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Abstract 

In precision medicine, vast amounts of naturally occurring data are used to derive evidence-
based knowledge. Recognizing distinct trajectories, identifying potential predictors, and 
making data-driven decisions are areas of growing interest. Mixture-based mixed effects 
models, implemented mainly in R and Mplus are useful for this. While theoretically sound, 
these approaches often fail to fully address the problem due to computational complexities. 
Linear mixed effects models ballpark curves of irregularly spaced longitudinal data with 
optimum precision. Random effects (REs), assumed to be distributed as multivariate 
normal (MVN), vary across individuals accounting for sources of heterogeneity. To 
identify presence of subgroups, we apply post-hoc Gaussian finite mixtures on empirical 
BLUPs assuming a mixture of MVN of REs to classify trajectories. Resulting ellipsoids 
can vary by center or by features- size, volume and orientation that are determined by 
eigenvalue decomposition of covariance matrix. This study used simulations to extend 
previous application of real data to evaluate the classification performance of this method 
compared with that of existing methods. 

Keywords: Classification; irregular spaced time; trajectories; linear mixed model; 
heterogeneous; mixture distribution of random effects 
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1. Background and Motivation:  

Recognizing presence of subgroups with heterogeneous trajectories in longitudinal data, 
identifying potential contributors to varying trends, and utilizing this data-driven 
knowledge to make decisions are areas of growing research interest in this data science era 
(Jung et al. 2008, Arminger et al. 2013). In learning healthcare systems and personalized 
as well as precision medical decisions, massive amounts of naturally occurring longitudinal 
data are utilized to derive evidence-based knowledge by accounting for individual-level 
variations and recognizing distinct patterns of health and disease trajectories with the goal 
of facilitating precise diagnosis, appropriate strategies for prevention, and tailored 
treatment of health conditions (Jha et al. 2009, Wei et al. 2015).  

While naturally occurring data such as electronic medical records have shown great utility 
in learning healthcare systems and personalized medical decisions, observation times in 
these datasets are often irregularly spaced as patients make clinic visits idiosyncratically, 
thereby producing unique sequences of measurements across individuals. The repeated 
measures of this type are often expressed as parametric or semiparametric functions of time 
and are described by levels and shapes of the curves. Linear mixed effects regressions 
model these data as a combination of population temporal trend that is shared by all 
individuals and subject-specific effects that describe how the trend over time of each 
individual differs from the population mean trend (Laird et al. 1982). The former are the 
fixed effects and the later are the random effects in the model. The random effects vary 
from one individual to another, thereby accounting for sources of heterogeneity in 
trajectories across individuals (Fitzmaurice et al. 2012, Garrett et el. 2000). The inclusion 
of time as random effects in the model allows us to express the covariance of repeated 
measures as a function of time. In the general form of the mixed effect model, random 
effects are assumed to be distributed as multivariate normal with mean 0 and constant 
variance-covariance matrix. This distributional assumption of the random effects implies 
that individual-level trajectories are homogeneous in shapes, thus the model under this 
assumption can be termed as a homogeneous linear mixed effects model. If the dataset 
contains heterogeneous individual-level trajectories, the above homogeneity assumption 
could be violated and the distribution of random effects could be expressed as the joint 
distribution of heterogeneous subgroups each with multivariate distribution with different 
parameters. With this violation, averaging over curves of heterogeneous shapes may result 
in missing important features of trajectories for individuals across heterogeneous 
subgroups causing misrepresentation of model fit. Therefore, it is important to identify 
potential hidden subgroups of individuals with distinct trajectories that may exist in a 
dataset. This requires appropriate capturing of the heterogeneity in levels and shapes of 
trajectories across individuals.  

