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Abstract

With the rapid development of sensors and other data-gathering devices, high-frequency
time series of count data have become common. Such series commonly exhibit conditional
dependence of the parameters of the data generating process (DGP) to past values of the
counts and parameter values. The Autoregressive Conditional Poisson (ACP) formulation
is one model developed to describe the underlying data generating mechanism of such pro-
cesses. In ACP Models, the mean of the Poisson process is assumed to be a linear function
of past means and past counts through a GARCH type model. In this formulation, it is
assumed that the parameters of the model that connects the conditional mean to past val-
ues remain constant over time. One generalization is to accommodate seasonal variations
in one or more of these parameters, but in some empirical processes, the changes in the
parameters may not occur systematically but according to a latent process. The proposed
model addresses such a scenario where the Poisson intensity is modeled using an ARCH
type formulation with select parameters taking different values based on the state defined
by a hidden Markov chain. The application of the proposed model is illustrated using a
synthetic and a real-life data set.

Key Words: count data, discrete time series, regime change, conditional heteroscedasticity,
time-varying parameters

1 Introduction

High-frequency count data time series have become ubiquitous in many fields due to
the rapid development of sensor and information gathering and storage capabilities. Many
of these time series show temporal dependence, and some show patterns that may signal
changes in the underlying data-generating mechanism. In other words, such series exhibit
“regime” changes in the underlying data generating process. Examples of such series could
be found in diverse areas of applications such as epidemiology and finance, and the effective
modeling of such processes can provide valuable insight into the core mechanisms gener-
ating the counts. The Poisson Hidden Markov Model (P-HMM) is one of the formulations
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researchers commonly utilize to model count data processes that show possible shifts in the
underlying data generating process. It was first developed to model time series of epileptic
seizure counts (Albert, 1991), but has been used in many other empirical situations. This
model assumes that a hidden Markov process determines the parameters of the Poisson pro-
cess that generates the count data. Since within a given state, the counts generated from the
Poisson process are assumed to be independent, the consistent serial dependence seen in
some empirical series cannot be modeled adequately by a P-HMM. Thus, an autoregressive
conditional Poisson hidden Markov model (ACP-HMM) is proposed to accommodate the
serial dependence, the clustering of high and low counts, and at the same time, account
for possible shifts in the underlying data generating process. It could be seen as a combi-
nation of a P-HMM model and an autoregressive structure, which admits the existence of
several underlying mechanisms that switch back and forth while at the same time captur-
ing the strong correlation among time-series observations. It also provides a way to model
the clustering of high counts, using a formulation similar to the generalized conditional
autoregressive heteroscedastic model proposed by Bollerslev (Bollerslev, 1986).

2 Review of Models for Time Series Count Data

The Poisson distribution is commonly employed to model count data. Poisson regres-
sion extends the utility of this distribution by allowing its mean to depend on exogenous
variables (Consul & Famoye, 1992; Coxe, West, & Aiken, 2009; Hilbe, 2014). This is
achieved via a function that links the Poisson mean to a linear combination of the collec-
tion of exogenous variables. Such regression models, however, are not able to handle data
with over-dispersion unless additional parameters are included. More importantly, Poisson
regression models do not accommodate serial dependence when applied to time series data,
unless one or more of the exogenous variables are themselves serially dependent.

