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Abstract 
The Generalized Autoregressive Conditional Heteroscedastic (GARCH) formulations are 
inadequate to model the persistent volatility found in certain financial assets. The integrated 
version of the GARCH formulation, namely the IGARCH model, was developed to handle 
such situations.  Fractionally Integrated Generalized Autoregressive Conditionally 
Heteroscedastic (FIGARCH) models, however, provide a more flexible alternative to 
modeling long-term dependence of volatility, providing a leptokurtic unconditional 
distribution for returns having long memory behavior.   We propose a method based on the 
residual bootstrap to obtain prediction intervals for the returns of FIGARCH processes. A 
Monte-Carlo simulation study, conducted using a variety of distributions for the error 
terms, show that the proposed intervals have good coverage probabilities in most cases. 
 
Key Words: Fractional Integration, Volatility Modeling, residual-based bootstrap, long 
memory 
 
 

1. Introduction 
 
Time series literature is replete with many formulations developed to model the volatility 
of financial time series. Engle (1982) introduced the well-known Autoregressive 
Conditional Heteroscedastic (ARCH) model and Bollerslev (1986) extended the ARCH 
model to the Generalized ARCH (GARCH) model, which accommodate long-term 
dependence of volatility with a limited number of lag terms compared to the ARCH 
formulation. Since the introduction of the ARCH and GARCH models, several variations 
were introduced. For example, the exponential GARCH or the EGARCH model (Nelson, 
1991) was developed to allow asymmetric response to positive and negative shocks. A 
generally known fact about GARCH type models is their ability to models volatility 
clustering. Volatility clustering refers to the phenomenon where large returns tend to follow 
large returns and small returns tend to follow small returns.   Highly persistent volatility, 
however, cannot be modeled well using the GARCH model or its alternatives such as the 
EGARCH.  The Integrated GARCH (Engle and Bollerslev, 1986) formulation was 
developed to model time series with persistent volatility. Fractionally Integrated 
Generalized Autoregressive Conditional Heteroscedastic (FIGARCH) was introduced by 
Baillie et al. in 1996 as an alternative to the IGARCH model, allowing the ability to model 
the long-memory nature of the conditional variance found in many financial time series, 
but without the assumption of a unit root in the model. Here in we introduced a residual 
bootstrap-based method of obtaining prediction intervals for the conditional volatility of 
FIGARCH processes.  
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The conditional variance of a GARCH process can be written as infinite sum of 
exponentially decaying terms containing squared past innovations.  On the other hand, the 
conditional variance of FIGARCH model can be expressed as a sum whose terms have a 
slower hyperbolic rate of decay. This provides the FIGARCH formulation the ability to 
model squared return processes having long memory. Thus, in the FIGARCH formulation, 
the effect of a past shock (squared innovation) decays slowly to zero unlike in the GARCH 
case where such effects decays at a faster exponential rate.  In the IGARCH formulation 
the effect of such a shock persists without decaying. Thus the FIGARCH, while allowing 
for a past shock to persist for a long period, assumes that eventually its effects become 
negligible, which is a more reasonable assumption.  
 
There are only few published papers that discuss the construction of prediction intervals 
for ARCH and GARCH type models. Compared to point forecasts, the prediction intervals 
give extra assessment about the uncertainty associated with the forecast and is therefore 
more desirable. In general, the underlying distribution of the point predictor or that of a 
pivotal statistic is needed to derive prediction intervals. But this is not feasible in some 
situations and in many instances the asymptotic distribution of such statistics is used. An 
alternative is the distribution free resampling approach, where a bootstrap-based technique 
is utilized. Reeves (2005) constructed prediction intervals for ARCH models using a 
bootstrap method and contrasted it with the traditional asymptotic prediction intervals. 
Reeves report that the bootstrap-based method improves the coverage accuracy.  Pascual 
et al. (2006) developed a bootstrap-based prediction intervals for both returns and 
volatilities for the GARCH(1, 1) model. Their bootstrap method incorporated the 
uncertainty of parameter estimation when building the prediction intervals, which certainly 
improved the coverage. However, one drawback of this method is the time-consuming 
calculation of prediction intervals. Since GARCH model can be re-written as a linear 
ARMA type model, Chen et al. (2010) proposed computationally low cost sieve bootstrap-
based prediction intervals for returns and volatiles. Trucíos and Hotta (2016) constructed 
prediction intervals for returns and volatilities for EGARCH and GJR-GARCH models by 
adapting the method used by Pascual et al. (2006). They found that volatility prediction 
could be poor when an additive outlier is present near the forecasting origin. Although 
there are published literature on bootstrap prediction intervals for the conventional 
volatility models, there are no such work available for long memory volatility models. On 
the other hand, there is ample literature on the prediction intervals for long memory 
conditional mean models. For example, Bisaglia and Grigoletto (2001) introduced 
bootstrap-based prediction intervals for Fractionally Integrated Autoregressive Moving 
Average (FARIMA) processes.  Although this method performs quite well, it is 
computationally much slower. Rupasinghe and Samaranayake (2013) established a 
computationally much faster,   sieve-bootstrap-based procedure to calculate prediction 
intervals for FARIMA processes. This latter method yields better results even if the 
innovation distribution is non-normal.  The main objective in this current paper is to 
introduce a bootstrapped-based prediction interval procedure for the FIGARCH model.  
 
