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Abstract 

The Conditional Autoregressive Range (CARR) model is an alternative to the Generalized 
Autoregressive Conditionally Heteroscedastic (GARCH) approach of modeling volatility. 
The former models the price range while the latter focuses on modeling the price returns. 
The Asymmetric CARR (ACARR) model was introduced to allow for separate modeling 
of upward and downward ranges observed within each day, with the actual range expressed 
as the sum of these two components. This formulation, however, ignores any feedback 
from one type of range to another. The Feedback Asymmetric Conditional Autoregressive 
Range (FACARR) was introduced in 2017 to remedy this drawback. The FACARR, 
however, limits this cross feedback to past ranges and do not include past conditional 
means. The proposed Generalized Feedback Asymmetric Conditional Autoregressive 
Range Model (GFACARR) removes this limitation and allows the upward range model to 
include both past upward and past downward ranges along with their respective conditional 
means. A similar model is defined for modeling downward range as well. The proposed 
model is more in line with the multivariate CARR model. The use of the GFACARR model 
is illustrated by its application to several price series, including the S&P 500. 

Key Words: Volatility Modeling, CARR Models, ACARR, Price Range, Time Series. 

1. Introduction

Financial volatility is an essential factor that policy makers and investors should consider 
prior to any form of financial decision making. Modelling volatility is crucial in 
understanding the nature of the dynamics of the financial market. Financial volatility of 
asset prices has been discussed extensively in the financial and econometric literature over 
the years. One of the most successful volatility models used by researchers to model 
volatilities in a time series setting is the Generalized Autoregressive Conditional 
Heteroscedasticity (GARCH) model introduced by Bollerslev (1986). Engle (1982) 
proposed the Autoregressive Conditional Heteroscedasticity (ARCH) model in order to 
address the complexities of time varying volatility and volatility clustering in the financial 
time series. In the ARCH formulation, the conditional volatility is modeled as a function 
of past returns. The GARCH model is an extension of ARCH formulation and models the 
conditional volatility as a function of lagged squared returns as well as past conditional 
variances. Since all models afore mentioned focus on modeling price returns, they can be 
identified as examples of return-based volatility models.  

In many financial time series applications, standard deviation is the most common 
measures of stock return volatility since it not only calculates the dispersion of returns but 
also summarizes the probability of seeing extreme values in returns. Since the time the 
concept of volatility was introduced, researchers have sought alternative measures of 
financial volatility. One such alternative is the range. Range measures the variability of a 
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random variable. Parkinson (1980) argued that volatility measure could be calculated by 
considering daily high, daily low, and opening price of a stock in addition to the traditional 
closing prices. He also compared traditional measures of volatility that are calculated 
simply by using closing prices, with extreme value methods by taking high and low prices 
of an asset. He concluded that the range-based method is far superior to the standard 
methods based on returns. Beckers (1983) tested the validity of different volatility 
estimators. In his paper, he mentioned that the range of a stock price contains far important 
and fresh information. He also mentions that using the range of a stock price is better than 
using close-to-close changes. Kunitomo (1992), improved the Parkinson’s original result 
and proposed a new range-based estimator which is 10 more times efficient than the 
standard volatility estimator. In another study, Alizadeh , Brandt and Diebold (2002) 
proved that the range-based volatility estimators are highly efficient compared to the 
classical volatility proxies based on log absolute returns or squared returns and showed that 
log range is approximately normal. Hence range of an asset price for a given period can be 
used as a more informative proxy variable to measure an asset’s volatility for a well-
defined period such as a day.   

According to the results of Alizadeh et al. (2002) and many others, both the GARCH family 
of models and stochastic volatility models (Tylor, 1986) ignore the price fluctuations of 
the reference period, making them relatively inaccurate and inefficient. Therefore, some 
researchers focused on the alternative approach to volatility modeling and developed the 
theoretical framework for range-based models with comprehensive empirical examples. 
For example, the reader is referred to Chou (2005), Chou (2006), Brandt and Jones (2006), 
and Chou and Liu (2010). Chou (2005) introduced the Conditional Auto Regressive Range 
(CARR) model as a special case of Autoregressive Conditional Duration (ACD) model of 
Engle (1998). CARR is employed to model price volatility of an asset by considering range 
of the log prices for a given fixed time interval. The CARR model is similar to the standard 
volatility models such as the GARCH formulation. However, one distinct difference 
between the two models is that the GARCH model uses rate of return as its volatility 
measure while CARR model uses the range as its volatility measure. The CARR model 
proposed by Chou is a simple but an efficient tool to analyze the volatility clustering 
property compared to the GARCH models. This was shown empirically by Chou via out 
of sample forecasting of S&P500 data. Chou showed that the effectiveness of volatility 
estimates produced by CARR models is higher than the estimates of standard return-based 
models such as the GARCH. Brandt and Jones (2006) integrated the properties of 
exponential GARCH (Nelson (1991)) with daily log range data and proposed a ranged 
based EGARCH model. This model has a simple framework but is an effective tool for 
capturing the important characteristics that are present in stock return data such as 
clustering, negative correlation, and log normality. The range based EGARCH model is 
different from the CARR model in many ways. For example, it utilizes the lagged log range 
rather than lagged range as in the CARR model. Moreover, the ranged based EGARCH 
model formulates conditional return volatility while CARR explains the conditional mean 
of the range data.  