One class of models that are widely used to model correlated time series is the Autore-
gressive Moving Average (ARMA) models and their analogous discrete version: discrete
autoregressive moving average (DARMA) models (Jacobs & Lewis, 1983), which are pro-
posed for count data with arbitrarily chosen marginal distributions. By coupling two simple
stationary processes, the discrete autoregressive of order p (DAR(p)) and the discrete mov-
ing average of order q (DMA(q)), the DARMA(p, q) can be generated as a mixture of the
two and can be further simplified into a single equation as the NDARMA(p, q) (see Ja-
cobs & Lewis, 1983). The problem of the DARMA model is that a single value might
have a high density around it when the sequence is generated from such structures. They
also do not allow for negative autocorrelations. McKenzie (1985, 1986, 1987, 1988) and
Al-Osh and Alzaid (1987) developed a series of models that handle dependent sequences
of Poisson counts for equally spaced count data time series by taking advantage of the
ARMA process. One set of these models is the integer-valued autoregressive (INAR) Pois-
son models (Al-Osh & Alzaid, 1987; McKenzie, 1985, 1988). The authors considered a
set of unobserved components that capture the important feature of the data that show a
short-range dependence. McKenzie (1988) also developed integer-valued moving average
(INMA) processes, where binomial thinning was used to replace scalar multiplication for
discrete random variables. Davis, Dunsmuir, and Streett (2003) introduced a general lin-
ear autoregressive moving average (GLARMA) model for time series count data. This is
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an observation-driven model, which assumes the distribution of the current count, condi-
tional on the past information follows a Poisson distribution. The model establishes a linear
relationship between the logarithm of the conditional mean of the Poisson process and ex-
planatory variables with martingale differences via an ARMA structure. In order to provide
a more flexible solution to the overdispersion problem, Febritasari, Wardhani, and Sa’adah
(2019) combined negative binomial distribution with generalized linear autoregressive mov-
ing average (GLARMA) models in time series. Alternatively, Zhu (2006) proposed a class
of models for non-stationary time series based on binomial thinning, which can incorpo-
rate trends or covariates, and also allows higher-order Markov dependence. For additional
variations and details about thinning models, the reader is referred to the review papers by
Weiß (2008) and Scotto, Weiß, and Gouveia (2015). Shephard (1999) proposed a model
where the conditional intensity (mean) of a Poisson process is linearly dependent on the
previous observation and its expectation. Since the Poisson distribution could take care of
integer data and the GARCH formulation could incorporate the influence of previous ob-
servations, this model parallels a GARCH process. Heinen (2003) further generalized the
model to accommodate arbitrary lags and named it as Autoregressive Conditional Poisson
(ACP) model. Their formulation is as follows: given the count time series Xt : t ∈ N, and
the σ field Ft−1 generated by the set {Xt : i < t},

Xt|Ft−1 ∼ Pois(λt), for ∀t ∈ N

λt = α0 +

p∑
i=1

αiXt−i +

q∑
j=1

βjλt−j ,
(2.1)

where α0 > 0, αi ≥ 0, βj ≥ 0 for i = 1, . . . , p, j = 1, . . . , q. with the restriction that
0 ≤

∑p
i=1 αi +

∑q
j=1 βj < 1. The conditions required for stationarity is discussed, and

mean and variance are provided in this paper. Heinen, however, derived the theoretical prop-
erties of the ACP model only for the case p = q = 1. Building on Heinen’s work, Ghahra-
mani and Thavaneswaran (2009) extended the theoretical properties of the ACP model to a
higher order, and showed that the mean structure could be re-parameterized as an ARMA
process and the moment properties of the ACP models were deduced in details. Around
the same time, Ferland, Latour, and Oraichi (2006) introduced an integer-valued gener-
alized autoregressive conditional heteroskedastic (INGARCH) (p, q) model with Poisson
deviates,which in essence, is the same as the ACP model. Zhu (2011) developed a nega-
tive binomial integer-valued GARCH model, aiming to handle overdispersion and extreme
observations. Subsequently, Zhu (2012) introduced a class of generalized Poisson integer-
valued GARCH models, which can account for both overdispersion and underdispersion.
Chen, So, Li, and Sriboonchitta (2016) proposed an autoregressive conditional negative
binomial model for time series of counts in which the standard negative binomial param-
eters were re-parameterized with one of the new parameters modeled using a conditional
autoregressive formulation similar to the ACP.

