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Abstract 

The role of each of the probability density function/process in a mixture probability 
distribution/process has been unfolded to demonstrate to what extent it does contribute to 
each partition of the total probability and the results of which factors of each probability 
density function are participating in that mixture probability distribution/process. It has 
been observed that it is a result of the joint effect of how steep each distribution/process is 
compared to the other ones and what are the effects of each of the densities over several 
partitions. 
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1. Introduction 

 
Mixture distribution was first coined in 1894. Several authors defined mixtures of 
distributions and studied various mixture distributions which they called several finite and 
infinite mixture distributions.  
 
Most of them investigated additive mixture rather than multiplicative mixture. But in real 
life multiplicative mixture is more representative than the additive mixtures, since in 
multiplicative mixture distribution, appropriate randomness in both mixing and mixtured 
distribution is considered. None of the authors (1992, 2004) of mixture distributions 
demonstrated what is the clear automated role and contribution of each of the probability 
density functions in a Mixture probability distribution and to what extent each probability 
density function contributes to several partitions of total mixture probability distribution 
and what are the influences of different factors of each mixing probability density function 
participating in that mixture probability distribution.  
 
As such, the aim of this paper is to unmask the explicit role(s) of each density function 
played in a finite mixture distribution. 
 

2. Construction of the Existing Mixture Distributions  

 
A mixture distribution is a weighted average of probability distribution of positive weights 
that sum to one. The weights themselves comprise a probability distribution called the 
mixing distribution. Due to the property of weights, a mixture is a probability distribution. 
The parameter θ of a family of distributions, given by the density by the density function 
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𝑓(𝑥; 𝜃), is itself a subject to the change variation. The mixing distribution 𝑔(𝑥; 𝜃) is then 
a probability distribution on the parameter of the distributions. The general formula for the 
finite mixture is ∑ 𝑓(𝑥; 𝜃𝑖

𝑘
𝑖=1 )𝑔(𝜃𝑖) and the infinite counterpart is ∫ 𝑓(𝑥; 𝜃)𝑔(𝜃)𝑑𝜃 where 

g is the density function. 
 

3. Finite Mixture Distribution along with its Instantaneous Effects 
 
The Mixture Probability Mass Function of the mixture of two continuous probability 
density functions 𝑓1 and 𝑓2 of the mixture random variable X is given by 

P (𝑋 = 𝑟) =  (
𝑛
𝑥)𝑓1

(𝑛−𝑟)𝑓2
(𝑟)

(𝑓1𝑓2)(𝑛)    ∀ 𝑟 = 0,  1,  2, … ,  𝑛,        (1) 
 
where, each of 𝑓1 and 𝑓2 is a 𝑛 times differentiable density function of 𝑥. Here, 𝑓1

(𝑛−𝑟) is 
the (𝑛 − 𝑟) th derivative and 𝑓2

(𝑟)
 is the 𝑟 th derivative of the functions 𝑓1  and 𝑓2 

respectively. (𝑓1𝑓2)(𝑛) is the 𝑛th derivative of the multiple of functions 𝑓1 and 𝑓2. Each of 
𝑓1 and 𝑓2 is a 𝑛 degree polynomial density function of 𝑥. Each of 𝑓1 and 𝑓2 is 𝑛 times 

differentiable with respect to 𝑥. The term 𝑓1
(𝑛−𝑟)𝑓2

(𝑟)

(𝑓1𝑓2)(𝑛)  is the contribution of the  𝑟th term to 
the coefficient of the Binomial expansion responsible for how steep is the polynomial 
function 𝑓2 and its successive contribution in the joint slope of the term after 
differentiation(s). Here, 𝑓1and 𝑓2 are not complimentary probability functions. 𝑓1 + 𝑓2 is 
not necessarily 1, since both are continuous functions of 𝑥. 
 