Extensive modifications had been done to the original CARR model. Chiang, Chou and 
Wang (2016), suggested the lognormal log CARR model in an outlier detection process 
and showed that the proposed method can effectively detect outliers. One major advantage 
of using a Log CARR model would be that these models relax positivity restrictions on the 
parameters of the conditional expectation function. Xie and Wu (2017), explained the 
disturbance term in the CARR model by using the gamma distribution (GCARR) and 
showed through empirical data that GCARR outperformed Weibull CARR (WCARR) 
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model in the forecasting ability. The multivariate extension to the CARR (MCARR) model 
was proposed by Fernandes, Mota and Rocha (2005), and they derived conditions for 
stationarity, geometric ergodicity, and beta-mixing with exponential decay. Chou and Liu 
(2009), incorporated return based Dynamic Conditional Correlation (DCC) model of Engle 
(2002) with the CARR model and introduced the new class of range based DCC models. 
They concluded that the range based DCC model outperforms other return-based models 
(MA100, EWMA, CCC, return-based DCC, and diagonal BEKK) using RMSE and MAE, 
the accepted benchmarks of implied and realized covariance. Different types of range-
based volatility models such as Liu el at. (2017), Chou and Liu (2010), Miao, Wu and Su 
(2012), and Xie and Wang (2013) are some of the variations that are found in the published 
literature. For additional details, the reader is referred to Chou, R., Chou, H., and Liu 
(2015), which provides a comprehensive review of range-based models.       

The asymmetric volatility, which is a key phenomenon in financial data, suggests that 
conditional volatilities show high fluctuations during downward trends than during upward 
trends. Traditional methods of modelling return series such as ARCH and GARCH models 
used standard deviation which treat price returns symmetrically. Hence, they are not 
effective tools for capturing the asymmetric behavior present in the financial data. In order 
to model the asymmetry in stock returns, several econometric models have been introduced 
in the literature. Asymmetric ARCH model of Nelson (1991), EGARCH by Nelson and 
Cao (1992), GJR-GARCH model by Glosten, Jagannathan and Runkle (1993) and 
QGARCH by Sentana (1995) had been developed and these models overcome the 
drawbacks of GARCH models. In their paper Engle and Ng (1993), analyzed how the news 
effect on the conditional volatility and concluded that both EGARCH and GJR-GARCH 
capture the asymmetry but latter is the better model. 

All the above models capture the asymmetry in return data. The CARR model proposed by 
Chou (2005), used range as the measure of price volatility. The study treated maximum 
and minimum price symmetrically. However, in the same study, he suggested the CARRX 
models (CARRX-a, and CARRX-b) by including exogenous variables such as (a) lagged 
return and (b) lagged absolute returns in the conditional mean equation. The purpose of 
this incorporation is to model one form of asymmetry, the leverage effect of Black and 
Nelson (1991). Chou (2006), presented Asymmetric CARR (ACARR) model in which 
both upward and downward price ranges were treated separately. The upward range is 
defined as the difference between the maximum price and the opening price and the 
downward range is defined as the difference between the opening price and the minimum 
price, all observed within a trading day. These definition can be extended to periods beyond 
a day in a similar fashion. Instead of treating high and low prices for a given fixed period 
symmetrically as in the CARR, the ACARR model incorporates a form of asymmetry by 
allowing the dynamic structure of the upward price movements to be different from that of 
the downward price movements. The ACARR model was extended to the ACARRX model 
by including exogenous variables such as trading volume (Lamourex and Lastrapes, 1990), 
lag return to count leverage effect (Black, 1976; Nelson, 1990), or a seasonal factor. It 
assumed independence between upward ranges and downward ranges and therefore 
parameters were estimated separately for each movement by using the QMLE method. An 
empirical study showed that the volatility forecasting ability of the ACARR model is 
superior to that of the CARR model. Chou and Wang (2014), combined the ACARR model, 
to capture current asymmetric volatility, with extreme value theory (EVT) to estimate the 
tail of the residual distribution. This methodology gave better Value at Risk (VaR) 
estimates than the GARCH model used by McNeil and Frey (2000). 
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Motivated by the independence between upward swing and downward plunge assumption 
made by Chou (2006), Xie (2018) proposed Feedback Asymmetric CARR (FACARR) 
model. By providing satisfactory evidence, he questioned the validity of the independence 
assumption and found cross-interdependence between upward movement and downward 
movement. Hence, the FACARR model was proposed as a more practical extension of the 
ACARR model. In other words, both upward and downward movements of asset prices 
were not only modeled asymmetrically, the conditional mean upward (downward) range is 
modeled by incorporating lagged downward (upward) ranges into each sub-model. 
Extensive empirical studies showed that the proposed FACARR performs significantly 
better than ACARR in both in sample and out of sample forecasting.  

