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Abstract

In thispaper, we introduce and study a class of disagreement measures for probability distribution forecasts based on

the Wasserstein metric. We describe a few advantageous properties of this measure of disagreement between forecast-

ers. After describing alternatives to our proposal, we use examples to compare these measures to one another in closed

form. We provide two empirical illustrations. The first application uses our measure to gauge disagreement among

professional forecasters about output growth and inflation rate in the Euro zone. The second application employs

our measure to gauge disagreement amongmultivariate predictive distributions generated by different forecasting

methods.
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1. Intr oduction

Measures of disagreement between forecasters play a few important roles in economics and business. First,

they can serve as estimates of economic uncertainty (Zarnowitz and Lambros, 1987;Lahiri et al., 1988;

Bomberger, 1996;Giordani and S̈oderlind,2003;Rich and Tracy, 2004;Liu and Lahiri, 2004;Boero et al.,

2008;Lahiri and Sheng, 2010b;Bruine de Bruin et al., 2011;Boero et al., 2014;Abel et al., 2016;Glas,

2020). Second, they are also used to understand the behavior of forecasters (Mankiw et al., 2003;Lahiri

and Sheng,2008;Patton and Timmermann, 2010;Lahiri and Sheng,2010a;Coibion and Gorodnichenko,

2012;Clements,2014;Andrade et al.,2016). While there has been a great deal of work in economics on

measures of discrepancy between the point predictions of forecasters, there has been less work on measuring

the discrepancy between probability and density predictions, with the exception of papers that consider the

cross-sectional variation of higher moments (variance, range, skewness) of predictive distributions produced

by the professional forecasters (D’Amico and Orphanides,2008;Bruine de Bruin et al., 2011;Boero et al.,

2008;Clements,2014;Li and Tay,2017) and of papers that measure disagreement among predictive distri-

butions based on entropy or statistical divergence (Shoja and Soofi, 2017;Lahiri and Wang,2019;Bajgiran

et al., 2020;Rich and Tracy,2020).
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In this note, we use the Wasserstein metric, a distance metric between probability distributions, to mo-

tivate a class of measures for the dispersion between either probability densities or distributions.1 Our

proposed measureof disagreement is based on the Fréchet variance in theq–Wasserstein metric space. This

can be viewed as a natural extension of cross-sectional variance of point forecasts, which is the Fréchet

variance in Euclidean space, to probability/density forecasts.

After introducing our notation, the next section introduces additional notation, including the Wasserstein

metric and our proposed measure of dispersion. Then, we study its properties in the context of measuring

disagreement in probability and density predictions. Section 3 describes other possible robust measures of

disagreement based on the Wasserstein metric that are potentially robust to the outlying predictive distribu-

tion. Section 4 explores alternative measures of dispersion that are also based on Fréchet variance, but use

either distance metrics or divergence measures other than theq–Wasserstein metric, and compare our pro-

posed measure to other measures of disagreement used in the economic forecasting literature. Two empirical

applications are provided in Section 5.

2. Dispersion based on optimal transport

We will denote the set of probability distributions with support inRd asP . We will assume that in time

periodt ∈ N+ each agenti ∈ {1, . . . , N} provides the probability distribution function forecastPit ∈ P of

therandom variableyt+h, whereh ∈ N+. When thisdistribution is assumed to have a well defined density

function, we will denote this function bypit : Rd → R+. Also, whenour discussion is limited to a particular

time, we will omit the time subscript,t, on these functions.

Using this notation, theq−Wasserstein metric is defined as

Wq(Pi, Pj) =

(

inf
ϕ∈Ω(Pi,Pj)

∫
‖zi − zj‖

q
qdϕ(zi, zj)

)1/q

, (1)

whereΩ(Pi, Pj) is theset of all couplings between the distributionsPi andPj , which canalso be defined

more formally as

Ω(Pi, Pj) =
{

ϕ : Rd × Rd → R+ | ∀A ⊂ Rd, ϕ(A,Rd) = Pi(A) andϕ(Rd, A) = Pj(A)
}

. (2)

The minimizerof (1) is known as the optimal transport plan because, for anyA,B ⊂ Rd, ϕ(A,B) can

be interpreted as the probability mass that is mapped, or transported, fromA to B in order to minimize

E (‖zi − zj‖
q
q) wherezi ∼ Pi andzj ∼ Pj . This distancemetric has the advantage of always being well

defined for distributions with support inRd, including incases in which these distributions are not absolutely

continuous. For more detail on the field of optimal transport, see (Villani, 2003;Galichon,2018;Panaretos

and Zemel, 2019).