The above time series models do not allow for changes in the model from one mode
to another, or in other words, they do not allow the time series to switch between different
“regimes”. Markov chain based models represent a general class of formulations which
could handle time series with such characteristics (Chib & Winkelmann, 2001; Raftery,
1985). The regime switching is accomplished via a Markov chain with fixed transition
probabilities. However, the above Markov chain based models build a direct relationship
between regimes and observations, thus the distribution of Xt depends only on Xt−1 and
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they tend to be overparameterized for most empirical data as there are usually many possible
outcomes.

The original concept of the hidden Markov models was advocated by Buam et al. (Baum
& Eagon, 1967; Baum & Petrie, 1966). In this approach, it is assumed that an unobserved la-
tent state changes over time according to a Markov process, and one or more of the model’s
parameters change with the state. As mentioned before, the Poisson hidden Markov model
(P-HMM) was first developed and applied to a time series of daily epileptic seizure counts
(Albert, 1991). This model allows the mean of the Poisson distribution to change according
to an underlying two-state Markov chain. The EM algorithm was employed to compute the
estimates. Results obtained in this study showed that the P-HMM outperformed Poisson re-
gression models. However, the P-HMM model would not allow the previous count to have
a direct influence on the current one, which is a drawback in situations where there is high
autocorrelation, a common phenomenon in time series data, thus limiting the wide usage of
such models. In a previous paper (Zhang & Samaranayake, 2019), we proposed a periodic
version of the autoregressive conditional Poisson (ACP) model by allowing the coefficients
of the ACP model to vary periodically. Some empirical time series, however, suggest the
possibility of irregular changes that imply regime switching cannot be explained by a peri-
odic model. Thus we propose the autoregressive conditional Poisson hidden Markov model
(ACP-HMM), which in a sense, is a combination of Poisson hidden Markov model and
autoregressive conditional Poisson model. It would accommodate time series with irregular
regime switching patterns while taking care of serial dependence.

3 Proposed ACP-HMM Models

Let a sequence of discrete random variables {St : t ∈ N} be a Markov chain with
m possible states and a transition probability matrix Γ(t) = {γsij(t)}, i, j = 1, 2, . . . ,m,
where γsij(t) = P (Ss+t = j|Ss = i). In most cases, it is enough to use homogeneous
Markov chains, where γsij does not depend on s. Unless there is an explicit indication, it is
assumed from here on that the Markov chain under discussion is a homogeneous one with
transition probabilities denoted by γij .

Note that the traditional Poisson Hidden Markov model would not account for autocor-
relations between the counts. Thus, the autoregressive conditional Poisson hidden Markov
model proposed here is more appropriate to fit correlated count data where one or more
parameters of the ACP model change according to the state of a hidden Markov process.

We are now ready to define the proposed ACP-HMM process. Let {Xt : t ∈ N} denote
observed time series of count data, with Xt representing the count at time t. It is assumed
that the mean of the Poisson process at time t is propagated through an ACP structure,
whose parameters take values based on the state of the underlying hidden Markov chain.
Let St denote the state of the Markov chain to which t belongs and denote the σ -algebra
generated by {Xi, Si : i ≤ t} as Ft. Given the past information Ft

Xt|Ft ∼ Poisson(λt)

 
1329



where λt is a time-varying parameter defined by

λt,St = ωSt +

q∑
i=1

αi,StXt−i, (3.1)

where ωSt , αi,St, i = 1, 2, , . . . , q, are positive for all values of St.

Note that the above formulation parallels that of an ARCH(q) process, but with the
parameters varying with the state of the Markov chain. A simpler model, where the αi,St

remain constant across all states St can be adopted and may be sufficient to model some
empirical count data series. Note that the standard ACP model parallels a GARCH process,
and we have employed the simpler ARCH formulation to avoid estimation issues posed by
a more complex model.