𝐸(𝑥) = n
[{

𝑑

𝑑𝑥
(𝑓2(𝑥))}{∫ 𝑓1(𝑥) ⅆ𝑥}]

(𝑛−1)

[(𝑓2(𝑥))(𝑓1(𝑥))]
(𝑛) ,            (2) 

𝐸(𝑥(𝑥 − 1)) = n(n − 1)
[{

𝑑2

𝑑𝑥2(𝑓2(𝑥))}{∫ 𝐹1(𝑥) ⅆ𝑥}]
(𝑛−2)

[(𝑓2(𝑥))(𝑓1(𝑥))]
(𝑛) , 

𝑉(𝑥) = n(n − 1)
[{

𝑑2

𝑑𝑥2(𝑓2(𝑥))}{∫ 𝐹1(𝑥) ⅆ𝑥}]

(𝑛−2)

[(𝑓2(𝑥))(𝑓1(𝑥))]
(𝑛) +                  n

[{
𝑑

𝑑𝑥
(𝑓2(𝑥))}{∫ 𝑓1(𝑥) ⅆ𝑥}]

(𝑛−1)

[(𝑓2(𝑥))(𝑓1(𝑥))]
(𝑛) −

 (n
[{

d

dx
(f2(x))}{∫ f1(x) ⅆx}]

(n−1)

[(f2(x))(f1(x))]
(n) )

2

,                          (3) 

 
Similarly, the Mixture Probability Mass Function of the mixture of k continuous 
density functions 𝑓1 ,𝑓2 , …, 𝑓𝑘  of the mixture random variable X is given P(𝑟1 
number of successes according to the density 𝑓1, 𝑟2 number of successes according 
to 𝑓2,…, 𝑟𝑘 number of successes according to 𝑓𝑘 in 𝑛 trials), 
 

𝑃 (𝑋 = 𝑟𝑖) =  
(

𝑛
𝑟1,𝑟2,…,𝑟𝑘

)𝑓1
(𝑟1)𝑓2

(𝑟2)……..𝑓𝑘
(𝑟𝑘)

(𝑓1𝑓2……𝑓𝑘)(𝑛)    ∀𝑟𝑖 = 0,  1,  2, … ,  𝑛.         (4) 
Each of 𝑓1, 𝑓2, …, 𝑓𝑘 is a 𝑛 degree polynomial function of 𝑥. Each of 𝑓1, 𝑓2, …, 𝑓𝑘 

is 𝑛  times differentiable with respect to 𝑥 . The term 𝑓1
(𝑟1)𝑓2

(𝑟2)……..𝑓𝑘
(𝑟𝑘)

(𝑓1𝑓2……𝑓𝑘)(𝑛)  is the 
contribution of the 𝑟𝑖

th term to the coefficient of the Multinomial expansion 
responsible for how steep is the 𝑓𝑖 polynomial function and its successive 
contribution in the joint slope of the term after differentiation(s). Here, for 𝑓1, 𝑓2, 
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…, 𝑓𝑘 ; 𝑓1 + 𝑓2+ ⋯ + 𝑓𝑘 is not necessarily 1, since each of them is a continuous 
function of 𝑥. The moments of the finite k-mixture distribution is 
 

𝐸(𝑋𝑖) = n
[{

𝑑

𝑑𝑥
(𝑓𝑖(𝑥))}{∫ 𝑓1(𝑥) ⅆ𝑥}………{∫ 𝑓𝑘(𝑥) ⅆ𝑥}]

(𝑛−1)

[(𝑓𝑘(𝑥))…(𝑓1(𝑥))]
(𝑛) ,           (5) 

   
4. Relation to Traditional Binomial and Multinomial Distributions 

 
Since each of the functions 𝑓1  , 𝑓2 is a function of x and at least n times 
differentiable with respect to x, each term of Binomial expansion demonstrates the 
joint slope of their product. Here each term of the Binomial expansion expresses 
how much of the total probability is being distributed to different binomial terms 

according to (𝑛
𝑟)𝑓1

(𝑛−𝑟)𝑓2
(𝑟)

(𝑓1𝑓2)(𝑛)  100 %.  
 
