

In this paper, we only aim at some specific learning objectives and examples for an SSDM 
in pedagogy.   

2. An Overview of an SDM 

 

Let us introduce the concept of sampling distribution of mean for a finite population, 
along with its properties 
 

2.1 Useful notation 

Let us start with some notations: 
P=a population, 
𝜇𝑥 =Mean of P,  
𝜎𝑥=Standard deviation of P and  
𝑛(P)=Number of all possible samples of size 𝑛 from the population P, with replacement.  
𝑥̅ = Mean of a sample of size n from the population P 
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For example, let P be a finite population P= {1, 2, 3, 4} with 𝜇𝑥 = 2.5, 𝜎𝑥=1.118, 
approximately. 
The sampling distribution of mean (SDM) is the probability distribution of sample means 
(𝑥̅) over all possible samples of a given size (𝑛) from the population. It appears that with 
P= {1, 2, 3, 4}, the number of all possible samples of size 𝑛, with replacement, is 𝑛(P) =
4𝑛. The SDM in this case is the probability distribution of 4𝑛 sample means 𝑥̅ from P. 
Clearly, if 𝑛 = 2 or 𝑛 = 3, we will 42 =16 or 43 =64 possible samples. Therefore, the 
SDM is the probability distribution 16 or 64 sample means 𝑥̅ of size 2 or 3, respectively.  
Let 𝜇𝑥̅ and 𝜎𝑥̅   denote the mean and standard deviation of the SDM over all possible 

samples of size 𝑛. Since 𝜎𝑥̅ describes the accuracy of 𝑥̅ in estimating 𝜇𝑥, the term 

standard error (SE) is preferable to standard deviation 𝜎𝑥̅ for an SDM. Then, the 

SDM has the following three important properties: 

(i) 𝜇𝑥̅ = 𝜇𝑥, which is invariant with respect to the sample size 𝑛 and the 

distribution of P. 

(ii) 𝜎𝑥̅ = 𝜎𝑥/√𝑛, which means that the standard error of 𝑥̅ due to the estimation 

of 𝜇𝑥 by 𝑥̅ can be decreased by increasing the sample size n. 

(iii) The SDM is either (a) normal if P is normal, irrespective of the sample size 𝑛, 

or (b) approximately normal if the sample size 𝑛 large, i.e., 𝑛 ≥ 30, given P 

is not normal. This property is called the Central Limit Theorem (CLT). 

 

2.2. Properties of SDM for 𝐏 

Given P={1, 2, 3, 4} with 𝜇𝑥 = 2.5 and 𝜎𝑥=1.118, approximately, the summary of Table 

1 follows immediately by properties (i-iii) for 𝑛 =1, 2, 3, 4.  
 

Table 1. Summary of SDMs for varying 𝑛 for the population P 
 

Sample 
size 𝑛 

Number of 
samples in SDM, 

𝑛(P) 

Mean of 
SDM, 𝜇𝑥̅ 

SE of SDM 
 𝜎𝑥̅ = 𝜎𝑥/√𝑛 

1 1(𝑃) = 41 = 4 2.5 1.118/√1 = 1.118 
2 2(𝑃) = 42 = 16 2.5 1.118/√2 = 0.791 
3 3(𝑃) = 43 = 64 2.5 1.118/√3 = 0.6455 
4 4(𝑃) = 44 = 256 2.5 1.118/√4 = 0.559 

 
Let 𝑓𝑥̅ be the frequency distribution or 𝑝(𝑥̅) be the probability distribution the SDM. Then, 
one can verify properties (i)-(ii) using the following two formulas: 
𝜇𝑥̅ =

∑ 𝑓𝑥̅∗𝑥̅

∑ 𝑓𝑥̅
 or 𝜇𝑥̅ = ∑ 𝑥̅ ∗ 𝑝(𝑥̅)  

𝜎𝑥̅ = √
∑ 𝑓𝑥̅∗(𝑥̅−𝜇𝑥̅)2

∑ 𝑓𝑥̅
 or 𝜎𝑥̅ = √∑(𝑥̅ − 𝜇𝑥̅)2 ∗ 𝑝(𝑥̅) 

For example, when 𝑛 = 3, an SDM with 3(P) = 43 = 64 possible samples will have the 
frequency (𝑓𝑥̅) and probability distribution, 𝑝(𝑥̅), as in Table 2. 
 