Verbeke et al  (1996) introduced a heterogeneous linear mixed effects model where random 
coefficients were assumed to have a mixture of normals distribution. The method was 
implemented in a SAS macro (Komárek et al. 2002), but the EM algorithm used was found 
to be computationally expensive and failed to provide good convergence criteria and direct 
estimates of the variance of the parameters. Proust-Lima et al (2017) recently extended the 
model of Verbeke et al by expressing mixture component-specific fixed and random 
effects. This extended model was implemented in R package ‘lcmm’. The package used 
Marquardt algorithm in order to minimize the EM-algorithm related limitations found in 
Verbeke’s method. Immediately following Verbeke et al, Muthen et al (1999) introduced 
a similar method that combines multilevel mixed effects and mixture models and 
implemented the software Mplus. Muthen’s method gained wide popularity as the growth 
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mixture model (GMM) and Mplus has been widely used, especially in the psychometric 
and socio-behavioral studies, for over a decade in classification of longitudinal data. Both 
of these methods are built on the same concept: specifically, the combination of linear 
mixed effects and mixture models and both methods have some inherent limitations. The 
method becomes mathematically and computationally complex fairly quickly. 
Computation time increases with sample size, degree of unbalancedness, complexity of the 
parametric curve, and number of random effects. The method requires pre-specification of 
the number of subgroups and typically uses information criteria (e.g., BIC) for the selection 
of number of classes, but definitive determination is exploratory. Log-likelihood functions 
may have local maxima; therefore, a careful choice of the initial values is crucial for 
ensuring convergence toward the global maxima. In Mplus, the programming structure 
lends itself to the situation of limited number of repeated observations per subject at a 
common set of measurement occasions across individuals. For computational feasibility, 
observations may need to be thinned and aligned to a common set of time points. In the R 
lcmm package, the algorithm may reach the highest number of iterations without 
convergence. Another serious limitation is that the methods are unavailable in mainstream 
statistical software packages other than R and Mplus. Taken together, it seems that 
although theoretically sound, methods implemented in R and Mplus do not fully resolve 
the problem of clustering unbalanced longitudinal data because of the computational 
complexities. In a recent application, we have determined that application of post-hoc finite 
mixture models to the empirical best linear unbiased predictor (eBLUP) from linear or 
piecewise linear mixed effects model can reasonably classify heterogeneous trajectories of 
hidden components in distinct subgroups. Theoretical ground of this functionality is 
obvious as vectors of BLUPs account for the heterogeneities in shapes across individual-
level trajectories, and mixture models classify individuals based on these heterogeneities 
(Hossain 2016). In an application on the real data, the method produced more convincing 
results in classifying distinct trajectories of early childhood growth patterns in 5 datasets 
of consisting of 2-3 components of linear, quadratic and cubic trends with varying level of 
separability than that of using HLME and GMM (Hossain et al, 2019). Following the 
internal validation of cluster evaluation, in this study, we used classifications of each 
method and component-based fitted piecewise linear mixed effects model to simulate 200 
copies for each of the above 5 datasets of early childhood growth patterns to assess the 
agreement between classification of real and simulated data for each method.   

2. Overview of heterogeneous linear mixed effects model: The general form of the linear 
mixed effects model is,  𝑌𝑖 =  𝑋𝑖𝛽 + 𝑍𝑖𝑏𝑖 + 𝜖𝑖,  𝑖 = 1,2, . . , 𝑁; where, 𝛽 is the vector of 
fixed effects that describes the shapes of average trajectories over all individuals under 
study; 𝑏𝑖~𝑀𝑁(0, 𝐷) is the vector of random coefficients related to the 𝑖𝑡ℎ subject; 
𝜖𝑖~𝑀𝑁(0, 𝑅𝑖) is the vector of measurement or sampling errors associated with the 
responses of the 𝑖𝑡ℎ subject. Vectors 𝑏𝑖 and 𝜖𝑖 are assumed to be independent. The 
distributional assumption of 𝑏𝑖 implies that individual-level trajectories are homogeneous 
in shapes, thus the model under this assumption is termed as homogeneous linear mixed 
effects model. Under this form of the model, 𝑌𝑖~𝑀𝑁(𝑋𝑖𝛽,  𝑍′𝑖𝐷𝑍𝑖 + 𝜎2𝐼 = 𝑉𝑖)  and the 
empirical best linear unbiased predictor (BLUP) of random coefficients for given data (𝑌𝑖) 
is, 𝑏�̂� = �̂�(𝑏𝑖|𝑌𝑖) = �̂� 𝑍′𝑖�̂�𝑖

−1(𝑌𝑖 − 𝑋𝑖�̂�). This normality assumption of 𝑏𝑖, 𝑖 = 1,2, . . 𝑛;  
could be violated in presence of the hidden subgroups or heterogeneous shapes of 
individual trajectories. In case of the presence of subgroups in shapes of trajectories, 
Verbeke et al (1996) suggested a Gaussian mixture distribution of 𝑏𝑖 as 
𝑏𝑖~ ∑ 𝜋𝑔

𝐺
𝑔=1 𝑀𝑁(𝜇𝑔, 𝐷) with 𝜋𝑔 is the component probability, 𝑔 = 1,2, … 𝐺, 𝜇𝑔 is the 

component specific mean and 𝐷 is the common variance-covariance matrix. Then the 
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covariance matrix of 𝑏𝑖, 𝐷∗ = 𝐷 + ∑ 𝜋𝑔𝜇𝑔𝜇𝑔
′𝐺

𝑔=1 − ∑ ∑ 𝜋𝑙𝜋𝑔 𝜇𝑙𝜇𝑔
′𝐺

𝑔=1
𝐺
𝑙=1 , and the 

distribution of  𝑌𝑖~∑ 𝜋𝑔
𝐺
𝑔=1 𝑀𝑁(𝑋𝑖𝛽 + 𝑍𝑖𝜇𝑔,  𝑉𝑖). It is obvious that a restriction of 