Since each of the K density functions 𝑓1, 𝑓2, …, 𝑓𝑘 is a function of x and at least n 
times differentiable, each term of the expansion demonstrates the joint slope of their 
product term. Here each term of the Multinomial expansion expresses how the total 
probability is being distributed to different terms according to 
(

𝑛
𝑟1,𝑟2,…,𝑟𝑘

)𝑓1
(𝑟1)(𝑥)𝑓2

(𝑟2)(𝑥)……..𝑓𝑘
(𝑟𝑘)(𝑥)

(𝑓1𝑓2……𝑓𝑘)(𝑛)(𝑥)
 100 %. 

 
Unlike two complementary related fixed probability of success and that of failure, 
𝑓1 and 𝑓2 are two probability density success functions. In traditional Binomial 
distribution, probability of obtaining a fixed number of successes depends on how 
many number of successes one is interested to find and what is the extent of the 
probability of getting a success. But in the proposed Finite Mixture Distribution, 
the probability of obtaining a fixed number of successes according to a success 
function depends on how many number of successes one is interested to find and 
what is the product of the rates of the forces of that success function and the other 
success function.       
 

5. Connection to the Generalized Leibnitz Theorem 
 
The probability mass function in equation (1) must satisfy the fundamental rule of 

a probability distribution which is ∑ (𝑛
𝑥)𝑓1

(𝑛−𝑥)𝑓2
(𝑥)

(𝑓1𝑓2)(𝑛)
𝑛
𝑥=1 = 1. So, it immediately gives 

the following equation after cross multiplication as below 
 
   (𝑓1𝑓2)(𝑛) =  ∑ (

𝑛
𝑥

) 𝑓1
(𝑛−𝑥)

𝑓2
(𝑥)𝑛

𝑥=1                                   (6)           
 
The left-hand side of the equation (6) is the numerator of the probability mass 
function in equation (1). This equation is also known as the Leibniz theorem in 
Calculus due to Gottifried Leibnitz (Stewart, J. 2020) stating how to find the nth 
derivative of the product of two n-differentiable functions 𝑓1 and 𝑓2 each of which 
is a function of 𝑥 .The generalized form of Leibnitz theorem also can also be 
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obtained from the generalized Finite Mixture Distribution via the following 
equation 
 
           (𝑓1𝑓2 … … 𝑓𝑘)(𝑛) = ∑ (

𝑛
𝑥1, … . 𝑥𝑖, … , 𝑥𝑘

) 𝑓1
(𝑥1)

… … . . 𝑓𝑖
(𝑥𝑖)

… . … 𝑓𝑘
(𝑥𝑘)

𝑥𝑖
   (7)       

 
6. Some Examples of Finite Mixture Distributions for Two Distributions 

 

Suppose that we have two exponential density functions 𝑓1(𝑥) = 𝑒−𝑥  and 
𝑓2(𝑥) = 𝑒−2𝑥 . We want to observe the probability distribution of x number of 
successes according to function 𝑓2(𝑥) if there are n total number of trials. For, 𝑛 =

1, the probability of r success is 1
3
, 2

3
 where 𝑟 = 0,  1 respectively. Similarly, for 2 

total number of trials, the probability distribution for 0, 1, 2 number of success(es) 
are 1

9
 , 4

9
 , 4

9
 . For 3 trials the probability distribution for or 0, 1, 2, 3 number of 

success(es) are 1

27
, 6

27
, 12

27
, 8

27
 respectively. Interestingly, the location parameter is 

every time 2

3
. It is also evident for the weighted average for the mixture Bernoulli 

variate for 𝑛 = 1.  
 