Table 2. Frequency (𝑓𝑥̅) and probability distribution, 𝑝(𝑥̅), of 𝑥̅ for 3(P) 
 

𝑥̅ 𝑓𝑥̅ 𝑝(𝑥̅) 
1.000 1 0.01563 
1.333 3 0.04688 
1.667 6 0.09375 
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2.000 10 0.15625 
2.333 12 0.18750 
2.667 12 0.18750 
3.000 10 0.15625 
3.333 6 0.09375 
3.667 3 0.04688 
4.000 1 0.01563 
Total 64 1.00000 

 
Therefore, 

(i) 𝜇𝑥̅ =
∑ 𝑓𝑥̅∗𝑥̅

∑ 𝑓𝑥̅
=

160

64
= 2.5. 

(ii) 𝜎𝑥̅ = √
∑ 𝑓𝑥̅∗(𝑥̅−𝜇𝑥̅)2

∑ 𝑓𝑥̅
= √

1∗(1−2.5)2+3∗(1.333−2.5)2+⋯+1∗(4−2.5)2

64
= 0.6455. 

(iii) The shape of the SDM for 3(P) is symmetric (see Figure 1(c)). 
 

Similarly, one can verify that when 𝑛 = 4, an SDM with  4(P) = 44 = 256 possible 
samples will have the frequency (𝑓𝑥̅) and probability distribution, 𝑝(𝑥̅), as in Table 3. 
 
Table 3. Frequency (𝑓𝑥̅) and probability distribution, 𝑝(𝑥̅), of 𝑥̅ for 4(P) 

𝑥̅ 𝑓𝑥̅ 𝑝(𝑥̅) 
1 1 0.004 

1.25 4 0.016 
1.5 10 0.039 

1.75 20 0.078 
2 31 0.121 

2.25 40 0.156 
2.5 44 0.172 

2.75 40 0.156 
3 31 0.121 

3.25 20 0.078 
3.5 10 0.039 

3.75 4 0.016 
4 1 0.004 

Total 256 1 
Therefore, 

(i) 𝜇𝑥̅ =
∑ 𝑓𝑥̅∗𝑥̅

∑ 𝑓𝑥̅
=

(1∗1)+(4∗1.25)+⋯+(4∗3.75)+(1∗4)

256
=

640

256
= 2.5. 

(ii) 𝜎𝑥̅ = √
∑ 𝑓𝑥̅∗(𝑥̅−𝜇𝑥̅)2

∑ 𝑓𝑥̅
= √

1∗(1−2.5)2+4∗(1.25−2.5)2+⋯+1∗(4−2.5)2

256
= 0.559. 

(iii) The shape of the SDM for 4(P) is symmetric (see Figure 1(d)).  
 
Figures 1(a)-1(d), represents the shape of four SDMs for 𝑛=1, 2, 3 and 4 for the population 
P. Note that different sample sizes lead to a different SDMs with identical means (=2.5) 
but different SEs, which gets smaller as the sample size gets larger. Since four SDMs for 
𝑛=1, 2, 3, 4 have only a finite number of elements, namely, 4, 16, 64 and 256, respectively, 
they cannot be normal. 
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3. Recommendations, Warnings and Misconceptions in Using an SSDM 

 

The “Guidelines for Assessment and Instruction in Statistics Education (GAISE) College 
Report” recommend “greater use of computer based simulations and the use of resampling 

methods to teach concepts of inference” (GAISE College Report ASA Revision Committee 
2016, p. 5). Many previous studies evaluated and recommended the use of SSDM while 
teaching (e.g., Jowett and Davies 1960; Gentleman 1977; Weir, McManus, and Kiely 1991; 
Schwarz and Sutherland 1997; delMas, Garfield, and Chance 1999; Lane and Tang 2000; 
Ziemer and Lane 2000; Mills 2004; Chance et al. 2007; Garfield and Ben-Zvi 2007; Lane 
2015; Hancock and Rummerfeld 2020). Schwarz and Sutherland (1997) note the ease with 
which students can compare computer simulated sampling distributions from different 
populations using summary statistics and data visualization. Garfield and Ben-Zvi (2007) 
concluded that simulations can play a significant role in enhancing students’ ability to study 
random processes and statistical concepts. Chance, delMas, and Garfeld (2004) concluded 
that mere exposure to sampling distribution simulations is unlikely to significantly change 
students’ deep understanding. It is suggested that computer simulation methods can be 
made more effective if the instructor asks students to predict the shape, center, and spread 
of a particular sampling distribution prior to performing the simulation, and then asks 
students to reflect on what they observed afterward.  