The sections of the paper are organized as follows. First, we introduced the FIGARCH 
model and then its properties in the Section 2. Section 3 describes the residual based 
resampling technique and then in Section 4, Monte Carlo simulation results are reported. 
Section 5 presents an application of the proposed bootstrap-based prediction intervals for 
the FIGARCH model and conclusions are presented in Section 6. 
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2. The FIGARCH Model 
 
A real valued discrete time stochastic process  :t t   is said to be an ARCH (q) 

process, if 

 ,t t tz h   (1) 

 
with 

2
1

1

q

t i i
i

h    


  , 

 
where 0  and 0, 1,...,i i q   . In expression (1) it is assumed that, ( ) 0,tE z   

2var( ) 1t zz    and tz ’s are  uncorrelated. Thus, by the definition { }t  is an uncorrelated 

with mean zero process with conditional variance th , where the conditioning is done with 

respect to the field   1t  generated by the set of random variables  : 1 .kz k t    

The conditional variance is a linear function of squared residuals up to q lags implying a 
Markovian dependence.  The generalized version of ARCH (GARCH), introduced by 
Bollerslev (1986) gives more flexible structure compared to (1), with the conditional 
volatility th  given by, 

 

 2 2
1

1 1

( ) ( )
q p

t i i j t j t t
i j

h h L L h        
 

       , (2) 

                        
where 0, 0, 0, 0, 1,..., , 0, 1,..., ,i jp q i q j p          ( )L  and ( )L  are such that 

2
1 2( ) ... q

qL L L L        and 2
1 2( ) ... p

pL L L L       , with L signifying the 

lag (or backshift) operator.  The process defined in (2) is a stationary process and can be 
written as an ARMA (m, p) formulation in 2

t : 
 
 2[1 ( ) ( )] [1 ( )]t tL L L v         , (3) 

 

where max( ,  )m p q  and 2
t t tv h  . The process { }tv  can be shown to be 

uncorrelated and is interpreted as the innovations associated with the ARMA process.  The 
formulation in (3) is said to be an IGARCH model if the autoregressive polynomial 
contains a unit root. Therefore, autoregressive representation of IGARCH can be given as:  
 

2( )(1 ) [1 ( )]t tL L L v       , 
 

where 1( ) [1 ( ) ( )](1 )L L L L         is of order 1m .  
 
Several studies have reported the presence of long memory in the autocorrelations of 
squared returns in financial asset prices. Thus, Baillie et al. (1996) adapted the idea of 
fractional integration in conditional mean models (FARIMA) in order to develop a 
FIGARCH process.  The class of FARIMA ( ,  ,  )k d l  models for the discrete time real-

valued process { }ty  is defined as: 
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 ( )(1 ) ( )d
t ta L L y b L z   (4) 

 
where ( )a L  and ( )b L  are polynomials in the lag operators of orders k  and l  

respectively. Here, { }tz is an uncorrelated process with mean zero. The fractional 

integration parameter, ,d  lies between -0.5 and 0.5 for the stationary FARIMA model. 