1It is worth to note thatRich and Tracy(2020) also consider a disagreement measure based on the Wasserstein metric. Our
proposed measure is different from theirs, and we discuss their measure in Section3.
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SinceWq(∙) is adistance metric, it is straightforward to define its corresponding Fréchet mean, which is

also known as theq−Wasserstein barycenter. Specifically, the barycenter is defined as the minimizer of the

following optimization problem,

Vq({Pi}
N
i=1) := min

P∈P

1
N

N∑

i=1

Wq(Pi, P )q, (3)

which we will denote by P . The Wasserstein barycenter withq ∈ 1, 2 has previously been considered

in the forecasting literature; Examples withd = 1 include Irpino and Verde(2006), Verde and Irpino

(2007),Arroyo and Mat́e (2009),Arroyo et al.(2011),Gonźalez-Rivera and Arroyo(2012),Lichtendahl

et al. (2013), andBusetti (2017) whileCumings-Menon and Shin(2020) consider the case withd ≥ 1.

Our proposed measure of dispersion isVq({Pi}N
i=1), the value of the objective functionat P , which is also

known as the Fŕechet variance.

Note thatVq(∙) can bedefined in a particularly simple manner in the one dimensional case. Specifically,

in this case we have,

Vq({Pi}
N
i=1) = min

P∈P

1
N

N∑

i=1

∫ 1

0
‖P−1

i (τ) − P−1(τ)‖q
qdτ, (4)

whereP−1
i (∙) andP−1(∙) are thequantile function of agenti and of the combination method, respectively.

Section 2.2 also describes another case in whichVq(∙) can befound in closed form, which is distributions

with a location-scale parameterization. Outside of these two cases,Vq(∙) can alsobe estimated by solving

the convex problem (3) after discretizing.

2.1 Properties ofVq({Pi}N
i=1)

In this section we will outline four advantageous properties ofVq(∙). The firsttwo properties are trivial to

prove, as they follow from the fact thatWq(∙) is always well defined in the present setting, and is also a

distance metric.

Property 1: Existence The measure of dispersionVq(∙) can beused to measure dispersion of a set of

probability density functions, a set of probability mass functions, or a set containing both probability density

functions and probability mass functions.

Property 2: Non-negativity For any set of input distributions{Pi}N
i=1, we haveVq({Pi}N

i=1) ≥ 0 and

Vq({Pi}N
i=1) = 0 if and only if Pi = Pj for all i, j ∈ {1, . . . N}.

Property 3: Monotonicity LetP 1 andP 2 denote theWasserstein barycenters when the input densities are

{Pi}N
i=1 or {Pi}

N−1
i=1 ∪PN+1 respectively. If Wq(P 2, PN+1) > Wq(P 1, PN ), thenVq({Pi}

N−1
i=1 ∪PN+1) >
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Vq({Pi}N
i=1).

Proof: SinceWq(P 2, PN+1) > Wq(P 1, PN ), we have

Vq({Pi}
N−1
i=1 ∪ PN+1) =

1
N

(

Wq(PN+1, P 2)
q +

N−1∑

i=1

Wq(Pi, P 2)
q

)

>

1
N

(

Wq(PN , P 1)
q +

N−1∑

i=1

Wq(Pi, P 2)
q

)

≥
1
N

N∑

i=1

Wq(Pi, P 1)
q =Vq({Pi}

N
i=1).

In somesense Property 2 and Property 3 can be viewed as generalizations of properties that are shared by

many common measures of dispersion for random variables. For example, the sample variance of{xi}N
i=1

is apositive measure of dispersion that would increase if any observationxi ∈ {xi}N
i=1 were tobe replaced

by x̃ such that‖xi − x̄‖2 ≤ ‖x̃ − x̄‖2, wherex̄ denotes thesample mean.