1 2 3 4

Figure 1(a). Probability Histogram of the SDM for 1(P)
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Figure 1(b). Probability Histogram of the SDM for 2(P)
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Figure 1(c). Probability Histogram of the SDM for 3(P)
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Figure 1(d). Probability Histogram of the SDM for 4(P)
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No difference or a modest difference in students’ understanding of sampling distribution 
following instruction with or without simulation is also available in literature (Mills 2002; 
Meletiou-Mavrotheris 2003; Chance et al. 2004; Pfaff and Weinberg 2009). Various forms 
of misconceptions and challenges in using an SSDM are evident in a number of studies 
(e.g., Pfaff and Weinberg 2009; Hesterberg 1998; Hodgson and Burke 2000; Lunsford, 
Rowell and Goodson-Espy 2006; Watkins, Bargagliotti, and Franklin, 2014).  Pfaff and 
Weinberg (2009) with a card-based simulation did not find any evidence that the simulation 
was effective. Hesterberg (1998) warns that simulations should have a large number of 
replications or else students “may have trouble distinguishing randomness due to random 
selection of data from randomness due to using small numbers of replications.”  Hodgson 
and Burke (2000, p. 94) observed that the simulation of the SDM resulted in 6 of their 18 
students believing that “one must draw multiple samples in order to make valid statistical 
inferences.” Some researchers argue that the computer simulation methods help students 
develop a more intuitive understanding of sampling distributions (e.g., Mills 2002; Wood 
2005; Pfaff and Weinberg 2009; Beckman, DelMas, and Garfeld 2017). 

Watkins, Bargagliotti, and Franklin (2014) discovered that simulations of the sampling 
distribution of the mean can mislead and the misleading pattern is persuasive to students 
plotting their estimated means against the sample sizes. Misunderstandings reported in 
Watkins et al. are similar, in full or part, to those in Renolls and Massay (1991, p. 72), 
Mulekar and Siegel (2009, p. 37 and 40) and Lunsford, Rowell, and Goodson-Espy (2006). 
While Watkins et al. (2014) concluded that misconceptions due to simulation cannot be 
fixed by increasing the number of samples, Lane (2015) argued that the problem can be 
fixed by increasing the number of samples. 

4. An SSDM from a Finite Population 

In this section, we consider an SSDM from a finite population with specific learning 
objectives. We consider P={167, 150, 125, 120, 150, 150,  40, 136, 120, 150} consisting 
of heart rates, measured by beats per minute, of ten asthmatic patients in a state of 
respiratory arrest (Pagano and Gauvreau, 2000) where 𝜇𝑥 = 130.8 and 𝜎𝑥 = 33.65. In 
order to assess the shape of the population P, we provide a boxplot (Figure 2(a)) and 
histogram (Figure 2(b)). 
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Figures 2(a)-2(b) suggest that the population P is not normal. Also, according to the 
properties of SDM specified in Section 2, the SDM will be non-normal with mean 𝜇𝑥̅ =

𝜇𝑥 = 130.8 and 𝜎𝑥̅ = 𝜎𝑥/√𝑛 = 33.65/√𝑛 for any given sample size 𝑛.  

4.1 Specific Learning Objectives for an SSDM from P 

Imagine an SDM of size 10 from the population P, where we will have 10(𝑃) =  1010 
possible samples. How reasonable or feasible is it to investigate all possible means towards 
investigating the properties of the SDM? Of course, it is not reasonable to try to get an 
SDM of P of size 𝑛 = 10. Here is where an SSDM comes handy—instead of trying to 
generate the exact SDM using 1010 sample means, we could just generate an SSDM using 
a suitable number of sample replications, say 𝑀 = 1000, each of size 10 with replacement, 
via simulation, with some specific learning objectives. We wish to verify properties of the 
SDM via an SSDM with the aid of the test of hypothesis approach.   

This approach leads to an inquiry-based learning, with the following specific learning 
objectives: 

(a) Investigate the shape of the SSDM for the normality using boxplot, QQ-plot 
and histogram. 

(b) Investigate skewness and kurtosis for the normality of the SSDM. 
(c) Verify if mean of the SSDM conforms to the mean of the SDM by employing 

a test of the null hypothesis 𝐻0: 𝜇̃𝑥̅ = 𝜇𝑥̅, where 𝜇̃𝑥̅ is the mean of the SSDM 
and 𝜇𝑥̅ = 130.8 is known for the exact SDM. 