The fractional differencing operator (1 )dL  has an infinite binomial expansion and can 
be written in terms of the hypergeometric function,  
 

1 1

0

(1 ) ( ,1,1; ) ( ) ( 1) ( ) ,d k

k

L F d L k d k d L


 



           

 
where (.)  denotes the Gamma function. Analogues to FARIMA ( ,  ,  )k d l  model for the 
mean process given in (4), Baillie et al. (1996) defined the FIGARCH model in the 
following manner:  
 
 2( )(1 ) [1 ( )]d

t tL L L v       , (5) 
 

where 0 1d  , and all the roots of ( )L  and [1 ( )]L  lie outside the unit circle.  
Rearranging the terms in (5), an alternative representation for FIGARCH ( ,  ,  )p d q  can be 
obtained as  
 
 2[1 ( )] [1 ( ) ( )(1 ) ]d

t tL h L L L          . (6) 
  

From (6), conditional variance of the { }t is obtained as:  
 

 
1 1 2

1 2

[1 (1)] {1 [1 ( )] ( )(1 ) }

   [1 (1)] ( )

d
t t

t

h L L L

L

    

   

 



     

  
, (7) 

 

where 
1

( ) .k
k

k

L L  




   For the FIGARCH (p, d, q) process given in equation (5) to be 

well-defined and the conditional variance in the ARCH( ) representation in  (7) to be 
positive, all the coefficient of ARCH representation in (7), must be non-negative. That is, 
each 0k  for .k   
 
From equation (7) the conditional variance of FIGARCH (1, d, 1) can be written as follows. 

 
 1 1 2

1 1 1(1 ) [1 (1 ) (1 )(1 ) ] ,d
t th L L             (8) 

where,  
1

1 1
1

( ) 1 [1 (1 ) (1 )(1 ) ]k d
k

k

L L L L   






       . 

 
Therefore, coefficients of the infinite ARCH model can be obtained by equating the 
coefficients of lag operator, thus obtaining: 
 
            1 1 1 ,d      
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             2 1 1 1( )( ) (1 ) / 2,d d d         
                          

 2
3 1 1 1 1 1 1 1(1 ) / 2 (1 ) / 2 (2 ) / 3 ,d d d d d d d                    

  
 1 1 1 , 1( 1 ) / ,  ,k k d kk d d k            

 
where 1

, , 1( 1 ) ,   d k d k k d k k  
     refer to the coefficients in the series expansion of  

(1 )dL , with ,0 ,11d dand d   . 

 
The FIGARCH formulation enables us to model a wide range of a conditional volatility 
models. When 0d  it becomes a GARCH (p, m)   process where max( ,  )m p q . 

Similarly, when 1d  with ( ) 0L  and ( ) 1L   FIGARCH becomes a regular IGARCH 
model. 
 
2.1 Non-negativity of the Conditional Variance 
For the non-negativity of the conditional variance of the FIGARCH, all k ’s should be 
positive. Baillie et al. (1996) derived set of sufficient conditions for the conditional 
variance to be non-negative. They are  1 10 d     and 10 1 2d    . We used these 
set of conditions in our study. Alternatively, Bollerslev and Mikkelsen (1996) state another 
set of sufficient inequality constraints 1 1 (2 ) / 3d d      and

 1 1 1 1(1 ) / 2 ( )d d d        .  The latter conditions introduced by Bollerslev and 

MIkkelsen (1996) are less restrictive than the former conditions introduced by Baillie et el. 
(1996).  Chung (1999) suggest another set of sufficient constraints given by 

1 10 1.d      Finally Conrad and Haag (2006) derived necessary and sufficient 

conditions for the non-negativity of the variance for the FIGARCH(p, d, q) for 2p  . 
According to their findings, conditional variance can be negative almost surely, even if all 
the original parameters of FIGARCH are positive and similarly conditional variance can 
be non-negative even if all the parameters are negative except d . They also derived 
sufficient conditions for non-negativity of variance for 2p  .   
 
2.2 Asymptotic Normality of the Parameters and the Stationarity of the Process 
Baillie et al. (1996) used a dominance type argument by extending the results available for 
IGARCH(1, 1), to claim the asymptotic normality of Q-MLEs of  FIGARCH(1, d, 0).  They 
did not proved it theoretically, but their empirical study, however, suggests that parameter 
estimates are asymptotically normal. Robinson and Zaffaroni (2006) established conditions 
for consistency and asymptotic normality of Q-MLEs for class of ARCH ( )  under some 
general conditions, which also covers the FIGARCH type processes. According to them 
strong consistency requires 0 1d   and asymptotic normality requires 0.5d  .  
 