∑ 𝜋𝑔𝜇𝑔 = 0,𝐺
𝑔=1  makes 𝐸(𝑌𝑖) = 𝑋𝑖𝛽 which is the mean trajectories under homogeneous 

model. Under the mixture model, the expression of the empirical BLUP becomes 
𝑏�̂� = 𝐸(𝑏𝑖|𝑌𝑖, 𝜑)́ = �̂� 𝑍′𝑖�̂�𝑖

−1(𝑌𝑖 − 𝑋𝑖�̂�) + 𝐴𝑖 ∑ 𝜋𝑖𝑔 (𝜑)𝜇𝑔
𝐺
𝑔=1 ; where 𝐴𝑖 = 𝐼 −

𝐷𝑍𝑖
′𝑉𝑖

−1𝑍𝑖; 𝜃 is the vector of parameters of 𝛽,  𝜎,  𝐷 and 𝑉𝑖, and  𝜋𝑖𝑔 = 𝑖𝑔(𝜑) =
𝜋𝑔𝑓(𝑌𝑖|𝜃)

∑ 𝜋𝑔 𝐺
𝑔=1 𝑓(𝑌𝑖|𝜃)

 ; 𝜑′=(𝜋′,  𝜃′) is the posterior probability for the 𝑖𝑡ℎ individual to belong to 

the 𝑔𝑡ℎ component of the mixture. The second part of the expression of 𝑏�̂�
́  is the correction 

term toward the component means, proportional to the posterior probability of belonging 
to each component. The model described above is referred to as the heterogeneous mixed 
effects model and has been used for the classification of longitudinal data (Verbeeke, 
1996). Proust-Lima et al. (2017) defined an extension of this model in which both fixed 
and random effects can be mixture component specific with  𝑏𝑖~ ∑ 𝜋𝑔

𝐺
𝑔=1 𝑀𝑁𝑉(𝜇𝑔 , 𝐷𝑔); 

𝐷𝑔 = 𝑤𝑔𝐷,   where  𝑤𝑔 is the class-specific intensity of individual variability. They also 
replaced EM algorithm by Marquardt algorithm to improve computational efficiency and 
implemented to minimize the EM algorithm-related limitations; and implemented in the R 
package ‘lcmm’.  

Immediate following Verbeeke et al introduced to HLME model, Muthen et al (1999) 
expanded the concept through latent variable mixed effects models from the structural 
equation modeling approach and accommodated many linear and nonlinear mean functions 
over time. The method was implemented in Mplus and received popularity as growth 
mixture model (GMM).  

For a simple linear growth curve implemented in Mplus, Muthen et al described the 
responses of 𝑖𝑡ℎ individual who belongs to latent class 𝑐𝑖 = 𝑔 as  

𝑌𝑖𝑗|𝑐𝑖=𝑔 = 𝜂0𝑖 +  𝜂1𝑖𝑡𝑖𝑗 + 𝜖𝑖𝑗 

𝜂𝑘𝑖|𝑐𝑖=𝑔 = 𝛼𝑘𝑔 +  𝛾𝑘𝑔𝑥𝑖 + 𝜉𝑘𝑖, 𝑘 = 0, 1 

where 0 i  and 1 i are random intercepts and slopes,  𝛼0𝑔 and 𝛼1𝑔are the average intercept 
and slope of time varying variables, 𝛾0𝑔 and 𝛾1𝑔intercepts and slopes of time invariant 
variables associated with latent class g, and 𝑐𝑖 is the latent categorical random variable with 
probability of the unobserved class membership of the 𝑖𝑡ℎ subject,   Pr(𝑐𝑖 = 𝑔) = 𝜋𝑖𝑔. 
This probability follows the multinomial logistic regression with respect to time invariant 
covariates 𝑋𝑐𝑖 associated with 𝑖𝑡ℎ subject as 

𝜋𝑖𝑔 = 𝑃(𝑐𝑖 = 𝑔|𝑋𝑐𝑖) =  
𝑒𝛾0𝑔+ 𝑋𝑐𝑖

𝑇 𝛾1𝑔 

∑ 𝑒𝛾0𝑙+ 𝑋𝑐𝑖
𝑇 𝛾1𝑙 𝐺

𝑙=1

 , 𝜋𝑖𝑔 ≥ 0. 