(d) Verify if SE of the SSDM conforms to the SE of the SDM by employing a test 
of the null hypothesis 𝐻0: 𝜎̃𝑥̅ = 𝜎𝑥̅ where 𝜎̃𝑥̅ is the SE of the SSDM and 𝜎𝑥̅ =
33.65

√10
= 10.64 is the known SE for an exact SDM. 
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(e) Test the normality of the SSDM by any formal test such as Shapiro-Wilk test 
or Anderson-Darling test. 

 

4.2 Evaluation of objectives  

To evaluate objectives (a)-(e), we consider an SSDM of 1000 samples (M=1000) with 𝑛 =
10. For objective (a), we produce specified graphs. For objective (b)-(e), consider five runs 
of “SSDM of 1000 samples” and report corresponding results. Let us perform an evaluation 
of all specified objectives in a chronological order. 
 

Evaluation of objective (a) 
We construct a boxplot, QQ plot and histogram with super imposed normal curve with the 
mean and SE of the SSDM and is presented in Figures 3(a)-3(c). 

 
Conclusions: (i) The boxplot has long tail on the left with evidence of outlying observations 
in the SSDM (ii) The Q-Q plot does not form a line. (iii) The histogram is not shape 
symmetric. (iv) The normal curve misses a lot of observations of the SSDM on the right, 
suggesting that the shape of the SSDM is left-skewed. These facts provide evidence against 
the normality of the SSDM, which indeed makes sense due to the fact that the actual 
population P is not normal. 
 

Evaluation of objective (b) 
A normal distribution has skewness of 0 and kurtosis of 3. If an SSDM is normal, it will 
have skewness close to 0 and kurtosis close to 3. Look at results from five runs of the 
“SSDM”: 
 

Runs Skewness Kurtosis 
1 -0.560 2.949 
2 -0.438 2.853 
3 -0.577 3.261 
4 -0.516 3.158 
5 -0.610 3.391 
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Conclusions: (i) The skewness suggests that the shape of five SSDMs are left skewed. (ii) 
The values of kurtosis also provide evidence against normality of the five SSDMs. These 
results are expected since P itself is not normal. 
 

Evaluation of objective (c) 
To test 𝐻0: 𝜇̃𝑥̅ = 𝜇𝑥̅, we carry out 𝑡-test and 𝑧-test to five SSDMs. The 𝑡-test statistic given 
by  

𝑇 =
(𝑥̿𝑛,𝑀 − 𝜇𝑥̅)

𝑠𝑒(𝑥̿𝑛,𝑀)
 

where 𝑥̿𝑛,𝑀 is the mean of all sample means over 𝑀 replications in the SSDM and 𝑠𝑒(𝑥̿𝑛,𝑀) 
is an estimate of 𝜎𝑥̅  given by 

𝑠𝑒(𝑥̿𝑛,𝑀) = 𝑠̃/√𝑀 

with 𝑠̃ = √
1

𝑀−1
∑ (𝑥̅𝑛,𝑗 − 𝑥̿𝑛,𝑀)

2𝑀
𝑗=1 . The test statistic T is assumed to follow a 𝒕 

distribution with (𝑀 − 1) degrees of freedom.  
The 𝑧-test statistic given by  

𝑍 =
𝑥̿𝑛,𝑀 − 𝜇𝑥̅

𝜎𝑥̅
 

which is assumed to follow a standard normal distribution. The results of tests from five 
runs of the SSDM have been reported in Table 4. 
 

Table 4. 𝑝-values for z and t tests for objective (c) in five runs of SSDM for 10(P) 
Runs 𝜇̃𝑥̅ 𝑡. 𝑡𝑒𝑠𝑡 𝑧. 𝑡𝑒𝑠𝑡 Decisions 

1 130.84 0.916 0.918 Accept 𝐻0: 𝜇̃𝑥̅ = 𝜇𝑥̅ 
2 131.13 0.317 0.326 Accept 𝐻0: 𝜇̃𝑥̅ = 𝜇𝑥̅ 
3 130.36 0.182 0.189 Accept 𝐻0: 𝜇̃𝑥̅ = 𝜇𝑥̅ 
4 131.02 0.513 0.521 Accept 𝐻0: 𝜇̃𝑥̅ = 𝜇𝑥̅ 
5 130.66 0.683 0.673 Accept 𝐻0: 𝜇̃𝑥̅ = 𝜇𝑥̅ 

 
Conclusions: On the basis of observed 𝑝-values of t.test and z.test, it may be concluded 
that the mean of the SSDM conforms to the mean of the SDM, 130.8 for all five runs at 
5% level of significance.  
 