By construction, FIGARCH with  t defined as in equation (1), has the properties that 

cov( , ) 0t t h    for 0h   and ( ) 0tE   . The hypergeometric function, ( ,  1,  1;  )F d u  

evaluated at 1u   is 0 for 0 1d   and thus (1) 1  . Therefore, for 0  the second 

moment of the  t  does not exist. The implication is that the FIGARCH process is not 

covariance stationary. Giraitis et el. (2018) established the necessary and sufficient 
conditions for the FIGARCH to be covariance stationary with 0  . Conrad and Haag, 
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(2006) suggest a way to obtain the covariance stationarity of  t  with 0 1d   by 

assuming 2 var( ) 1z tz   in (1).  However, it rules out long memory in 2
t , by indicating 

the absolute summability of auto-covariance function of 2
t , as shown in Zaffaroni (2004). 

 
3. Bootstrap Prediction Intervals 

 
In this section, we adopt the procedure proposed by Pascual et al. (2006) for the GARCH 
case to obtain prediction intervals for future values of returns generated by a FIGARCH 
process.  
 

1. Let   1

n

t t



be a sequence of realizations of a FIGARCH(1, d, 1) process. Then 

estimate the parameters of the model  1 1 1
ˆˆ ˆ ˆˆ( , , , )d     by using Quasi-Maximum 

Likelihood Estimation (Q-MLE) method.  

2. Compute the residuals ˆˆ , 1,...,t t tz h t n   where      
ˆ1 1 2

1 1 1

1 2 2 2
1 1 1 2 2

ˆ ˆ ˆ ˆˆ (1 ) [1 (1 ) (1 )(1 ) ]

ˆ ˆ ˆ ˆˆ   (1 ) ...

d
t t

t t k t k

h L L    

       

 


  

      

     
, 

and setting 2 1 2

1
,  for 1 ,..., 1,  0

n

t ii
n t k 


     . Note that k is a suitably 

chosen truncation lag of the polynomial ( )L .  

3. Compute the centered residuals ˆ ˆt t tz z z  , where 1

1
ˆ ˆ

n

t ii
z n z


  . 

4. Denote the empirical distribution function of the centered residuals by
1

( , ]1
ˆ ( ) ( )

n

z x tt
F x n I z


   . 

5. Draw a bootstrap sample with replacement from the above distribution and denote 
it by * ,tz where 1,... 1,0,1,...,t m n    .  

6. Generate the bootstrapped FIGARCH series * , 1,..., 1,0,1,...,t t m n      by first 

computing a bootstrapped conditional variance series, *
th  using the FIGARCH 

parameters estimated in Step 1.  Then use * * * , 1,..., 1,0,1,...,t t tz h t m n       to 

generate *
t . The non-positive lags represent ‘burn-in’ observations that are 

dropped to mitigate effects due to initial conditions.   
7. Estimate the FIGARCH parameters * * * * *( , , , )d    for the bootstrapped series

 *
t   using the Q-MLE method.  

8. Use the new coefficients * * * * *( , , , )d     obtained in the previous step, 
compute the h-step ahead bootstrap forecasts of future values based on the 
following recursions:  

** * * 1 * 1 * 2*
1 1 1

* * 1 * 2* * 2*
1 1 1

(1 ) [1 (1 ) (1 )(1 ) ]

      (1 ) ... ,

d
t h t h

t h k t h k

h L    

     

 
 


   

      

    
, 

* * *
t h t h t hz h    , for 0h   and *

t t  for .t n  

9. Obtain the estimated bootstrap distribution of t h  , denoted by *

*ˆ (.)
n h

F
 

, by 

repeating steps 5-8 B times  1000B  in the simulation study.  *

*ˆ (.)
n h

F
 

 is the 
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estimate of the *

* (.)
n h

F
 

, the bootstrap distribution function of *
t h  , which is used 

to approximate unknown distribution of t h   given the observed sample.  

10. The 100(1 )%  bootstrap prediction interval for t h  is then computed by 
* *[ ( / 2), (1 / 2)],Q Q   where *

* 1ˆ*(.)
t h

Q F
 

  are the percentiles of the estimated 

bootstrap distribution.  