It is reasonable to assume that the dynamic movement of the upward (downward) range 
does not depend only on the lagged downward (upward) price range but also on the 
conditional mean of downward (upward) ranges. By consolidating on this fact, we decided 
to generalize the previous class of asymmetric CARR models and introduced Generalized 
Feedback Asymmetric CARR (GFCARR) model.  The proposed model attempts to 
overcome the limitation of previous models by incorporating the cross-feedback term to 
account for the past conditional means. Since the proposed GFACARR model treat both 
upward and downward price range separately, this approach also allows the modeling of 
the asymmetry found in financial data.   

The paper is summarized as follows. In Section 2a brief introduction to the CARR, 
ACARR and FACARR models are given. The proposed GFACARR model is introduced 
in addition to its statistical properties in section 3. Econometric methodology was presented 
in Section 4 and the results of a simulation study is presented in Section 5. Empirical study 
based on three different stock market indices namely S&P500, CAC40 and 
NIKKEI225arediscussed in Section 6 and conclusion are given in Section 7. 

2. Review of CARR, ACARR and FACARR Models

2.1. The Conditional Autoregressive Range (CARR) Model 

Chou (2005), proposed the CARR which is primarily a range-based model. The CARR 
formulation is used to model the price volatility of an asset by considering range as a 
measure of this volatility. Let 

t
R be the price range defined over the fixed time period t, 

where 
t

R  is the difference between the highest ( high

tP ) and lowest ( low

tP ) logarithmic price 
of an asset during the time period t.  That is, 

.high low

t t t
R P P 
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The CARR model of order (p, q) is presented as CARR (p, q) and defined as follows: 

 

 

1
1 1

1 1

,

E | . . ,

~ . . . (.), 1,  and

0 1, 0, 0.

t t t

p q

t t t i t i j t j

i j

t t

p q

i j i j

i j

R

R R

i i d f E

 

    

 

   

  

 

 



   



    

 

 

Here 
t
  is the conditional expectation of the price range based on all information up to 

timet-1. The non-negative disturbance term, also known as the standardized range is 
denoted by 

t
 which is independent and identically distributed with probability density 

function  .f with a non-negative support and a unit mean. 

2.2 The Asymmetric Conditional Autoregressive Range (ACARR) Model 

The ACARR model presented by Chou (2006), decomposed the range (
t

R ) series into two 

components namely upward range ( u

t
R ) and downward range ( d

t
R ). Upward and 

downward ranges are defined using the differences between the daily high ( high

tP ), daily 

low ( low

tP ), and the opening ( open

tP ) logarithmic price of an asset over the time interval 
associated with t as follows: 

,
,

.

u high open

t t t

d open low

t t t

u d high open open low high low

t t t t t t t t t

R P P

R P P

R R R P P P P P P

 

 

       

  (1) 

Here the upward range measures the maximum gain or the positive shock to the stock while 
downward range calculates the minimum gain or the negative impact to the stock price for 
the time period t. 

The CARR model is symmetric because it treats the high and low price in a symmetric 
way. However, it is possible to assume that the upward and downward movements are 
different in their dynamics of how the shocks propagate. To allow the asymmetric behavior 
in price range data, Chou (2006) proposed and developed ACARR model.  
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The ACARR model of order (p, q) is as follows: 

   

   

1 1
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,
,

,

,
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u d

t t t

u u u

t t t

d d d
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t i t i j t j
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d d d d d d
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u u u
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d d
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 

 
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1

1, 0, 0.
q

d d

i j 


           (2)  

Here   1|u u

t t t
E R


 is the conditional mean of the upward range and 

  1|d d

t t t
E R


 is the conditional mean of the downward range, both conditional on all

information up to time period t-1. The disturbance term of the upward (downward) range 
model  u d

t t   are independently and identically distributed with the density function 

 .u
f   .d

f with unit mean. Moreover, the pairs of parameters, 

     , , , , ,u d u d u d

i i j j
      identify the asymmetric behavior between the upward range

and downward range.   

2.3. The Feedback Asymmetric Conditional Autoregressive Range (FACARR) Model  

The ACARR model assumes that there is independence between the upward and downward 
shocks and Xie (2018), argued against this assumption and presented the FACARR model. 
This model include the cross-interdependence terms on top of the ACARR setting. 
Following the same definitions and notations, the FACARR model is defined as follows:  
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   
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
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 

       (3) 

In addition to the previous parameter set discussed in the model (2), FACARR has a new 
pair of parameters, namely  ,u d

  , which measures the magnitude and the direction of
the lagged upward (downward) range on conditional mean range.

3. Generalized Feedback Asymmetric Conditional Autoregressive Range Model
(GFACARR) and Statistical properties.

Let
open

t
P ,

high

t
P  and 

low

t
P  be the opening, high and low logarithmic prices of the speculative 

asset respectively, at a given time period t (i.e. day).  The observed price range for the time 
period tis denoted as tR and it is defined as the sum of the upward range ( u

t
R ) and 

downward range ( d

t
R ): 

.high low high open open low u d

t t t t t t t t tR P P P P P P R R             

Here, upward and the downward range is defined exactly the same as in the ACARR model. 
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The proposed GFACARR model is as follows: 

 
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   (4) 

Here   1|u u

t t t
E R


 is the conditional mean of the upward range based on all 

information up to time period t-1, and   1|d d

t t t
E R


 is the conditional mean of the 

downward range on all information up to time period t-1. Note that the sigma field 
generated using information from setup to time period t-1, is denoted by 1t

. The upward 

(downward) range disturbance term is denoted by 
u

t
  d

t
  and it is independently and 

identically distributed with unit mean.  