Before moving onto the fourth property, it is also worth noting a more rigorous link between the2–

Wasserstein metric and cross-sectional variance of point forecasts. For example, given the sample of point

forecasts{xi}N
i=1, we candefine a corresponding set of distributions{Pi}N

i=1, such thatPi is thedistribution

defined as a point mass atxi. In this case,V2({Pi}N
i=1) is equalto the cross-sectional variance of{xi}N

i=1.

In a similar way, but whenq = 1, our proposed measure corresponds to the to average absolute error from

median.

Property 4: Lower bound For any univariate input distributions{Pi}N
i=1, thefollowing inequality holds,

V2({Pi}i) ≥
1
N

N∑

i=1

(μi − μ)2 +
1
N

N∑

i=1

(σi − σ)2.

Proof: SeeAlvarez-Esteban et al.(2018).

This inequalityprovides a useful lower bound based on the cross-sectional variance of first two moments

of the input densities. Moreover, it is evident from this inequality that the proposed measure naturally

extends a disagreement measure of point forecasts to probability and density forecasts by adding terms

related to the cross-sectional variation of predictive distributions beyond the mean. The bound holds with

equality when all input densities are Gaussian, as we shall see from the next section.

2.2 Example: Normal distributions

Agueh and Carlier(2011) provide a closed form solution forV2({PN ,i}N
i=1), where eachPN ,i ∈ {PN ,i}i is

a Gaussiandistribution with meanμi ∈ Rd and variance matrixSi ∈ Rd×d. More generally, this solution

for the2–Wasserstein metric also holds for other distributions with a location-scale parameterization; see

also (Knott and Smith, 1994;Panaretos and Zemel, 2019). Specifically, in these casesV2({PN ,i}i) is given
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by

V2({PN ,i}i) =
1
N

N∑

i=1

‖μi − μ‖2
2 + Trace

(

Si + S − 2
(
S

1/2
i SS

1/2
i

)1/2
)

, (5)

whereS is definedby the fixed point of

S =
1
N

N∑

i=1

(
S1/2SiS

1/2
)1/2

. (6)

When inputdensities are univariate Gaussian, this expression can be simplified further. For example, in

this case we haveW2(Pi,N , PN )2 = (μi − μ)2 + (σi − σ)2 , so theWasserstein barycenter can be defined

asPN =d N(μ, σ2), whereμ = 1
N

∑
i μi andσ = 1

N

∑
i σi. Thus, inthis case, our proposed disagreement

measure is equal to,

V2({Pi}i) =
1
N

N∑

i=1

(μi − μ)2 +
1
N

N∑

i=1

(σi − σ)2,

or thesum of the cross-sectional variances of means and the cross-sectional variances of standard deviations.

As discussed previously, the literature on disagreement measures of forecasts focuses primarily on dis-

persion of point forecasts. In settings in which forecasters’ distribution predictions are in the form of both a

mean and a standard deviation of a normal distribution, this equality provides a link between the dispersion

measureV2({Pi}i) and thisprior work. Specifically, it is given by the cross-sectional variance of mean

forecasts plus the cross-sectional variance of standard deviation forecasts.

3. Alternative dispersion measures I: Robust dispersion measure

One advantageous feature ofVq(∙) that was not discussed in Section 2.1 is that this measure also encom-

passes robust dispersion measures, which, relative to our previous example, correspond toq ∈ [1, 2). In this

subsection we will describe alternative dispersion measures that also share this property. Although, these

measures of dispersion are not monotonic and they may be zero even when some of the input distributions

are not equal to one another.

MAD-type dispersion measure One can also generalizeVq(∙) by consideringnonlinear aggregations of

the values in{Wq(Pi, P )q}N
i=1. For example, one possibility would be the following alternative measure of

dispersion forq = 1.

D1({Pi}
N
i=1) = mediani {W1(Pi, P )}N

i=1

which, in terms of samples of random variables, is analogous to the median absolute deviation (MAD).