Evaluation of objective (d) 
To the test 𝐻0: 𝜎̃𝑥̅ = 𝜎𝑥̅, we conduct a Chi-square test for a specified variance given by  

𝜒2 =
(𝑀 − 1)𝑠̃𝑥̅

2

𝜎𝑥̅
2  

where 𝑠̃𝑥̅
2 =

∑ (𝑥̅𝑛,𝑗−𝑥̿𝑛,𝑀)2𝑀
𝑗=1

𝑀−1
. The test statistic 𝜒2 is assumed to follow a chi-square 

distribution with (𝑀 − 1) degrees of freedom. We can implement this test in R using the 
sigma.test() available from the package TeachingDemos. The result of the test from five 
runs of the “SSDM” are given in Table 5. 

Table 5. 𝑝-values for Chi-squared tests for objective (d) in five runs of SSDM for 10(P) 

Runs 𝜎̃𝑥̅ 𝑐ℎ𝑖2. 𝑡𝑒𝑠𝑡 Decisions 
1 10.41 0.351 Accept 𝐻0: 𝜎̃𝑥̅ = 𝜎𝑥̅ 
2 10.43 0.402 Accept 𝐻0: 𝜎̃𝑥̅ = 𝜎𝑥̅ 
3 10.48 0.523 Accept 𝐻0: 𝜎̃𝑥̅ = 𝜎𝑥̅ 
4 10.43 0.385 Accept 𝐻0: 𝜎̃𝑥̅ = 𝜎𝑥̅ 
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5 10.99 0.140 Accept 𝐻0: 𝜎̃𝑥̅ = 𝜎𝑥̅ 
 

Conclusions: On the basis of the observed p-values, it may be concluded that the SE of 
SSDM conforms to that of the SDM in all five runs of the SSDM at 5% level of 
significance.  

Evaluation of objective (e) 
To test 𝐻0: “SSDM is normal”, we employ Shapiro-Wilk, and Anderson-Darling tests of 
normality to five runs of “SSDM”. These two tests are implemented in R using 
shapiro.test() and ad.test(). The results of these tests have been reported in Table 6. 

Table 6. 𝑝-values of tests of normality for objective (e) in five runs of SSDM for 10(P) 

Runs 𝑆ℎ𝑎𝑝𝑖𝑟𝑜. 𝑡𝑒𝑠𝑡 𝑎𝑑. 𝑡𝑒𝑠𝑡 Decisions 
1 5.273264e-12 4.907891e-15 Reject 𝐻0: “SSDM is normal 
2 6.644692e-09 1.085329e-09 Reject 𝐻0: “SSDM is normal 
3 6.028231e-11 1.085623e-10 Reject 𝐻0: “SSDM is normal 
4 5.437490e-10 1.062992e-09 Reject 𝐻0: “SSDM is normal 
5 1.035714e-11 3.754409e-12 Reject 𝐻0: “SSDM is normal 

 

Conclusion: On the basis of the observed p-values, it may be concluded that the SSDMs 
are not normal at 5% level of significance since 𝑝. 𝑣𝑎𝑙𝑢𝑒 < 0.05 for all five runs.  

By all means and measures we observe via objectives (a)-(e) that an SSDM is not 
misleading and it facilitates learning, with only a few exceptions where students confused 
about an SSDM.  

 

5. An SSDM from a Normal Population 

 

Similar learning objective as in Section 4 can be targeted for an SSDM from a normal 
population with any given mean and standard deviation. In this section, we consider a 
N(𝜇=1.5, 𝜎=2) distribution, where the parameters are chosen arbitrarily. We wish to 
generate “Different SSDMs with M=1000” with selected values of sample sizes 𝑛 between 
5 and 1000, and report mean and SE for the SDM and SSDM, along with the difference in 
the SEs (see Table 7). 
Table 7. Estimated means and SEs for the SSDMs with varying 𝑛 and M=1000 and 5000 

  M=1000 M=5000 
𝑛 𝜇̃𝑥̅ 𝜎̃𝑥̅ 𝜎𝑥̅ 𝑆𝐸𝑑𝑖𝑓𝑓 𝜇̃𝑥̅ 𝜎̃𝑥̅ 𝜎𝑥̅ 𝑆𝐸𝑑𝑖𝑓𝑓 

5 1.518 0.827 0.894 0.068 1.504 0.844 0.894 0.051 
10 1.509 0.614 0.632 0.019 1.499 0.616 0.632 0.017 
50 1.495 0.280 0.283 0.003 1.507 0.282 0.283 0.001 