In contrast to the FACARR model introduced by Xie (2018), the significance of the 
proposed formulation is that GFACARR model is capable of modelling the conditional 
expected upward (downward) range at time t  based on not only the lagged downward 
(upward) ranges but also on the previous conditional volatilities of downward (upward) 
ranges. 

3.1 The GFACARR Model. 

Here, the mean conditional upward (downward) range at time period t , is modeled by 
considering both downward (upward) range and mean conditional downward (upward) 
range at timet-1, in addition to the existing terms. 

The GFACARR model given in the equation (3) can be re-written as a bivariate CARR (1, 
1) model as follows:

  ,
t t t

R    (5)
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where    ,u d

t t tdiag     and  ,i

t i u d  , is the conditional mean of  ,i

tR i u d

given 1t . Here  
'

, , , , , , , , ,u u u u u d d d d d           is the parameter vector and

 
'

u u

t t t   has following conditions imposed on it:

1.  cov , 0.u d

t t  

2.  ,t t  is a sequence of independent and identically distributed 2 -valued 
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1
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t
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 For the illustrative purpose we 

assume  ~ exp 1 , , .i

t
i u d   Then the covariance matrix becomes

2

2 2

1 0
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0 1
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3.  cov , 0, , , .i i

j k j k i u d      

4. From conditions1 and 2, conditional covariance matrix of tR follows and is given
by  t
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 
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This representation of model (4), is coincide with bivariate GARCH (1, 1) process with 
constant correlation (see. Bollerslev (1990), Jeantheau (1998)). 

The GFACARR process can be formulated as a bivariate CARR (1, 1) model as follows: 

1 1
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   (6) 
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B

 

 

 
  
 

. 

If the vector 2
0 ,  and all the coefficients in , ,, , ;

i j i j
A a B b i j         and 

1, 2; 1,2.i j  are non-negative then this is sufficient for the non-negativity of the
2

0t



 . However, in this proposed model we allow negative values for the coefficients 

of the newly introduced lagged conditional expected upward (downward) term. Since both 
range and conditional mean range are positive variables it is important to preserve the 
positivity of the model. We studied closely the conditions for the non-negativity and 
positivity imposed in the Dynamic Conditional Correlation Multivariate GARCH models 
(Engle and Sheppard, 2001). Nelson and Cao (1992) introduced non-negativity constraints 
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for the GARCH (p, q) models by relaxing the above mentioned sufficient condition. Since 
these conditions were not readily applicable to our model, we modified the conditions to 
suit our model. Our conditions are that 2

0 ,  with positive coefficients, and that 

,i j
a    and ,i j

b    such that , , , , .
i j i j

a b i j     with eigenvalues of  2 2
A B


 , 

expressed as 1 and 2 , follow the restrictions 1 1  and 2 1.   

3.2 Statistical Properties of the GFACARR Model. 

3.2.1. Weak Stationarity of GFACARR Model. 

Since GFACARR can be presented as the bivariate CARR (1, 1) model and it can also be 
reparametrized as a bivariate ARMA (1, 1) model. Derivation is given bellow:  

 

 
 

1

1 1 1

1 1 1

| ,

,

.

t t t t t t

t t t t t t

t t t t t

R E R R

R AR B R

R AR BR B

 

   

  



  

  

   

     

     

Let t be the difference vector and   1 1. .
t t t t

R A B R B  
 

     be a Bivariate ARMA 

(1, 1) model. If all the eigenvalues of the matrix  2 2
A B


  are positive, but less than 

one, then the bivariate ARMA (1, 1) model for t
R is weakly stationary (Tsay, 2002). By

following this claim we propose the weakly stationarity conditions for the GFACARR 
model.  

Theorem 1: Let 1 1. .t t tA R B      be a GFACARR process defined in (4)-(6). If all 

the eigenvalues of  2 2
A B


 , namely 1 and 2  are such that 1 i i   , then the 

GFACARR model for tR is weakly stationary. 

The Proof of this theorem will be presented in the separate paper. 

3.2.2 Unconditional Expectation of GFACARR Model. 

Under the weak stationarity assumption    1t t
E R E R


 , and     0t t tE E R    so 

that: 
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   

         

         

    

1 1

1 1

1

,

,

,

.

t t t t

t t t t

t t t

t

R A B R B

E R A B E R E E B

E R A B E R A B E R

I A B E R

  

  

 



 

 



     

     

     

  

 
 

Since the
t

R is a weakly stationary and  det 0I A B     , hence  tE R exists. Thus,

    

  
   
   

1

1

1

,

1
,

1

t

u u u u

d d d d

E R I A B

I A B



   

   







  

   
  

   

 
 
 

 
    

   

   

 
    

   

   

 
 

1 11 ,
11 1

11 ,
11 1

1
1

d d u u

d d u uu u d d u u d d

d d u u
u

t dd d u uu u d d u u d d

t
u u

I A B

E R

E R

   

          

    

          

 


    
     
                          

      
   
                            


  
   

    

    

1
.