To obtain the desired clustering given a pre-specified number of classes, subjects can be 
assigned to their most likely class based on the posterior probabilities of class membership 
as,  

𝑃(𝑐𝑖 = 𝑔|𝑋𝑐𝑖, 𝑌𝑖) =  
𝜋𝑖𝑔𝑃(𝑌𝑖|𝑐𝑖 = 𝑔)

∑ 𝜋𝑖𝑙𝑃(𝑌𝑖|𝑐𝑖 = 𝑙)𝐺
𝑙=1

. 
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Model parameters are estimated using an EM algorithm from the likelihood function of 
mixture distributions for a given pre-specified number of classes. An overview of the 
model framework and estimation procedure is available in a book of Taylor & Francis 
Groups book’s “Longitudinal Data Analysis” (edited by G Fitzmaurice, M Davidian, G 
Verbeke, G Molenberghs). 

3. Post-hoc Mixture Modeling of BLUPs: This method is built on capturing the 
heterogeneity in individual trajectories through the empirical BLUP (eBLUP) from the fit 
of a suitable linear mixed effects model and then applying the conventional mixture model 
on the fitted eBLUP as a post-hoc analysis. Fixed effects in the linear mixed effects model 
describe the shape of the average trajectories over all individuals under study and the 
random coefficients explain the heterogeneity between trends in average and individual 
trajectories. Thus, the random coefficients convey heterogeneities across trajectories of all 
individuals respective to the shape of average trajectory. For individuals with trajectories 
of similar shapes would be expected to have similar pattern in heterogeneities, and thereby 
could safely be used as a primary sources of information for classification of trajectories. 
Without loss of generality fixed effects can be ignored for this purpose.  Under the general 
form of linear mixed effects model, the random coefficients 𝑏𝑖, 𝑖 = 1,2, . . 𝑛,   are normally 
distributed,  𝑏𝑖~𝑀𝑁(0, 𝐷). This distributional assumption is not appropriate when there 
exist distinct subgroups of individual-level trajectories. Mixture model, a model-based 
cluster analysis technique, that assumes the distribution of the dataset under consideration 
of analysis as the mixture of several distributions could appropriately be used to identify 
subpopulations or distinct components of individual-level trajectories. Under this 
technique, the components are modeled separately, typically using the same parametric 
density family, and the overall population is modeled as a mixture or weighted sum of these 
subpopulations, using finite mixture models (Raftery & Dean, 2006). Gaussian mixture 
model is a particular case of mixture models when components are multivariate normal 
with different sets of parameters. Assuming a fixed number of 𝐺 mixture components, 
𝑏𝑖|𝑘𝑖 = 𝑘 ~𝑀𝑁(𝛾𝑘 ,  𝐷𝑘), and the marginal distribution of 𝑏𝑖 can be given as 𝑓(𝑏𝑖) =
∑ 𝑓(𝐺

𝑘=1 𝑏𝑖, 𝑘𝑖 = 𝑘) = ∑ 𝑓(𝑏𝑖|𝑘𝑖 = 𝑘)𝑃(𝑘𝑖 = 𝑘)𝐺
𝑘=1  = ∑ 𝜋𝑘𝑓(𝑏𝑖|𝑘𝑖 = 𝑘) =𝐺

𝑘=1

∑ 𝜋𝑘
𝐺
𝑘=1 𝑀𝑁(𝛾𝑘 ,  𝐷𝑘), where, 𝜋𝑘 is the mixing weight or proportion of the population of 

the 𝑘𝑡ℎ group with ∑ 𝜋𝑘
𝐺
𝑘=1 = 1, The likelihood function of 𝜃 = (𝛾1, …𝛾𝐺, 𝐷1, … 𝐷𝐺, 

𝜋1… 𝜋𝐺−1) for given 𝑏𝑖 is 𝐿(𝜃|𝑏1, 𝑏2, …. 𝑏𝑛) = ∐ ∑ 𝜋𝑘
𝐺
𝑘=1 𝑀𝑁(𝑏𝑖; 𝛾𝑘 ,  𝐷𝑘)𝑛

𝑖=1 . In reality, 
we observe data 𝑌𝑖, not 𝑏𝑖. However, we use the empirical BLUP of 𝑏𝑖 for given 𝑌𝑖. That 
is, we use 𝑏�̂� = �̂�(𝑏𝑖|𝑌𝑖) = �̂� 𝑍′𝑖�̂�𝑖