4 Some Properties of the Model

Denote the unconditional probabilities of a Markov chain at time t by P (St = i), and
probabilities of all possible outcomes at time t as row vector ut =

(
P (St = 1), P (St =

2), . . . , P (St = m)
)
, t ∈ N, with m representing the number of Markov states. Let Γ(t) =

{γij(t)}, i, j = 1, 2, . . . ,m, where γij(t) = P (Ss+t = j|Ss = i), and the mean of
the Poisson process generated by λt,St = ωSt +

∑q
i=1 αi,StXt−i. In order to express the

expected mean and variance of observation Xt by vector and matrix calculations, define
the row vector of means of the Poisson process under different states as λt =

(
λt(St =

1), λt(St = 2), . . . , λt(St = m)
)
. Let δ = u1 =

(
P (S1 = 1), P (S1 = 2), . . . , P (S1 =

m)
)

be the initial distribution of the Markov chain. Then, the ut+1 could be deduced from
relation ut+1 = utΓt. We restrict the scope of the study here to the homogeneous Markov
chain model, and thus Γ(t) will be abbreviated as Γ. So we have,

ut = ut−1Γ = δΓt−1,

E(Xt) = utλt = δΓ
t−1λ′t,

V ar(Xt) = E[V ar(Xt|St)] + V ar[E(Xt|St)],
= E(Xt) + V ar

(
E(Xt|St)

)
,

= E(Xt) + E[
(
E(Xt|St)

)2
]− [E

(
E(Xt|St)

)
]2,

= E(Xt) +

m∑
St=i

(
λt(St = i)

)2
P (St = i)− [E(E(Xt|St))]2,

= δΓt−1λ′t + δΓ
t−1(λ2

t )
′ − (δΓt−1λ′t)

2.

(4.1)

where λt
2 means squaring each element of vector λt

5 Likelihood Function and Parameter Estimation

Let θ ≡ (δ,Γ, ωSt , αi,St) for i = 1, 2, . . . , q, represent all parameters in hidden Markov
auto-regressive conditional Poisson model. The log-likelihood function for the model is
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given by

lT (θ) = log
(
P (XT = xT )

)
= log

(
δP (x1)ΓP (x2) · · ·ΓP (xT )1

′), (5.1)

where δ is the initial distribution and

P (xt) =


p1(xt) · · · 0

...
. . .

...

0
... pm(xt)

 , (5.2)

pi(xt) = P (Xt = xt|Ct = i),

Γ =

γ11 · · · γ1m
...

. . .
...

γm1 · · · γmm

 .
For the discrete case, elements in the likelihood function become progressively smaller

as t increases, and scaling the forward probabilities is a common way to avoid underflow.
Thus we have,

β0 = δP (x1),

βt = βt−1ΓP (xt), for t = 2, 3, . . . , T.

φ0 = δ,

φt =
βt

ωt
,

ωtφt = ωt−1φt−1Bt,

where
ωt =

∑
i

βt(i) = βt1
′,

ω0 = δ1
′.

Thus the scaled log likelihood function would be

log(LT ) =

T∑
t=1

log
( ωt

ωt−1

)
=

T∑
t=1

log(φt−1Bt1
′). (5.3)

Note that the EM algorithm could also be derived and used. However, the solutions
to the EM algorithm do not have a closed-form; thus, the maximum likelihood estimation
method gives better estimates.
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6 The Monte-Carlo Simulation Study

We conducted a Monte-Carlo simulation study to investigate the performance of max-
imum likelihood estimators of ACP-HMM model with the log likelihood function defined
in (5.3). A simulation study was also used to investigate the use of AIC and BIC crite-
ria to differentiate between highly correlated count data series and regular Poisson HMM
processes.

The properties of estimates were studied across different combinations of parameters
using 1,000 simulation runs for each combination. Bias, Monte Carlo standard error and
mean absolute deviation were computed for each of the parameter combination sets. In
order to eliminate the artifacts arising out of initial conditions, the first 240 time series data
points were discarded. For the simulation of the parameter set, sample size T=1,440 were
considered, which is comparable to the lengths of one-minute count data series observed
over one day or the length of daily count data observed over a period of four years.

We provide the parameter sets used in the simulation study here before we move to
details for each case.