4. The Simulation Study 
 
To investigate the finite sample performance of the proposed bootstrap prediction intervals 
of the FIGARCH model a Monte-Carlo simulation was carried out. The representations of 
 t given in Equations (1) and (8) were used to simulate the FIGARCH process.  This 

method become feasible due to the truncation of the infinite lag polynomial. The effect of 
the pre-sample values might have a higher impact than regular GARCH due to the long 
memory nature and the hyperbolic rate of decay of the response to a lagged squared 
innovation. Thus as suggested by Baillie et al. (1996), truncating lag was selected at k = 
1,000 to incorporate the long-run dependencies.  
 
The Monte-Carlo simulation study was carried out for different error distributions, namely 
standard normal and t with 7 degrees of freedom. Centered exponential distribution was 
also considered to investigate the effect due to non-symmetric error distributions. Series of 
lengths 500 and 1500 were used. The t-distributed errors were generated as

1/2 2 2 2 1/2
1, 2, 3, 8,5 ( ... )t t t t tz z z z z     by drawing independent and identically distributed 

standard normal ,i tz ’s for 1,2,...,8i  as employed in Baillie et al. (1996). Here t-distributed 

errors also have a unit standard deviation. When generating the realizations, the first 6,000 
were dropped to avoid the effects due to initial values.  
 
We considered FIGARCH(1, d, 0) and FIGARCH(1, d, 1) models to simulate the data with

0.1,   0.25,0.50,0.75,0.95d  ,  0,0.2  and  0.10,0.20,0.45,0.70,0.90  . 

Note that out of these sets of parameter combinations, we only used the combinations 
which satisfied the sufficient conditions for non-negativity of the variance suggested by 
Baillie et al. (1996). For each combination of the model, sample size, nominal coverage 
probability and error distributions, N = 500 independent time series were generated. Then 
bootstrap steps 1 through 10 were implemented. In each simulation R = 1,000 future values, 
 ,  1,  10,  20t h h   were generated. We estimated the coverage probabilities by 

calculating the proportion of those t h   values falling between the lower and upper bounds 

of the bootstrap intervals. Therefore, the coverage for the ith simulation run is given by 
1

1
( ) [ ( )]

R r
A n hr

C i R I i


   where * *[ ( / 2), (1 / 2)]A Q Q    is the 100(1 )th   

bootstrapped prediction interval. (.)AI  is the indicator function of the set A and 

( ), 1,  2,...,1000r
n h i r   are the R future values generated at ith simulation run. The 

theoretical and bootstrap lengths are obtained by using ( ) (1 / 2) ( / 2)r r
T n h n hL i       

and * *( ) (1 / 2) ( / 2)BL i Q Q     respectively. ( )TL i is the difference between 

100(1 )th  and the 100( / 2)th  percentiles generated from R future values of the 
underling model with known order and the coefficients.  The mean coverage, mean 
bootstrapped prediction intervals, mean theoretical intervals and their standard errors are 
calculated as follows: 
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   Mean coverage 1

1
( )

N

i
C N C i


  , 

 

   Standard error of mean coverage  1/2
1 2

1
[ ( 1)] [ ( ) ] ,

N

C i
SE N N C i C


    

 

   Mean length (bootstrap) 1

1
( )

N

B Bi
L N L i


  , 

 

   Standard error of mean length 1 1/2

1
{[ ( 1)] [ ( ) ]}

B

B

B BL i
SE N N L i L


   , 

 

   Mean theoretical length 1

1
( )

N

T Ti
L N L i


  . 

 
We investigated the type of model, nominal coverage probability, effect of the bootstrap 
truncation lag on coverage probabilities and error distribution in this simulation study. We 
report the mean coverage, mean bootstrap length, mean theoretical length, standard error 
of mean coverage and standard error of mean bootstrap interval length in Tables 1-6 for 
standard normal, centered exponential and t-distributed innovations. Due to the space 
limitation we only report the behavior of 95% intervals. The minimum value, percentiles 
(25th, 50th, 75th), and maximum value of the (a) coverage probabilities, (b) the bootstrap 
interval bounds (upper and lower), and (c) the theoretical interval bounds (upper and 
lower), were computed for further investigation and results are available upon request.  
 