−1(𝑌𝑖 − 𝑋𝑖�̂�) as data for classification. Then the task of 
partitioning or clustering become that of estimating the parameters of the vector 𝜃 and the 
posterior probability of cluster membership  (Banfield et al. 1993; Everitt et al., 2001) by 
maximizing the log transformed above likelihood function (Dempster 1977). As the 
multivariate normal distribution are characterized by mean vector and covariance matrix, 
clusters or components are ellipsoidal, centered at the mean vector 𝜇𝑘, and with other 
geometric features, such as volume, shape and orientation, determined by eigen 
decomposition of the covariance matrix ∑𝑘. The covariance matrix of 𝑏𝑖 can be 
decomposed as an eigen-decomposition through following parsimonious 
parameterisations, Σ𝑘 = 𝜆𝑘𝐴𝑘𝐷𝑘𝐴𝑘, where, 𝜆𝑘 is a scalar, the largest eigenvalue of Σ𝑘 , that 
controls the volume of the ellipsoid  of the corresponding cluster,  𝐷𝑘 is a diagonal matrix 
that specifies the shape of the density contours with det(𝐷𝑘) = 1, and 𝐴𝑘 is an orthogonal 
matrix which determines the orientation of the corresponding ellipsoid (Banfield et al. 
1993; Celeux et al, 1995). The volume, shape, and orientation can be constrained to be 
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equal or variable across groups, and thereby, 18 possible models with different geometric 
characteristics can be specified (Fraley et al. 2016). We have used R package mclust 
version 5 for Gaussian mixture analysis. (Scrucca et al. 2016). A total of eighteen  models 
are analyzed simultaneously by the mclust software for one through nine clusters (this 
default can be increased or decreased), and each model is compared against others using 
the Bayesian Information Criterion (BIC) as internal validation of this cluster analysis. If 
the best fitting model indicates one cluster, then the dataset is multivariate normal and does 
not contain a mixture of heterogeneous subpopulations. Besides internal validation of 
classification, we also used standard methods of external validation of classification 
problem. Specifically, we assessed the level of agreement between the classification of 
original data and classifications of 200 simulated datasets using distribution of mixing 
components and mixing properties.   

4. Classification Indices and External Validation of Classifications: 

This study assessed the agreement between classifications of real and 200 simulated 
datasets for each method for each of the five datasets. Six standard external validation 
methods have been used in this study to evaluate the agreement between real and simulated 
data.  

i. Agreement Proportion between Classification Vectors: Calculates the agreement 
proportion between two classification vectors.  The value of this index ranges 
between 0 to 1, with 1 indicating perfect agreement. 

ii. Variation of Information (VarInf) in Two Partitioning Vectors: This is also known 
as shared information index, and is a measure of the distance between two 
clusterings. Suppose, 𝑐1 and 𝑐2 are two classifications, then VarInf, 𝑉𝐼(𝑐1, 𝑐2) =
𝐻(𝑐1) + 𝐻(𝑐2) − 2𝐼(𝑐1, 𝑐2), where, 𝐻(𝑐𝑖) is the entropy associated with 𝑐𝑖 

defined as 𝐻(𝑐𝑖) = − ∑
𝑛𝑘

(𝑖)

𝑛
𝑙𝑜𝑔

𝑛𝑘
(𝑖)

𝑛
𝐾(𝑖)

𝑘=1  and 𝐼(𝑐1, 𝑐2) = ∑ ∑
𝑛𝑘𝑟

𝑛
𝑙𝑜𝑔

𝑛𝑘𝑟𝑛

𝑛𝑘
(1)

𝑛𝑟
(2)

𝐾(2)

𝑟=1
𝐾(1)

𝑘=1  

represents the mutual info between two classes 𝑐1 and 𝑐2. 𝑉𝐼(𝑐1, 𝑐2)= 0, for 𝑐1=𝑐2, 
and 𝑙𝑜𝑔𝑛 is the upper bound of this index (Meilă 2003, 2007). 

iii. Rand Index (RI) and iv. Adjusted Rand Index (ARI): RI is a measure of the 
similarity between two classifications or clusters, and is derived as the proportion 
of number of pairs agree in two classifications divided by the total possible number 
of pairs. Specifically, if 𝑁11 be the number of pairs that are in the same group in 
both classifications, 𝑁00  be the number of pairs that are in different clusters in 
both classifications, and 𝑁10 and 𝑁01be the number of pairs in the same group in 
one classification and in different groups in the other classification, then 𝑅𝐼 =

 
𝑁11+𝑁00

𝑁11+𝑁00+𝑁10+𝑁01
=

𝑁11+𝑁00

(𝑁
2)

 , where 𝑁 are the number elements in a classification. 