1 1

d d u u u d

d d u u d d u u d d d u

     

           

    
 
                      

The unconditional mean of upward range  u

t
E R and unconditional mean of downward 

range  d

t
E R , can be expressed as follows:

 
   

       

 
   

       

1
,

1 1

1
.

1 1

d d u u u d

u

t u u d d u u d d

u u d d d u

d

t u u d d u u d d

E R

E R

     

       

     

       

   


      

   


      

  

      

  

      

Finally the unconditional mean range  tE R is calculated as:

     

 
       

      

,

1 1
.

1 1

u d

t t t

d d u u u d u u d d d u

t u u d d u u d d

E R E R E R

E R
           

       

 

        


      

      

      
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4. Estimation of GFACARR Model.

Let  u

t
   d

t
 be the sequence of independent and identically distributed exponential 

disturbance term with   1u

t
E     1d

t
E   , and   1 21

{ , ,..., }
n

u u u u

t nt
R R R R




  1 2 31
{ , , ,..., }

n
d d d d d

t nt
R R R R R


 be the realization of the model

u u u

t t t
R  

 .d d d

t t tR   The parameter vector  
'

, , , , , , , , ,u u u u u d d d d d           can be
estimated by using the conditional likelihood method. In this section we are going to derive 
the log likelihood function for the proposed GFACARR model. 

The conditional distribution of u

tR and d

tR given the information up to t-1, can be expressed 
as follows: 

 

 

1

1

1
| , exp ,

1
| , exp .

u

u t

t t u u

t t

d

d t

t t d d

t t

R
f R

R
f R

 

 





 

 

 
 
 

 
 
 

Since  cov , 0,u d

t t   conditional distributions of  1| ,u

t t
f R


 and  1| ,d

t t
f R


 are 

conditionally independent. Then the conditional joint distribution of the realized range data 
at time t, given the information set up to time t-1 is given by: 

       

 

1 1 1

1

, | , | , | , ,

1 1
, | , exp exp .

u d u d

t t t t t t t

u d

u d t t

t t t u u d d

t t t t

f R R f R f R

R R
f R R

   

  



   

   
     
     

     

Therefore the conditional likelihood function   1
| ,

n
u d

t t t
L R R


 and the log likelihood 

function of the data   1
| ,

n
u d

t t t
l R R


 can be derived as follows: 

    

         

      

11
2

11 1
2

1
2

| , , | , ,

| , ln | , ln , | , ,

| , ln ln .

n
n

u d u d

t t t t tt
t

n
n n

u d u d u d

t t t t t t tt t
t

u dn
n

u d u dt t

t t t tu dt
t t t

L R R f R R

l R R L R R f R R

R R
l R R  

 




 





  

    

     
    
    
    







(7)
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5. Simulation Study

We investigated the finite sample performance of estimators using a simulation study. We 
used nloptr, a nonlinear optimization function of R software to generate the relevant data. 
Length of the time series studied is set to n=1000 and n=3000, and 1000m  .Simulation 
runs were carried out for each parameter sample size combination. We carried out this 
simulation study for two different cases of the GFACARR model by excluding or including 
correlation between the upward and downward range disturbance terms. First, we selected 
the parameters for the GFACARR model, generated data from this model, and then, 
maximized the profile likelihood function (7) using the constrained nonlinear optimization 
function nloptr in R. The Mean Absolute Deviation Error (MADE) is utilized as the 

evaluation criterion. The MADE is defined as, 
1

1 ˆ
m

j j

im
 



 where m is the number of 

replications. Simulation results are reported in Table 1 and Table 2. 

Table 1: Means of MLE estimates and MADE (within parentheses), for Upward Range 
component in GFACARR model. 

Model Sample 
Size 

True Coefficients 0.01 0.20 0.40 0.10 0.20 

UPR_M1 n=1000 
0.0113 
(0.0103) 

0.1968 
(0.0320) 

0.3871 
(0.1111) 

0.0973 
(0.0256) 

0.2079 
(0.1203) 

n=3000 
0.0101 
(0.0068) 

0.1992 
(0.0183) 

0.3937 
(0.0620) 

0.0989 
(0.0139) 

0.2063 
(0.0775) 

True Coefficients 0.01 0.30 0.50 0.10 -0.02

UPR_M2 n=1000 
0.0117 
(0.0049) 

0.2960 
(0.0315) 

0.5081 
(0.0662) 

0.0991 
(0.0106) 

-0.0235
(0.0216)

n=3000 
0.0105 
(0.0026) 

0.2984 
(0.0183) 

0.5028 
(0.0363) 

0.0996 
(0.0057) 

-0.0211
(0.0116)

True Coefficients 0.15 0.20 0.60 0.10 -0.10

UPR_M3 n=1000 
0.1548 
(0.0255) 

0.2047 
(0.0279) 

0.5428 
(0.0943) 

0.0968 
(0.0153) 

-0.0724
(0.0276)

n=3000 
0.1522 
(0.0136) 

0.2026 
(0.0164) 

0.5714 
(0.0500) 

0.0986 
(0.0080) 

-0.0863
(0.0137)

u u u u u
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Table 2: Means of MLE estimates and MADE (within parentheses), for Downward Range 
component in GFACARR model. 