Dispersion without location measure Rousseeuw and Croux (1993) propose two related cross-sectional

measures of dispersion for data points that do not depend on a notion of center. These can be viewed as
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analogous tothe interquartile range, which, like MAD, is robust to outliers, as these two measures have

identical expectations for symmetrically distributed data, but, unlike MAD, the interquartile range is also

robust to cases in which the variates are skewed.

The natural generalizations of the measures proposed byRousseeuw and Croux(1993) to our setting

are,

Qq({Pi}
N
i=1) = kth order statisticof {Wq(Pi, Pj)}i<j , (7)

wherek = (N choose2)/4, and,

Sq({Pi}
N
i=1) = mediani∈{1,2,...,N} medianj∈{1,2,...,N}{Wq(Pi, Pj)}

N
i,j=1. (8)

These dispersionmeasures have the advantage of being applicable for distributions of random variables that

are discrete as well as continuous (Property 1). However, it is easy to construct cases in which Properties

2 and 3 do not hold. For example, for either of these two measures of dispersion, there exists a sufficiently

large value ofN such thatSq({Pi}N
i=1) = Qq({Pi}N

i=1) = 0 when all elements of{Pi}
N−1
i=1 are identical,

regardless of the value ofPN .

Recently,Rich and Tracy(2020) propose a measure of theindividual disagreement (average absolute

density disagreement) defined as

iAADDt =
1

N − 1

∑

j 6=i

W1(Pj , Pi),

to measurehow the individual probability distributionPi is different from others. In their descriptive anal-

ysis, they present and discuss time-series plot ofmediani∈{1,2,...,N}(iAADDt), which is closely related to

S1({Pi}N
i=1) introduced inEqn (8): They coincide if we replace the second median operator in Eqn (8) with

the sample average operator.

4. Alternative dispersion measures II: Dispersion measures using other metrics

Clearly one could use a similar approach as the one taken here using an alternative metric to the Wasserstein

distance, such as total variation, Hellinger,L2, Kullback-Leibler divergence, etc. For example, the Hellinger

distance is one particularly popular fidelity criterion in statistical theory; see for example, (Beran,1977;

Kitamura et al., 2013). This distance metric is defined as,

H(p1, p2)
2 =

1
2

∫ (√
p1(x) −

√
p2(x)

)2
dx,

and itscorresponding Fŕechet variance can be used to measure disagreement among probability/density

forecasts,

VH({Pi}
N
i=1) = min

P∈P

1
N

N∑

i=1

H(pi, p)2.
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A similar disagreement measure is possible for statistical divergences such as Kullback-Leibler divergence

even though it is not a metric. For example,Shoja and Soofi(2017) andLahiri and Wang(2019) employ

the following averaged divergence to measure disagreement among probability distributions of professional

forecasters

VKL({Pi}
N
i ) =

1
N

N∑

i=1

KL(Pi, P∗),

whereKL(Pi, P∗) is theKullback-Leibler divergence betweenP∗ to Pi andP∗ is aconsensus forecast.

Next we will provide two simple examples that illustrate the difference between our proposal and other

measures of disagreement between distribution and density forecasts. While any choice of metric is in-

herently subjective, our reasoning behind choosing the Wasserstein metric is that it continues to provide

meaningful information when the support of the input distributions do not overlap, in the sense that it is not

simply equal to a constant in all such cases, which is demonstrated in the next example.

Example 1. Consider two uniform distributions,P1 = U(0, 1) andP2 = U(x, x + 1). In the case of the

q−Wasserstein metric, the barycenter between these distributions is given byU(x/2, x/2 + 1), and thus,

Vq({U(0, 1), U(x, x + 1)}) = Wq(U(x/2, x/2 + 1), U(0, 1)) = Wq(U(x/2, x/2 + 1), U(x, x + 1)) =

(x/2)q. In contrast,these alternative measures would not depend onx wheneverx > 1. For example,

VKL({Pi}N
i ) = log 2.

We will call the corresponding property of the measure of dispersionnon-invariance to bijective trans-

formations of the domain. Admittedly, the desirability of this property is subjective; for example,Zanardo

(2017) includesinvarianceto bijective transformations of the domain in a list of desiderata for a measure

of dispersion of probability mass functions. However, this property has the advantage of not precluding

the measure of dispersion being informative when the input distributions have supports that do not overlap.