ARI is the corrected version for chance of RI as the following expression, 
(𝑅𝐼 − 𝐸(𝑅𝐼))

(1 − 𝐸(𝑅𝐼))
⁄ , where 𝐸(𝑅𝐼) is the expected value of RI. In the above 

notations, 𝐴𝑅𝐼 =  
2(𝑁11𝑁00− 𝑁10𝑁01)

(𝑁11+𝑁01)(𝑁00+𝑁01)+(𝑁11+𝑁10)(𝑁00+𝑁10)
. The ARI have an upper 

bound equal to 1 when two comparing class variables perfectly match (Rand 1971, 
Vinh et al 2010), and equals 0 when the RI equals it’s expected value. The ARI is 
bounded above by 1 when two classifications agree perfectly, and equals 0 when 
the RI equals its expected value (under the generalized hypergeometric distribution 
assumption for randomness) indicating only chance agreement between two 
classification vectors.  
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v. Mirkin Index: This is a variation of the Rand Index and can be expressed as 
𝑀𝐶(𝑐1, 𝑐2) = 𝑛(𝑛 − 1)(1 − 𝑅(𝑐1, 𝑐2)). MC approaches to 0 in this situation 
when c1 = c2, otherwise it takes a positive integer value.  

vi. Fowlkes and Mallows Index: This is an external evaluation method that is used 
to determine the similarity between two clusterings, and also a metric to 
measure confusion matrices. It can be expressed as F =

√𝑊1(𝑐1, 𝑐2)𝑊2(𝑐1, 𝑐2) , 𝑊𝑖(𝑐1, 𝑐2) =
 2𝑁11

∑ 𝑛𝑘
(𝑖)

(𝑛𝑘
(𝑖)

−1)𝐾(𝑖)
𝑘=1

; 𝑛𝑘
(𝑖) size of the 𝑘𝑡ℎ 

cluster in 𝑐𝑖, 𝐾(𝑖) is number cluster in 𝑐𝑖 ; In simple terms, F = √𝑃𝑃𝑉. 𝑇𝑃𝑅, 
where  PPV is the positive predictive value and TPR is the true positive rate. 
F has upper bound equal to 1 when, c1 = c2 (Fowlkes et al. 1983).  

4. Real Data Applications: We have used five datasets consisting of trajectories of 2-3 
distinct components with varying level of separability to compare classification 
performance of three methods. The datasets of mixture distributions are created by 
combining components of plausible homogeneous patterns of linear, quadratic and cubic 
trends of early childhood growth trajectories identified from a large dataset of 3,365 
children. The dataset consists of the standardized scores of weight-for-length (at ages < 2 
years) and body mass index (BMI) (at ages ≥ 2 years), collected on clinic visits during their 
first 5 years of life. In the United States, weight-for-length and BMI are common measures 
of the somatic growth of children aged < 2 years and ≥ 2 years, respectively. Because the 
same quantile cutoffs of the two variables are used to classify the weight status of children, 
the standardized score of this variable, denoted BMIz, has been used as an early childhood 
growth indicator. The data were retrospectively retrieved from electronic health records. 
Using the identified plausibly homogeneous subsets, we generated 5 datasets of two or 
three components with varying extent of separability. We generated classifications of 2-4 
groups using three methods: post-hoc mixture model of BLUPs using R-package mclust 
(BLUP), HLME, and GMM in Mplus. In real data applications, post-hoc mixture model of 
BLUPs emerged as the best in classifying longitudinal data with unequal intervals of 
measurement time.    

5. Simulation and Classification: As discussed, we recently used 5 datasets of early 
childhood growth patterns of varying separability as application of real datasets to compare 
the classification performance of the three methods, namely HLME, GMM in Mplus and 
post-hoc mixture modelling of BLUPs (Hossain et al. 2019). The piecewise linear mixed 
effects model identified as the best fit to a dataset was used for classification of the 
corresponding dataset using all three methods. The mixed effects model originally used for 
classification is applied to the dataset stratified by groups generated by a classification 
method to produce 200 sets of simulated data for each method and subsequently the 
corresponding method is applied to classify all of the 200 simulated datasets. Each method 
of classification was used in simulation and subsequent classification of simulated datasets 
for each real dataset to assess the agreement between classification of the real and simulated 
data sets to assess the agreement between classification of the real and simulated data sets. 
As mentioned, six methods of classification evaluation indices were used to compare the 
agreement between the classifications of original and simulated datasets.   
 
Dataset 1 consists of three quite distinct components (Figure 1) of trajectories with 
plausibly linear, quadratic, and cubic trends of BMIz. Figure 1 shows the average 
agreement between classification of real and simulated datasets using post-hoc mixture 
modeling of BLUPs, HLME, and GMM in Mplus. Mean agreement proportion between 
real and simulated data classifications lies between 0.948 (HLME) and 0.9759 (post-hoc 
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mixture modeling of BLUPs) in three methods. Similarly, mean variation of information 
index lies between 0.2114 (post-hoc mixture modeling of BLUPs) and 0.307 (GMM in 
Mplus), mean Rand index and adjusted Rand index ranges 0.9361 (GMM in Mplus) to 
0.9638 (post-hoc mixture modeling of BLUPs), and 0.8721 (GMM in Mplus) to 0.9264 
(post-hoc mixture modeling of BLUPs), respectively. Also, mean Fowlkes and Mallows 
index ranges between 0.9319 (HLME) and 0.9586 (post-hoc mixture modeling of BLUPs), 
and mean Mirkin index ranges between 6406 (post-hoc mixture modeling of BLUPs) and 
11303 (GMM in Mplus), respectively. The six indices showed reasonably nice agreement 
between real and simulated data classifications using all methods for this dataset and the 
classification using post-hoc mixture model was identified as the best. The performance of 
HLME and GMM was quite similar with negligible differences in indices with no 
consistent superiority of any of these two methods.  
 