100 1.504 0.199 0.200 0.001 1.505 0.200 0.200 0.000 
150 1.504 0.163 0.163 0.000 1.503 0.163 0.163 0.000 
200 1.501 0.142 0.141 0.000 1.497 0.141 0.141 0.000 
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250 1.503 0.126 0.126 0.000 1.498 0.126 0.126 0.000 
300 1.500 0.115 0.115 0.000 1.502 0.115 0.115 0.000 
400 1.498 0.100 0.100 0.000 1.500 0.100 0.100 0.000 
500 1.503 0.089 0.089 0.000 1.500 0.089 0.089 0.000 
600 1.504 0.082 0.082 0.000 1.501 0.082 0.082 0.000 
700 1.498 0.076 0.076 0.000 1.500 0.076 0.076 0.000 
900 1.503 0.067 0.067 0.000 1.498 0.067 0.067 0.000 

1000 1.497 0.063 0.063 0.000 1.501 0.063 0.063 0.000 
 
From the results of Table 7, it appears that the means are close to 1.5, irrespective of the 
sample size 𝑛. The SEs of SDM and SSDM are also close for any specific sample size; 
they decrease with increasing 𝑛. The results of the SDMs and SSDMs conform to the 
properties (i)-(ii) of sections 2. 
 

6. Remarks in Reference to Previous Misunderstandings 

 

As reported in Watkins et al. (2014, p. 11) “the misleading pattern will be especially 
persuasive to students if they plot their estimated means against the sample sizes, as is 
sometimes recommended in the literature”, for examples, cited as Renolls and Massay 
(1991, p. 72) and Mulekar and Siegel (2009, p. 37 and 40), showing a clear trend for the 
means of the simulated SDMs to get closer to the population mean as the sample size 
increases. Also, Watkins et al. (2014, p. 8) reported “What is unexpected is that if 𝑛1 > 𝑛2 
, the mean of a simulated SDM constructed using 𝑁 samples each of size 𝑛1 tends to be 
closer to the population mean, 𝜇 , than the mean of a simulated SDM constructed using 𝑁 

samples each of size 𝑛2.” These misunderstandings are interpretational deficiencies, which 
can be explained easily by the LLN which states that as the size of the sample n increases, 

the sample mean 𝑥̅  gets closer and closer to the population mean µ. Due to this fact if 
𝑛1 > 𝑛2, then samples of size 𝑛1 are expected to provide an estimate closer to the mean µ 

than the samples of size 𝑛2. Naturally, then, the average of all (N) samples of size 𝑛1 will 

give a close estimate of µ than the average of all (N) samples of size 𝑛2. In other words, 

an SSDM of N samples of size 𝑛1 will have mean close to µ than will have an SSDM of 

samples N of size 𝑛2. Therefore, the misunderstandings of the types reported in Watkins et 

al. is just an interpretational deficiency. 

 

7. Discussions and Concluding Remarks 

 

By learning objectives (a)-(e) in Section 4, we mean to signify that an SSDM should be 
aimed at a guided manner so as to minimize misconceptions.  Some important aspects of 
an SSDM should be emphasized: 

• The mean and SE of an SDM are parameters, while the mean and SE of an SSDM 
are estimates of parameters of an SDM and hence are random variables. As such, 
an SSDM should not be expected to be identically equal to an SDM. Indeed, it is 
impossible to ever generate an SSDM identical to an SDM because exactly the 
same set of samples in an SDM cannot be ensured in an SSDM.  

• Expectations from an SSDM should be communicated to students via examples, 
activities or at least by simulated outputs with necessary explanations or 
interpretations before engaging students in an SSDM.  
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• Instructors should be aware against any misunderstanding and misconceptions 
while proceeding for an SSDM so as to avoid misunderstandings, for example, of 
the types reported in Watkins et al. 

• The concept of the SDM can be better delivered by undertaking a very simple and 
finite population, where instructors can generate all possible samples easily by 
means of computer programming. It is a very good practice to let students 
investigate or justify the properties of an SDM given simple hands-on-activity, 
printouts or homework before engaging in an SSDM.  As students feel comfortable 
with SDM, they could be exposed to interesting issues in relation to an SSDM that 
would make them appreciate simulation and thereby get them involved in 
computational approaches. 

Overall, an SSDM can be made effective if it is administered in a guided manner by the 
instructor with specific learning objectives. This prepares students to critically evaluate 
their simulated results without any misconception. 
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