Case 1. Time series of count data with 2 states and 2 lags are generated. Each state has the
same lag coefficients.

Γ =

[
0.7 0.3
0.4 0.6

]
, ω1 = 20, ω2 = 10, α1 = 0.1, α2 = 0.2.

Case 2. Time series of count data with 3 states and 2 lags are generated. Each state has the
same lag coefficients.

Γ =

 0.8 0.15 0.05
0.15 0.75 0.1
0.05 0.15 0.8

 , ω1 = 20, ω2 = 13, ω3 = 8, α1 = 0.2, α2 = 0.1.

Case 3. Time series of count data with 2 states and 1 lag are generated. Each state has a
different value for the single lag coefficient.

Γ =

[
0.75 0.25
0.2 0.8

]
, ω1 = 10, ω2 = 20, α1,1 = 0.3, α1,2 = 0.2.

Case 4. Time series of count data with 3 states and 1 lag are generated. Each state has a
different value for the single lag coefficient.

Γ =

 0.7 0.25 0.05
0.15 0.7 0.15
0.05 0.2 0.75

 , ω1 = 3, ω2 = 8, ω3 = 4, α1,1 = 0.1, α1,2 = 0.5, α1,3 = 0.3.
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6.1 Case 1. Time series of count data with 2 states and 2 lags are generated.
Each state has the same lag coefficients.

The simulated data (listed in Table 1) were generated from an ACP-HMM process with
2 states and 2 lags. Each state has the same lag coefficients.

Table 1: Maximum likelihood estimation results from 1,000 simulations based on different
number of Markov states (m = 2 states, q = 2).

Parameter True Coefficient Estimates MSE MAD

p11 0.7 0.70083 0.000973 0.031194
p12 0.3 0.29917 0.000973 0.031194
p21 0.4 0.39909 0.001284 0.035827
p22 0.6 0.60091 0.001284 0.035827
ω1 20 20.099 0.796033 0.892207
ω2 10 10.08 0.641469 0.800917
α1 0.1 0.097745 0.00064 0.025289
α2 0.2 0.19806 0.001001 0.031631

6.2 Case 2. Time series of count data with 3 states and 2 lags are generated.
Each state has the same lag coefficients.

The simulated data (listed in Table 2) were generated from an ACP-HMM process with
3 states and 2 lags. Each state has the same lag coefficients.

Table 2: Maximum likelihood estimation results from 1,000 simulations based on different
number of Markov states (m = 3 states, q = 2).

Parameter True Coefficient Estimates MSE MAD

p11 0.8 0.75734 0.0259 0.069293
p12 0.15 0.1596 0.0179 0.075879
p13 0.05 0.083057 0.00789 0.053554
p21 0.15 0.16917 0.0155 0.061574
p22 0.75 0.71248 0.03 0.090094
p23 0.1 0.11835 0.0166 0.06625
p31 0.05 0.088715 0.0154 0.063711
p32 0.15 0.19528 0.0292 0.094614
p33 0.8 0.716 0.0561 0.113975
ω1 20 18.887 7.21 1.907206
ω2 13 12.018 6.58 1.725269
ω3 8 7.3377 2.88 1.068537
α1 0.2 0.2117 0.00142 0.029035
α2 0.1 0.13157 0.00556 0.050574
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6.3 Case 3. Time series of count data with 2 states and 1 lag are generated.
Each state has a different value for the single lag coefficient.

The simulated data (listed in Table 3) were generated from an ACP-HMM process with
2 states and 1 lag. Each state has a different value for the single lag coefficient.

Table 3: Maximum likelihood estimation results from 1,000 simulations based on different
number of Markov states (m = 2 states, q = 1).