Dataset 2 also consists of three well separable components (Figure 2) of trajectories with 
linear and two opposite quadratic trends of BMIz. Figure 2 also exhibits the classification 
indices to compare the similarities between classifications of real and simulated datasets. 
Post-hoc mixture modeling and HLME showed an excellent level of agreements, and 
GMM in Mplus performed acceptable level of agreements between classes of original and 
simulated data. Once again, post-hoc mixture modeling performs the best in terms of the 
similarity measures between real and simulated datasets, followed by HLME and then 
GMM in Mplus.  
 
Dataset 3 comprises three relatively less separable components (Figure 3). Component 1 
consists of a weak cubic mean trend in BMIz, components 2 and 3 contains with mean 
trends of opposite patterns at the beginning of the life. Once again, the post-hoc mixture 
model of BLUPs showed the highest similarities between classifications of original and 
simulated data with mean indices of agreement proportion, Rand index, adjusted Rand 
index and Fowlkes and Mallows index ranging 0.9164 to 0.9719, followed by HLME that 
ranges 0.8462 to 0.9238. GMM in Mplus showed a poor agreement between real and 
simulated datasets with indices ranging 0.4259 to 0.7194.   
 
Dataset 4 is composed of two clearly diverged trends of BMIz with opposite quadratic 
curves (Figure 4). Both post-hoc mixture modeling of BLUPs and GMM in Mplus showed 
excellent agreement between classifications of original and simulated data with mean 
indices of agreement proportion, Rand, adjusted Rand and Fowlkes and Mallows to be 
closed to 1. HLME showed poor agreement between classifications of original and 
simulated data with above agreement indices ranging from 0.158 (adjusted Rand index) to 
0.764 (Fowlkes and Mallows index).  
 
Dataset 5 also consists of two reasonably separable components of BMIz trajectories 
(Figure 5). The post-hoc mixture model of BLUPs once again showed strong agreement 
between classifications of real and simulated data with 4 indices ranging between 0.9873 
(adjusted Rand index) to 0.9968 (agreement proportion). Both HLME and GMM in Mplus 
showed poor agreement between classifications of real and simulated datasets with indices 
ranging 0.5094 to 0.8348 and 0.2076 to 0.7579, respectively.   
 
5. Discussions and conclusions:  
 
In real data application to 5 datasets of early childhood growth patterns, the post-hoc 
mixture model of BLUPs showed superior performance in identifying distinct subgroups 
of trajectories in longitudinal data with unequal-spaced intervals compared to existing 
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methods of HLME and GMM in Mplus although the same piecewise linear mixed effects 
model is used in all three methods of classification. As discussed, this study conducted 
classification-specific simulations of real dataset and used the corresponding method for 
classification of simulated datasets, and subsequently examined the level of agreement 
between classifications of real and simulated datasets as the external validation of 
clustering performance of three methods. In other words, this study compared the ability 
of classifying similar structures in real and simulated datasets in the same group.   
 