Model Sample 
Size 

True Coefficients 0.02 0.10 0.80 0.02 -0.05

DWNR_M1 n=1000 
0.0235 
(0.0089) 

0.1011 
(0.0221) 

0.7714 
(0.1115) 

0.0183 
(0.0261) 

-0.0430
(0.0989)

n=3000 
0.0210 
(0.0040) 

0.1006 
(0.0224) 

0.7929 
(0.0118) 

0.0201 
(0.0510) 

-0.0500
(0.0143)

True Coefficients 0.04 0.10 0.60 0.03 0.60 

DWNR_M2 n=1000 
0.0438 
(0.0142) 

0.0965 
(0.0257) 

0.5919 
(0.0642) 

0.0322 
(0.0612) 

0.6157 
(0.1788) 

n=3000 
0.0415 
(0.0077) 

0.0990 
(0.0144) 

0.5935 
(0.0374) 

0.0295 
(0.0354) 

0.6154 
(0.1084) 

True Coefficients 0.10 0.20 0.40 0.10 0.50 

DWNR_M3 n=1000 
0.1004 
(0.0593) 

0.1975 
(0.0308) 

0.3934 
(0.1171) 

0.0951 
(0.0490) 

0.5213 
(0.2376) 

n=3000 
0.0934 
(0.0355) 

0.1991 
(0.0172) 

0.3954 
(0.0643) 

0.0967 
(0.0278) 

0.5242 
(0.1440) 

Table 1 shows the simulation results related to the upward range component parameters of 
the GFACARR model while Table 2 presents that of the downward range component of 
the GFACARR model. The results show that the estimates are very close to the true 
parameters values in most cases and that the MADE values are reasonably small, with an 
improvement seen in the 3000 sample size case. The conclusion that can be arrived based 
on this simulation study is that the maximum likelihood method provides reliable estimates 
of the model parameters, in spite of the complex nature of the model when compared to 
CARR or even the FACARR models.  

6. Empirical Study

6.1 The Data Set 

In this study, three stock indices from different markets are used to gauge the performance 
of the proposed GFACARR model. Daily data of Standard and Poor’s 500 (S&P500) index 
of United States, CAC 40, which is a benchmark index of the French stock market, and 
Japan’s NIKKEI225 index are considered. The sample periods for S&P500, CAC40 and 
NIKKEI225 are January 01, 1990 to May 5, 2017, January 01, 1990 to May 31, 2018, and 
January 01, 1990 to December 31, 2019,respectively. Daily values for opening price, 
closing price, high price, low price and adjusted price are reported over the span of the 
study period. The data set is downloaded from the “Yahoo Finance” web page 
(https://finance.yahoo.com/) by using quantmod package in R software. The data set is 
divided in to two sub-samples where the first sub-sample, also known as in-sample period, 
is used to estimate the model parameters and in-sample predictions. In-sample periods for 
S&P500 spans from January 01, 1990 to December 31, 2016, CAC40 spans from January 

d d d d d
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01, 1990 to December 31, 2017 and NIKKEI225 spans from January 01, 1990 to December 
31, 2018. The second-sub sample, which is also called the out-of-sample period, is used 
for out-of-sample forecasting. Out-of-sample periods for S&P500, CAC40 and 
NIKKEI225 are from January 1, 2017 to May 05, 2017,January 1, 2018 to May 31, 2018 
and January 1, 2019 to December 31, 2019,respectively. In general, Table 3 presents the 
summarization of the three stock indices, more specifically Table 3A, Table 3B and Table 
3C present the summary statistics of S&P500, CAC40 and NIKKEI225 daily stock indices 
respectively. Daily price range, daily upward range and daily downward range values are 
calculating as discussed in equation (1). 

Table 3: Summary Statistics of the Daily Range, Upward Range and Downward Range of 
S&P500, CAC 40 and NIKKEI 225 Indices. 

Table 3A: Summary Statistics of S&P 500 : 01/01/1990 – 12/31/2016 
Summary 
Statistics 

Upward Range 
Component 

Downward Range 
Component 

Range 

Minimum 0.0000 0.0000 0.1774 
Mean 0.6179 0.6618 1.2798 
Maximum 10.2457 9.5522 10.9041 
Standard Deviation 0.7007 0.8146 0.9227 
Skewness 3.0574 3.1128 3.2090 
Q (12) 2155.3*** 4481.6*** 24813*** 
Correlation    
(UPR, DWNR) 

-0.2655***

Table 3B: Summary Statistics of CAC 40 : 01/01/1990 – 12/31/2017 
Summary 
Statistics 