Next we provide an additional example of the effect of certain mappings of the input distributions’ domains

on the Wasserstein metric.

Example 2. SupposeP1,N =d N(μ1, σ
2
1) and P2,N =d N(μ2, σ

2
2), and let P ′

1,N and P ′
2,N be

defined asP1,N and P2,N after rescalingthe domain. Specifically, letP ′
1,N =d N(2μ1, 4σ2

1) and

P ′
2,N =d N(2μ2, 4σ2

2). In this case we haveH(p1,N , p2,N ) = H(p′1,N , p′2,N ) andKL(p1,N , p2,N ) =

KL(p′1,N , p′2,N ) while the2−Wasserstein metric satisfiesW2(P1,N , P2,N ) = 1
2W2(P ′

1,N , P ′
2,N ).

This example can also be generalized in a straightforward manner. For example, suppose that

P1(x), P2(y), P ′
1(x), P ′

2(y) ∈ P aredefined so thatP ′
1(x) = P1(x/2) andP ′

2(x) = P2(x/2). After rescal-

ing thezi, zj in Eqn(1), we haveW2(P1, P2) = 1
2W2(P ′

1, P
′
2).

Thus, theimpact on disagreement measures based on the 2–Wasserstein metric from rescaling the do-

main is analogous to the impact on the cross-sectional variance from rescaling the datapoints, while other

disagreement measures based on Hellinger distance or KL divergence would be scale invariant.
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5. Empirical Applications

This section will provide two applications. The first application illustrates how our proposed measure of

dispersion enhances analyses of SPF data that use traditional disagreement measures. The second appli-

cation illustrates how our proposed measure can be used to gauge disagreement amongmultivariate input

densities.

5.1 Application 1: Term structure of disagreement among professional forecasters

Researchers have reported that there is a large degree of disagreement among professional forecasters about

various economic outcomes (See, for example,Sill, 2014). The disagreement among professional forecasters

exhibit systematic patterns over time as well as over the forecasting horizon. The latter is sometimes referred

to as the term structure of disagreement, and it has been a useful source of understanding the professional

forecasters’ behavior (see, for example,Lahiri and Sheng,2008,2010a;Patton and Timmermann, 2010;

Clements,2014;Andrade et al., 2016).

Data and methodology. In this section, we use our proposed measure of disagreement to quantify dis-

agreement among forecasters across forecasting horizon using the Survey of Professional Forecasters con-

ducted by the European Central Bank (ECB). This survey asks professionals about their point and probability

forecasts about various economic outcomes. There are several questions in each survey in terms of forecast-

ing target and forecasting horizons. In this application, we focus on two target variables: inflation rate

and real GDP growth rate for Euro area. For each economic outcome, we consider three survey questions

regarding forecasting horizons: (1) year-over-year growth rate at the end of the current calendar year; (2)

year-over-year growth rate at the end of the next calendar year; (3) year-over-year growth rate at the end

of five years ahead. We consider surveys conducted during 2001Q1–2019Q4 (76 quarters) and the average

number of survey respondents was approximately 46–51 in each year.

It is important to note that depending on the timing of the survey, survey answers to the same question

could imply a forecast with a different forecasting horizon. For example, the inflation rate estimate for the

current calendar year is approximately a 3-quarter-ahead prediction if the survey was conducted in 2001Q1,

while it is about 0-quarter-ahead prediction (nowcasting) if the survey was conducted in 2001Q4. Therefore,

the forecasting horizon for the current calendar year estimate varies fromh = 0 to h = 3. A similar

logic applies to answers for the next calendar year and five years ahead, and the corresponding forecasting

horizons range fromh = 4 to h = 7 and fromh = 18 to h = 21, respectively.