Let we have two other density functions 𝐸(1) and 𝑁(0,1) from the exponential and 
the standard normal distributions respectively. If there are n trials, the probability 
of x number of successes according to function 𝑁(0,1) can be obtained. For, 𝑛 =

1, the probabilities of 0 and 1 success are 1

1+𝑥
 , 𝑥

1+𝑥
 respectively. So, the location 

parameter is 𝑥

1+𝑥
 . Similarly, for 2 trials the probability distribution for 0, 1, 2 

success(es) are 𝑒
− 

1
2

𝑥2−𝑥

√2𝜋
 , 2𝑥𝑒

− 
1
2

𝑥2−𝑥

√2𝜋
 , (𝑥2 −1)𝑒

− 
1
2

𝑥2−𝑥

√2𝜋
. The mean according to the 

formula (2) is  2 𝑥(𝑥+1)𝑒
− 

1
2

𝑥2−𝑥
− 𝑒

− 
1
2

𝑥2−𝑥

𝑒
− 

1
2

𝑥2−𝑥
+2𝑥𝑒

− 
1
2

𝑥2−𝑥
+(𝑥2−1)𝑒

− 
1
2

𝑥2−𝑥
 . This mean can also be obtained 

from the weighted average of 0, 1, 2 with weights 𝑒
− 

1
2

𝑥2−𝑥

√2𝜋
 , 2𝑥𝑒

− 
1
2

𝑥2−𝑥

√2𝜋
 , 

(𝑥2−1)𝑒
− 

1
2

𝑥2−𝑥

√2𝜋
 respectively.  

 
For the Beta density function 𝐵𝑒𝑡𝑎(4,1)  and the Gamma density function 
𝐺𝑎𝑚𝑚𝑎(1,1),  for n trials, the probability of x number of successes according to 
function 𝐺𝑎𝑚𝑚𝑎(1,1) can be obtained. For, 𝑛 = 2, the mean number of successes 
is 2 60𝑥2𝑒−𝑥−20𝑥3𝑒−𝑥

60𝑥2𝑒−𝑥−40𝑥3𝑒−𝑥+5𝑥4𝑒−𝑥 .  
 

7. Further Application of the Proposed Finite Mixture Distribution in 

Generalized Linear Model and Mixture Stochastic Processes 
 
The Generalized Linear Model for the proposed Finite Mixture Distribution will be 
  ℎ(𝑔2(𝑓2), 𝑔1(𝑓1)) = ∑ 𝑥𝑖𝑗

𝑝
𝑗=1 𝛽𝑗     ∀ 𝑖 = 1,2, … , 𝑛 
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where 𝑔2 , 𝑔1  are some functions of 𝑓2 , 𝑓1  respectively and h is a non-linear 
function of 𝑔2, 𝑔1. There are p predictors whereas 𝑥𝑗 is the jth predictor along-with 
the jth slope parameter 𝛽𝑗. 
 
The Mixture Probability Mass Function of the mixture of two continuous processes 
𝑓1(𝑡) and 𝑓2(t) of the mixture random family of random variable X(t) is given by 
 
 P(𝑟 number of successes according to the density function 𝑓2 in 𝑛 trials) 
 

 = P (𝑋(𝑡) = r)  =  (𝑛
𝑟)𝑓1

(𝑛−𝑟)(𝑡)𝑓2
(𝑟)

(𝑡)

(𝑓1𝑓2)(𝑛)(𝑡)
  ,   ∀ 𝑟 = 0,  1,  2, … ,  𝑛 

 
Here, 𝑓1

(𝑛−𝑟)(𝑡), 𝑓2
(𝑟)

(𝑡)  are the Stochastic Differentials of the densities 
𝑓1 (𝑡), 𝑓2 (𝑡) of the Stochastic Processes. 
 

Conclusion 

 
The proposed way of generating finite mixture distribution(s) can be used for 
mixing two (or more than two) continuous probability distribution where each of 
binomial expansion represents how the contribution of the  𝑟 th term to the 
coefficient of the Binomial expansion is responsible for the steepness of the density 
functions and their successive contributions to the joint slope(s) after 
differentiation(s).  
 
The distribution of the product of two continuous probability density functions is 
splitted to several partitions showing the momentum of the distribution at several 
segments for a specific number of success(es) due to how steep a density function 
is and how the other density function affects the slope of the first function on the 
overall joint slope for individual binomial term. 
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