Upward Range 
Component 

Downward Range 
Component 

Range 

Minimum 0.0000    0.0000      0.0000  
Mean 0.7315    0.8156 1.5471  
Maximum 8.4229 7.7503 9.2607 
Standard Deviation 0.7366 0.8437 0.9543 
Skewness 2.5123 2.2870 2.2686 
Q (12) 1273.6*** 4750.6*** 20893*** 
Correlation    
(UPR, DWNR) 

-0.2765***

Table 3C: Summary Statistics of NIKKEI 225 : 01/01/1990 – 12/31/2018 
Summary 
Statistics 

Upward Range 
Component 

Downward Range 
Component 

Range 

Minimum 0.0000    0.0000      0.0000  
Mean 0.7180 0.7899     1.5079  
Maximum 12.4347 13.7634 13.7634  
Standard Deviation 0.8194 0.9016 0.9876 
Skewness 2.9810 3.1395 2.9068 
Q (12) 1209.5*** 2042.1*** 14538*** 
Correlation    
(UPR, DWNR) 

-0.2765***

Note: *** indicate significance at 1% level. Q (12) is the Ljung-Box statistics of lag 12. 

 
1269



According to the summary statistic results both upward and downward price range series 
for all three stock indices have large positive skewness and these values are suggestive that 
a positively skewed density functions should be used to model the disturbance terms. The 
Ljung-Box test the null hypothesis is that the time series data are independently distributed. 
After 12 lags of sample autocorrelations are examined, the large test statistic values and 
very small p-values (<0.0000) conclude that the data exhibit a strong persistence in daily 
price range data. Downward range component has higher Ljung-Box statistic than that for 
the upward range component which means that downward range component is more 
persistent than the upward range component. Furthermore, higher values for the mean and 
standard deviation of the downward range component compared to the upward range 
component is a primary indication of the difference between the upward and downward 
range components’ volatility structures. The correlation coefficient between upward range 
and downward range components for all the three stock indices are significant at 0.001 
significance level and these negative correlation values suggest that periods of higher 
downward range volatility are related to lower upward range volatility periods. 

Figure 1:S&P500daily price range (black), daily upward range (red) and daily downward 
range (green) for the period of 01/02/1990: 12/31/2016. 
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Figure 2: CAC40 daily price range (black), daily upward range (red) and daily downward 
range (green) for the period of 01/02/1990: 12/31/2017. 

Figure 3: NIKKEI225 daily price range (black), daily upward range (red) and daily 
downward range (green) for the period of 01/01/1990-12/31/2018. 
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Time series plots for the daily price range, daily upward range and daily downward range 
series of S&P500 are present in Figure 1 through Figure 3. According the Figures, both 
upward and downward price range data have zeros. This is an important fact that needs to 
be considered when selecting the appropriate distributions to model the price series 
separately. In this study we use exponential distribution to model both the upward and 
downward price ranges, because the support of this distribution includes zero. 

6.2. In-Sample Estimating Results 

In this section we are going to discuss the parameter estimation for the both FACARR and 
GFACARR models. Model parameters are estimated by using the MLE method as 
discussed in Section 4 and results are presented in Table 4. According to the AIC value for 
the overall range period, the proposed GFACARR model performs slightly better than the 
FACARR model. However, in some situations FACARR has lower AIC value than that of 
the GFACARR model for upward or downward range models. Moreover, when compared 
to the FACARR model, GFACARR process can capture the negative relationship between 
current conditional mean of upward (downward) range and previous price range data or 
conditional mean of downward (upward) range. Table 5 and Table 6 summarize the 
comparison of results between FACARR and GFACARR models, including their 
performance during the 2009 recession period. Based on the results in Table 5, the 
proposed GFACARR model has lower RMSE and MAE when compared to the FACARR 
model during the recession period. This suggests that the GFACARR model fits the data 
from the recession periods better than the FACARR model. In general, GFACARR model 
has lower MAE and RMSE values when modeling the range than that of the FACARR 
model for all the three stock indices.  

Table 4: Parameter Estimated Values for FACARR and GFACARR and GGFACARR 
Model. 

Model S&P500 CAC40 NIKKEI225 
FACARR GFACARR FACARR GFACARR FACARR GFACARR 
0.0141 0.0142 0.0249 0.0463 0.0171 0.0173 

0.0327 0.0314 0.0546 0.0692 0.0748 0.0565 

0.8292 0.9572 0.7886 0.3424 0.7721 0.9323 

0.1075 0.0989 0.1107 0.1447 0.1171 0.1018 

-0.1102 0.3290 -0.1131

0.0155 0.0369 0.0140 0.0140 0.0218 0.0314 

0.1007 0.1207 0.1025 0.0944 0.1114 0.1319 

0.8469 0.2204 0.8303 0.8964 0.8204 0.7110 

0.0301 -0.0314 0.0553 0.0452 0.0454 0.0485 

0.6729 -0.0544 0.0826 

AIC-
UPR 

5717.44 5721.62 8766.88 8755.37 8393.54 8388.31 

AIC-
DWNR 

6681.03 6648.76 10128.84 10132.34 9968.73 9969.99 

AIC-
RANGE 

12398.47 12370.38 18895.71 18887.71 18362.26 18358.3 
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Table 5: In-sample Comparison between FACARR, and GFACARR models for S&P500, 
CAC40 and NIKKEI225 