Simulation results shows that the coverage probabilities are close to the nominal value for 
the normal and the t error distributions. The maximum and minimum coverage probabilities 
obtained using the centered and skewed exponential error distribution is 0.9323 and 0.9152 
for FIGARCH(1, d, 1) with parameters 0.1,  0.2, 0.5,  0.45d      and

0.1,  0, 0.90,  0.20d       respectively.     In most cases, the bootstrap lengths are 
less than the theoretical lengths when using the exponential error distribution as the 
distribution of the innovations. Note that the coverage probabilities get closer to the 
nominal value with increasing sample size n . However, the coverage probabilities decrease 
as sample size n increases for the first lag ahead prediction intervals for FIGARCH with 
exponentially distributed errors. In some cases, the coverage probabilities exceed 0.95 with 
for normal error distributions but stays close to 0.95. 
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Table 1: Coverage of 95% intervals for returns of FIGARCH (1, d, 1) with parameters
0.1,  0.2, 0.5,  0.45d      . 

Error 
Distribution 

Lead 
Lag 

Sample 
size 

Theoretical 
Length 

Mean Coverage 
(SE) 

Mean Length 
(SE) 

 1 500 8.1905 0.9461(0.0009) 8.2818(0.2939) 
  1500 8.1903 0.9497(0.0006) 8.2944(0.2811) 
Normal 10 500 8.6422 0.9469(0.0010) 9.0641(0.3183) 
  1500 8.6663 0.9512(0.0007) 9.0090(0.2768) 
 20 500 8.8115 0.9470(0.0011) 9.4244(0.3359) 
  1500 8.8575 0.9505(0.0008) 9.2691(0.2779) 
 1 500 7.6244 0.9474(0.0009) 7.8025(0.4926) 
  1500 7.5827 0.9498(0.0006) 7.7746(0.5022) 
t-distr. 10 500 7.9347 0.9469(0.0010) 8.3669(0.4723) 
  1500 7.9246 0.9509(0.0007) 8.3218(0.4889) 
 20 500 7.9947 0.9463(0.0010) 8.4857(0.4054) 
  1500 8.0138 0.9507(0.0007) 8.4643(0.4441) 
 1 500 5.8465 0.9323(0.0017) 5.9865(0.3607) 
  1500 5.7658 0.9233(0.0013) 5.8585(0.3405) 
Exponential 10 500 6.6978 0.9288(0.0015) 6.7201(0.3967) 
  1500 6.5921 0.9323(0.0010) 6.5628(0.3796) 
 20 500 7.1692 0.9201(0.0017) 6.9116(0.4066) 
  1500 7.1493 0.9260(0.0012) 6.8082(0.4021) 

 
 

Table 2: Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with parameters
0.1,  0, 0.95,  0.90d      . 

Error 
Distribution 

Lead 
Lag 

Sample 
size 

Theoretical 
Length 

Mean Coverage 
(SE) 

Mean Length 
(SE) 

 1 500 25.9854 0.9534(0.0008) 27.6606(1.3980) 
  1500 26.1125 0.9501(0.0006) 26.5303(1.3412) 
Normal 10 500 26.5898 0.9536(0.0008) 28.5965(1.4415) 
  1500 26.6335 0.9531(0.0006) 27.5410(1.3812) 
 20 500 27.1725 0.9532(0.0010) 29.7758(1.5132) 
  1500 27.0818 0.9524(0.0007) 28.3302(1.4279) 
 1 500 20.6721 0.9486(0.0010) 21.4025(1.2036) 
  1500 20.7467 0.9508(0.0008) 21.3077(1.2124) 
t-distr. 10 500 21.3153 0.9487(0.0012) 22.5039(1.2251) 
  1500 21.2706 0.9532(0.0008) 22.3004(1.2043) 
 20 500 21.8511 0.9457(0.0013) 23.3292(1.2928) 
  1500 21.8165 0.9526(0.0009) 22.9700(1.2512) 
 1 500 15.8917 0.9293(0.0026) 17.6120(1.5387) 
  1500 15.8112 0.9161(0.0019) 15.9343(1.0250) 
Exponential 10 500 16.8619 0.9303(0.0026) 19.9510(2.1806) 
  1500 16.7916 0.9281(0.0019) 17.0831(1.0305) 
 20 500 17.9403 0.9231(0.0030) 20.3512(2.0408) 
  1500 17.9274 0.9239(0.0019) 17.9405(1.0916) 
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Table 3: Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with parameters
0.1,  0, 0.75,  0.70d      . 