Likewise in real data applications, post-hoc mixture model of BLUPs showed superior 
performance in agreement between classifications of real and simulated datasets compared 
to that in two existing methods of HLME and GMM in Mplus. The method demonstrated 
excellent performance in identifying similar components of distinct trajectories in real and 
corresponding simulated datasets. As mentioned, a total of six indices used to examine the 
similarity in classifications of 5 datasets of early childhood growth patterns and the 
corresponding simulated datasets. Comparison of classification of each simulated dataset 
with that of the corresponding real dataset provided a score for each index and the mean 
score of an index reflect the average of the 200 scores produced through the comparisons 
of classifications of 200 simulated datasets with that of the real dataset. Four of the six 
indices such as agreement proportion between classification vectors, Rand index, adjusted 
Rand index, Fowlkes and Mallows index would have an upper bound of 1 when 
classification vector of a simulated dataset is identical to that of the corresponding real 
dataset. The mean score of all these 4 indices is close to 1 for post-hoc mixture modelling 
for all 5 datasets and is also much higher than that for two other methods. Specifically, the 
mean agreement proportion between post-hoc mixture modelling classifications of real and 
corresponding simulated datasets are 0.9759, 0.9937, 0.9719, 0.99996, and 0.9968 for 
datasets 1, 2, 3, 4 and 5, respectively. The corresponding mean agreement proportion using 
HLME classification is 0.948, 0.9238, 0.9633, 0.7173, and 0.8348, and using GMM in 
Mplus classification is 0.9551, 0.5854, 0.888, 0.9997, and 0.7122, respectively. Similarly, 
the mean Rand index to measure the similarity between classifications of real and simulated 
datasets are 0.9638, 0.9623, 0.9896, 0.9999, and 0.9937 using post-hoc mixture modelling 
of BLUPs, 0.9401, 0.923, 0.9598, 0.6409, and 0.7674 using HLME and 0.9361, 0.7194, 
0.855, 0.9993, and 0.9993 for datasets 1, 2, 3, 4, and respectively 5. After adjustment for 
randomness, the adjusted Rand index  for 5 datasets becomes 0.9264, 0.9164, 0.9791, 
0.9998, and 0.9873 for post-hoc mixture modelling of BLUPs, 0.8784, 0.8462, 0.9195, 
0.158,  and 0.5094 for HLME, and 0.8721, 0.4259, 0.7115, 0.9986, and 0.2076 for GMM 
in Mplus. These three indices indicate that post-hoc mixture modelling of BLUPs 
performed outstanding performance in classifying similar structures of real and simulated 
data in the same group for all datasets. HLME showed excellent performance in one 
dataset, acceptable performance in two datasets and poor performance in two datasets to 
classify similar structures of real and simulated datasets. GMM also demonstrated excellent 
performance in one dataset, acceptable/ marginally acceptable performance in two datasets 
and poor performance in two datasets to identify classes of the similar structures in real 
and simulated datasets. The findings of the three indices are well supported by the mean 
Fowlkes and Mallows index, mean variation of information index, and mean Mirkin index.  
 
In summary, classifications of real and simulated datasets demonstrated that the post-hoc 
mixture modelling of BLUPs from linear/ piecewise linear mixed effects model performs 
better in clustering longitudinal data with unequal intervals than two existing methods. The 
results of this study confirmed the findings of the real data application to compare the 
performance of three methods in classifying longitudinal unbalanced data. More 
application of three methods to real and simulated datasets could provide further insight of 
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strength and weakness of these methods in classifying longitudinal data with irregular 
spaces between measurement times.   
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Figure 1: Classification and Performance -Dataset 1 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Classification and Performance- Dataset 2 

 

 

 

 

 

 

 

 

 

 

  

 

Performance statistics Posthoc HLME Mplus

Mean agreement proportion in classification vectors 0.9759 0.948 0.9551

Mean VarInf Index 0.2114 0.2901 0.307

Mean R 0.9638 0.9401 0.9361

Mean AR 0.9264 0.8784 0.8721

Mean F 0.9586 0.9319 0.9327

Mean M 6406.15 10599.12 11303.54

Performance statistics Posthoc HLME Mplus

Mean agreement proportion in classification vectors 0.9937 0.9633 0.888

Mean VarInf Index 0.068 0.1526 0.3496

Mean R 0.9896 0.9598 0.855

Mean AR 0.9791 0.9195 0.7115

Mean F 0.9894 0.9587 0.879

Mean M 1550.55 5978.75 21543.83
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Figure 3: Classification and Performance- Dataset 3 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Classification and Performance- Dataset 4 

 

 

 

 

 

 

 

 

 

 

 

 

Performance statistics Posthoc HLME Mplus

Mean agreement proportion in classification vectors 0.9719 0.9238 0.5854

Mean VarInf Index 0.2556 0.4479 0.8576

Mean R 0.9623 0.923 0.7194

Mean AR 0.9164 0.8462 0.4259

Mean F 0.945 0.9209 0.6598

Mean M 4138.21 8462.03 30836.7

Performance statistics Posthoc HLME Mplus

Mean agreement proportion in classification vectors 0.99996 0.7173 0.9997

Mean VarInf Index 0.00039 0.6814 0.0035

Mean R 0.9999 0.6409 0.9993

Mean AR 0.9998 0.158 0.9986

Mean F 0.9999 0.764 0.9994

Mean M 1.32 6305 11.88
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Figure 5: Classification and Performance- Dataset 5 

 

Performance statistics Posthoc HLME Mplus

Mean agreement proportion in classification vectors 0.9968 0.8348 0.7122

Mean VarInf Index 0.0309 0.6292 0.6423

Mean R 0.9937 0.7674 0.6297

Mean AR 0.9873 0.5094 0.2076

Mean F 0.9942 0.8119 0.7579

Mean M 90.12 3321.1 5288.5
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