Index Model Upward Range Downward 
Range 

Range 

MAE RMSE MAE RMSE MAE RMSE 

S&P500 
FACARR 0.4314 0.6138 0.5034 0.7336 0.4157 0.6112 
GFACARR 0.4317 0.6148 0.5016 0.7323 0.4128 0.6071 

CAC40 
FACARR 0.4858 0.6766 0.5428 0.7562 0.4767 0.6845 
GFACARR 0.4847 0.6745 0.5426 0.7566 0.4758 0.6829 

NIKKEI225 
FACARR 0.5234 0.7487 0.5823 0.8514 0.5080 0.7610 
GFACARR 0.5225 0.7496 0.5831 0.8520 0.5066 0.7598 

Table 6: In-sample recession period Comparison between FACARR, and GFACARR 
models for S&P500, CAC40 and NIKKEI225 

Index Recession 
Period 

MAE RMSE 

S&P500 
0.7659 1.1488 
0.7650 1.1456 

CAC40 
1.2376 1.7728 
0.7506 1.0828 

NIKKEI225 
0.3778 0.4747 
0.3758 0.4741 

In-sample prediction by GFACARR model for the S&P500, CAC40 and NIKKEI225 are 
given in the Figure 4, Figure 5 and Figure 6.  

Figure 4: In-sample perdition of fitted GFACARR model (green) for the S&P500 (red) 
index. 
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Figure 5: In-sample perdition of fitted GFACARR model (green) for the CAC40 (red) 
index. 

Figure 6:  In-sample perdition of fitted GFACARR model (green) for the NIKKEI225 
(red) index. 
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6.3. Out-of-Sample Forecasting 

Out of Sample performance of the proposed GFACARR model is compared with the 
FACARR model with MAE and RMSE used as the forecasting performance evaluation 
indicators. Model with smaller forecasting error values indicates that it is relatively better 
than the other models. For out of sample predicting a recursive window estimation method 
was carried out. Moreover, Diebold& Marino (1995) test is used to check whether there is 
a significant difference between the GFACARR model forecasting accuracy and that of the 
FACARR model. If there a significant difference exists, then we checked whether 
GFACARR model is more accurate than FACARR model for forecasting future price range 
data. Table 7 presents the out of sample forecasting results. Based on the forecasting errors, 
GFACARR model have lower MAE and RMSE values for all the three stock indices than 
that of the FACARR model. DM test statistics and corresponding p-values suggested with 
95% confidence that the proposed GFACARR model is more accurate than FACARR 
model in forecasting future values for S&P 500 and NIKKEEI225 indices. However, for 
the CAC40 stock index there is no significant difference between GFACARR and 
FACARR forecasting accuracy. Out of sample data and the forecasted values by 
GFACARR model are presented in the Figure 7through 9. 

Table 6: Out of sample Comparison between FACARR and GFACARR models for 
S&P500, CAC40 and NIKKEI225 

Index Model Range 
MAE RMSE DM test 

statistics 
(p value) 

S&P500 
FACARR 0.2033 0.2517 -2.5013

(0.0062)GFACARR 0.1994 0.2470 

CAC40 
FACARR 0.3270 0.4086 -0.26731

(0.3946)GFACARR 0.3255 0.4077 

NIKKEI225 
FACARR 0.3149 0.3980 -2.8334

(0.0023)GFACARR 0.3095 0.3913 
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Figure 7: Out-of-sample forecasted values by GFACARR (green) for the S&P500 (red) 
index. 

Figure 8: Out-of-sample forecasted values by GFACARR (green) for the CAC40 (red) 
index. 
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Figure 9: Out-of-sample forecasted values by GFACARR (green) for the NIKKEI225 
(red) index. 

7. Conclusions

In this paper we proposed the GFACARR model, which is a bivariate CARR type model, 
to accommodate asymmetric propagation of upward and downward ranges while 
accommodating a complete dynamic feedback mechanism between these two components 
and their conditional means.   The GFACARR process use both previous downward 
(upward) price range and conditional mean downward (upward) range values to model the 
current conditional mean upward (downward) range. Furthermore, GFACARR model is 
capable of modeling the negative relationship between upward and downward range data 
which cannot be achieved using the FACARR model. The performance of the proposed 
model is gauged through an empirical study by using three stocks indices, namely S&P500, 
CAC40 and NIKKEI225. Based on the AIC value, the GFACARR model seems to provide 
a better predictions of the overall price range compared to its counterpart, the FACARR 
model. According to the performance evaluation indicators we employed, for GFACARR 
model has relatively lower predicting errors when predicting the overall range and it 
performs better at predicting both upward and downward ranges during recession periods. 
However, in some non-recession situations, FACARR has slightly better performance in 
in-sample predictions than the GFACARR model with respect to predicting upward or 
downward ranges. Smaller forecasting error values are obtained for the out of sample price 
range data by GFACARR model for two indices studies and the performance of the two 
models are not statistically significant for the third index. Overall, the results indicate that 
GFACARR model beats FACARR model for out of sample forecasting. 
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