Error 
Distribution 

Lead 
Lag 

Sample 
size 

Theoretical 
Length 

Mean Coverage 
(SE) 

Mean Length 
(SE) 

 1 500 13.2671 0.9491(0.0007) 13.8925(0.7439) 
  1500 13.2930 0.9501(0.0006) 13.4264(0.5524) 
Normal 10 500 13.8338 0.9481(0.0008) 15.2424(1.2033) 
  1500 13.9054 0.9497(0.0006) 14.2174(0.5706) 
 20 500 14.4422 0.9449(0.0009) 15.8803(1.2403) 
  1500 14.4339 0.9485(0.0007) 14.8183(0.5847) 
 1 500 10.8616 0.9485(0.0008) 11.1432(0.5269) 
  1500 10.9049 0.9489(0.0006) 10.9673(0.5326) 
t-distr. 10 500 11.4262 0.9471(0.0009) 11.8891(0.5807) 
  1500 11.4571 0.9488(0.0006) 11.6543(0.5529) 
 20 500 11.8185 0.9439(0.0011) 12.4003(0.6218) 
  1500 11.8646 0.9484(0.0008) 12.2426(0.5672) 
 1 500 7.9757 0.9285(0.0017) 8.2022(0.3805) 
  1500 8.0198 0.9192(0.0012) 7.9749(0.3611) 
Exponential 10 500 8.9596 0.9270(0.0016) 9.1761(0.4263) 
  1500 8.9336 0.9294(0.0009) 8.8358(0.3836) 
 20 500 9.7919 0.9182(0.0017) 9.6466(0.4415) 
  1500 9.8457 0.9227(0.0010) 9.3081(0.3911) 

 
 

Table 4: Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with parameters
0.1,  0, 0.50,  0.45d      . 

Error 
Distribution 

Lead 
Lag 

Sample 
size 

Theoretical 
Length 

Mean Coverage 
(SE) 

Mean Length 
(SE) 

 1 500 7.9073 0.9473(0.0008) 7.9823(0.1876) 
  1500 7.8858 0.9502(0.0006) 7.9990(0.1850) 
Normal 10 500 8.1986 0.9454(0.0008) 8.2987(0.1891) 
  1500 8.2050 0.9500(0.0006) 8.3757(0.1860) 
 20 500 8.3429 0.9439(0.0009) 8.4755(0.1935) 
  1500 8.3903 0.9499(0.0007) 8.6508(0.1934) 
 1 500 7.1895 0.9471(0.0008) 7.2403(0.2194) 
  1500 7.1786 0.9498(0.0006) 7.2885(0.2232) 
t-distr. 10 500 7.4466 0.9456(0.0008) 7.5572(0.2230) 
  1500 7.4454 0.9510(0.0006) 7.7070(0.2236) 
 20 500 7.5879 0.9442(0.0009) 7.7584(0.2298) 
  1500 7.6092 0.9501(0.0007) 7.9539(0.2382) 
 1 500 6.4551 0.9275(0.0015) 6.6834(0.3427) 
  1500 6.4130 0.9218(0.0012) 6.5304(0.3274) 
Exponential 10 500 7.0325 0.9265(0.0014) 7.2449(0.3888) 
  1500 7.0402 0.9298(0.0010) 7.1873(0.3633) 
 20 500 7.4848 0.9196(0.0015) 7.5463(0.4163) 
  1500 7.4890 0.9266(0.0011) 7.4951(0.3780) 
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Table 5: Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with parameters
0.1,  0, 0.25,  0.10d      . 

Error 
Distribution 

Lead 
Lag 

Sample 
size 

Theoretical 
Length 

Mean Coverage 
(SE) 

Mean Length 
(SE) 