Parameter True Coefficients Estimates MSE MAD

p11 0.75 0.74789 0.001008 0.02426
p12 0.25 0.25211 0.001008 0.02426
p21 0.2 0.20461 0.001951 0.025965
p22 0.8 0.79539 0.001951 0.025965
ω1 10 9.9861 0.470935 0.536199
ω2 20 20.056 1.107474 0.833189
α1,1 0.3 0.30087 0.001984 0.034581
α1,2 0.2 0.19915 0.001885 0.032861

6.4 Case 4. Time series of count data with 3 states and 1 lag are generated.
Each state has a different value for the single lag coefficient.

The simulated data (listed in Table 4) were generated from an ACP-HMM process with
3 states and 1 lag. Each state has a different value for the single lag coefficients.

Table 4: Maximum likelihood estimation results from 1,000 simulations based on different
number of Markov states (m = 3 states, q = 1).

Parameter True Coefficient Estimates MSE MAD

p11 0.7 0.68446 0.010054 0.067461
p12 0.25 0.2108 0.011515 0.07506
p13 0.05 0.10475 0.018946 0.090441
p21 0.15 0.15906 0.006665 0.060033
p22 0.7 0.68963 0.004557 0.041534
p23 0.15 0.15131 0.007579 0.065768
p31 0.05 0.098007 0.014336 0.080578
p32 0.2 0.18475 0.009468 0.073481
p33 0.75 0.71724 0.012719 0.075851
ω1 3 2.8684 0.24099 0.314269
ω2 8 8.2234 1.2147 0.592089
ω3 4 4.2615 1.4266 0.830676
α1,1 0.1 0.23549 0.088734 0.246055
α1,2 0.5 0.42867 0.067414 0.204649
α1,3 0.3 0.3104 0.037574 0.173398
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Based on the simulation results, it can be seen that the maximum likelihood estimation
method provides relatively good estimates with low MSE and MAD in most cases. For
cases 1-3, the estimates are quite accurate, and the MADs remain low. When the number
of states is higher than two, and the ACP portion of the model has a complicated structure
(Case 4) with both omega and alpha varying with the states, the MSE and MAD values
become relatively large for some of the parameters. A similar situation is observed in Case
2 (with three states), where the MSE associated with the intercept parameters increased,
similar to that in the Poisson HMM setup. Overall, results demonstrate that the MLE is a
promising method for estimating the parameters of the suggested autoregressive conditional
Poisson hidden Markov model (ACP-HMM), especially when the number of states is two.

7 Model Selection

To illustrate the importance of selecting the correct structure for the underlying data
generating process and also to examine if AICc and/or BIC are good criteria to distinguish
the true generating process, a small-scale Monte Carlo simulation study was performed.
All statistics reported here are calculated from N=1,000 replications, and each replication
having a sample size T=1,440. In order to avoid artifacts created by initial conditions, the
first 240 time series data points were discarded.

Mean AICc and BIC are calculated from AICc and BIC values for all replications, and
the percentage represents the proportion of simulation runs that yielded a smaller AICc or
BIC value for the corresponding model.

Table 5 shows results for the case when the data were generated from an ACP-HMM
process with true parameters:

Γ =

[
0.7 0.3
0.2 0.8

]
, ω1 = 5, ω2 = 20, α1 = 0.3, α2 = 0.1.

Table 5: Poisson HMM and ACP-HMM selection by AICc and BIC criteria with simulated
time series data with small α’s that do not differ much.

Parameter True Coefficient ACP-HMM Poisson HMM

p11 0.7 0.70224 0.73894
p12 0.3 0.29776 0.26106
p21 0.2 0.20249 0.15565
p22 0.8 0.79751 0.84435
ω1 5 5.0237 12.21
ω2 20 20.019 29.896
α1 0.3 0.29968 -
α2 0.1 0.10057 -

mean AICc 10181(100%) 10792(0%)
mean BIC 10213(100%) 10827(0%)
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Both the ACP-HMM and the Poisson HMM Model were utilized to fit the data. The
average AICc and BIC values for ACP-HMM are lower than those for the Poisson HMM
model and the right structure is always preferred, which suggests AICc and BIC performs
well in identifying the true structure of the time series.