 1 500 3.1390 0.9430(0.0008) 3.0863(0.0327) 
  1500 3.1411 0.9491(0.0005) 3.1521(0.0325) 
Normal 10 500 3.2306 0.9419(0.0008) 3.1765(0.0282) 
  1500 3.2317 0.9483(0.0005) 3.2347(0.0237) 
 20 500 3.2541 0.9414(0.0008) 3.1900(0.0274) 
  1500 3.2536 0.9474(0.0006) 3.2511(0.0224) 
 1 500 3.1927 0.9467(0.0008) 3.2160(0.0483) 
  1500 3.1950 0.9499(0.0006) 3.2367(0.0450) 
t-distr. 10 500 3.2907 0.9456(0.0008) 3.3061(0.0399) 
  1500 3.2815 0.9499(0.0006) 3.3333(0.0339) 
 20 500 3.3009 0.9460(0.0008) 3.3363(0.0385) 
  1500 3.3133 0.9492(0.0006) 3.3497(0.0310) 
 1 500 2.8655 0.9220(0.0016) 2.8812(0.0652) 
  1500 2.8638 0.9182(0.0011) 2.8692(0.0599) 
Exponential 10 500 3.0639 0.9213(0.0014) 3.0363(0.0575) 
  1500 3.0727 0.9249(0.0010) 3.0160(0.0446) 
 20 500 3.1488 0.9169(0.0016) 3.0886(0.0537) 
  1500 3.1422 0.9226(0.0011) 3.0755(0.0423) 

 
 

Table 6: Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with parameters
0.1,  0, 0.90,  0.20d      . 

Error 
Distribution 

Lead 
Lag 

Sample 
size 

Theoretical 
Length 

Mean Coverage 
(SE) 

Mean Length 
(SE) 

 1 500 3.6046 0.9473(0.0008) 3.6046(0.1541) 
  1500 3.6015 0.9485(0.0006) 3.6149(0.1578) 
Normal 10 500 4.6455 0.9458(0.0009) 4.6233(0.1121) 
  1500 4.6360 0.9482(0.0006) 4.6596(0.1123) 
 20 500 4.6782 0.9458(0.0009) 4.7088(0.0777) 
  1500 4.6751 0.9483(0.0006) 4.7232(0.0778) 
 1 500 3.2863 0.9480(0.0008) 3.3085(0.1165) 
  1500 3.2829 0.9489(0.0006) 3.2998(0.1162) 
t-distr. 10 500 3.9776 0.9469(0.0008) 4.0044(0.0709) 
  1500 3.9719 0.9481(0.0006) 3.9796(0.0615) 
 20 500 3.9918 0.9467(0.0009) 4.0618(0.0594) 
  1500 4.0188 0.9473(0.0006) 3.9977(0.0417) 
 1 500 2.6625 0.9216(0.0017) 2.6375(0.0999) 
  1500 2.6571 0.9152(0.0012) 2.6468(0.0964) 
Exponential 10 500 3.8349 0.9243(0.0011) 3.3212(0.0814) 
  1500 3.8152 0.9297(0.0007) 3.3148(0.0637) 
 20 500 4.3817 0.9159(0.0012) 3.3669(0.0666) 
  1500 4.3714 0.9196(0.0008) 3.3062(0.0397) 
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5. Application to a Real Data Set 
 
The proposed method was applied to S&P 500 return data from November 5, 2010 through 
May 2, 2018, for a total of 2201 observations. Data was obtained from the website 
https://finance.yahoo.com. Following standard practice, daily percentage returns of closing 
prices i.e. 1100.log( / )t t tr s s  for 2,3,..., 2201t    were used. Here ts denotes the closing 

price at day t. The following figure shows one-step ahead bootstrap prediction interval 
(95%) for S&P 500 returns.  

 
Figure 1: One-step ahead prediction intervals for S&P 500 data 

 
Table 7: Estimated coverage probabilities for future returns 

Lag ahead Coverage 

1 0.9600 
10 0.9424 
20 0.9227 

 
 

6. Conclusion 
 
In this paper we adopt the procedure proposed by Pascual et al. (2006) to construct 
bootstrap prediction intervals for GARCH realizations. Finite sample properties were 
investigated using a Monte-Carlo simulation study.  In this study it is assumed the order of 
the FIGARCH process is known. This is not a great limitation because in most empirical 
modeling situations researchers have found that a GARCH process with orders p=q=1 
would suffice. Extending this argument, one would assume that FIGARCH (1, d, 1) would 
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suffice in most cases, as was demonstrated in our example with S&P 500 data. Simulation 
study shows that the proposed bootstrap-based prediction intervals perform well. The 
coverage probabilities obtained in the simulation study are close to the nominal values for 
symmetric error distributions, under varying sample sizes and parameter combinations.  
Further extension of obtaining prediction intervals for models such as Autoregressive-
FIGARCH, FARIMA-FIGARCH using sieve bootstrap method is currently ongoing.  
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