Table 6 shows results when an ACP-HMM process is the underlying structure producing
the count data with true parameters:

Γ =

[
0.7 0.3
0.2 0.8

]
, ω1 = 2.5, ω2 = 9, α1 = 0.8, α2 = 0.1.

Both ACP-HMM model and Poisson HMM model were utilized to fit the data. In this
case, AICc and BIC again showed their ability to select the right structure. Note that the
simulation results show that if the data generating process of a count data time series has an
autoregressive conditional heteroscedastic structure, and its parameters are governed by a
hidden Markov process, then the regular Poisson HMM provides a poor fit, especially when
one or more of the α’s are high.

Table 6: Poisson HMM and ACP-HMM selection by AICc and BIC criteria with simulated
time series data with one large α and the other small.

Parameter True Coefficient ACP-HMM Poisson HMM

p11 0.7 0.71857 0.92571
p12 0.3 0.28143 0.074288
p21 0.2 0.20091 0.073842
p22 0.8 0.79909 0.92616
ω1 2.5 2.5661 43.837
ω2 9 8.9031 68.342
α1 0.8 0.79107 -
α2 0.1 0.096571 -

mean AICc 10461(100%) 12650(0%)
mean BIC 10493(100%) 12686(0%)

8 Visualization of Data and Model Structure using a Synthetic
Data Set

The graph demonstrates the proposed ACP-HMM model with data generated from the
parameter set:

Γ =

[
0.7 0.3
0.4 0.6

]
, ω1 = 20, ω2 = 10, α1 = 0.1, α2 = 0.2.
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Figure 1: Simulated Time Series Count Data, and the underlying λSt and states.

As shown in Figure 1, the grey line represents the simulated data while the blue line
indicates the underlying mean of the Poisson process. The red line represents the underlying
process is at State 1 while the green line indicates the process is at State 2.

9 Application to a Real-Life Data Set

Figure 2 illustrates the daily number of deaths in Evora, Portugal, from 01/01/1996 to
12/31/2007. The sample mean equals 6.119, and the variance is 7.483. There seems to be
an irregular periodicity present in this time series.

Figure 2: Daily Death in Evora from 01/01/1996 to 12/31/2007.

The autocorrelation function plot of the count data (as shown in Figure 3) suggests there
is autocorrelation in the count data, and hence ACP structure is better than a regular Poisson
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model. Some irregular periodicity is also observed, hence the motivation for fitting a HMM
could be seen.

Figure 3: Autocorrelation of Daily Death Count Data.

Table 7: Daily Death Data fitted by Poisson HMM and ACP-HMM with AICc provided.

Parameter ACP-HMM Poisson HMM

p11 0.9954 0.999999
p12 0.0046 0.000001
p21 0.0127 0.0422
p22 0.9873 0.9578
ω1 5.5312 6.123
ω2 6.8751 33.0782
α1,1 0.0001 -
α1,2 0.1086 -
AICc 3445.2 3533.7

Daily Death Data is fitted by Poisson HMM and ACP-HMM with 2 states and their cor-
responding AICc’s are provided in Table 7. Poisson HMM gives a large mean for the second
Poisson process, and the transition matrix gives extreme probabilities, most probably due
to the model’s inability to account for the autocorrelation present in the data.
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10 Conclusion

The model provided here is a natural generalization of the Poisson hidden Markov
model, with a generalization made to take the influence of previous observations into con-
sideration when modeling autocorrelated count time series. The reported simulation results
in Section 6 show that the MLE method provides reasonable estimates of the model param-
eters of the ACP-HMM model. However, when the parameter set gets larger, the errors of
the estimators increases , possibly because the hypersurface defining the likelihood function
grows more complex. Investigating the utility of AICc and BIC criteria in determining the
true structure of the count data shows promising results. Finally, we use a real-life data set
to illustrate the importance of the proposed model in situations where evidence for regime
switch and autocorrelations are both apparent, which is not an uncommon phenomenon in
time series of count data.
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