Professional forecasters indeed disagree with one another on mean, variance, and shape of the predictive

distribution. In Figure1 (left two panels), we present actual probability forecasts submitted by two fore-

casters from the survey conducted in the first quarter of 2001. The third panel of the same figure presents

probability forecasts made by all 60 forecasters in the same survey. A thick line represents the average of

those 60 forecasts.
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Figure 1: Probability forecasts for inflation rates in 2001Q1 (one-year-ahead prediction)

In what follows, we compute and present forecaster disagreement based on our proposed measure,

V2({Pi}N
i=1), over the forecasting horizon. Although computation of Wasserstein metric and its related

quantities such as barycenter and our disagreement measure can become complicated for general input den-

sities, it is relatively simple to compute them when all input densities are in the form of a histogram (e.g.,

Arroyo and Mat́e, 2009). End bins of those histogram forecasts in the survey are open, and therefore they

are unbounded. To facilitate computation, we assume that end bins are bounded and their length is the same

as the other bins.

Results In the first row of Figure2, we present our proposed disagreement measure,V2({Pi}N
i=1), over the

forecasting horizons fromh = 0 to h = 21 for inflation rate (left) and real GDP growth rate (right). Each

asterisk represents the time-series average of the disagreements among forecasters’ predictive distributions

for the same target variable and the same forecasting horizon. The overall shape of the disagreement curves

is quite similar for both target variables. Professional forecasters disagree more about the distant future.

Interestingly, both disagreement curves become flatter as the forecasting horizon becomes longer.

Recall that Property 4 in Section 2 shows that our disagreement measure can be decomposed into three

non-negative terms. The first two terms are the cross-sectional variance of means and standard deviations

of input densities. The third term then can be viewed as the disagreement about all remaining moments.

In the middle row of Figure2, we present cross-sectional variance of means (left) and standard deviations

(right) of individual histogram forecasts for inflation rate. This decomposition reveals several important

features. First, these two cross-sectional variances almost add up toV2({Pi}N
i=1). This implies that most

of the variation in our proposed disagreement measure can be explained by the cross-sectional variance

of the first two moments, and higher moments beyond mean and variance do not contribute much. Second,

disagreement on means for inflation rate has an inverted U-shape relationship with forecasting horizon while

disagreement on standard deviations is roughly an increasing function of forecast horizon fromh = 1.

Interestingly, professional forecasters agree about the long-run inflation forecast more than that for 5 or

6-quarter-ahead. This may be explained by the fact that the ECB governing Council goal of keeping the

annual inflation rate below, but close to, 2% over the medium-term acts as a focal point for the longer-run
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Figure 2: The term structure of disagreement among ECB-SPF forecasters

(a) Wasserstein metric based disagreement measure,V2({Pi}N
i=1)

(b) Decompositionof V2({Pi}N
i=1) for inflation rate

(c) Decompositionof V2({Pi}N
i=1) for realGDP growth
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inflation forecast.Unlike disagreement on means, forecasters exhibit a greater disagreement on standard

deviations (i.e., uncertainty about their forecast) in the long run. This means that forecasters have a different

view about how likely ECB governing Council’s aim will be achieved.

In the last row of Figure2, we present a similar decomposition for the real GDP growth rate. Again,

our measure of disagreement can be mostly explained by the cross-sectional variance of first two moments.

However, unlike the term structure of inflation rate forecast, both cross-sectional variance of means and

standard deviations are an increasing function of forecasting horizon. This makes sense as the ECB govern-

ing Council explicitly aims to stabilize prices but not the real GDP growth rate. The disagreement among

professional forecasters about how these price stabilization policies affect the real GDP growth rate may be

the cause of the relatively high disagreement about the real GDP growth rate.

5.2 Empirical illustration 2: Multivariate density prediction

In this empirical illustration we show how one can use our dispersion measure for the multivariate predictive

distribution. To this end, we consider the following 3-variable vector autoregression (VAR) that includes

GDP growth rate, inflation rate, and federal funds rate for the US data.

We consider 21 hypothetical forecasters who produce their own 1-step-ahead joint predictive distribu-

tions for GDP growth rate and inflation rate at each point in time over the forecast evaluation sample. Their

time t predictive distributions are then 2 dimensional multivariate normal distribution with meanμi,t and

variance-covariance matrixΣi,t. We assume that forecasters estimateμi,t andΣi,t using theirown informa-

tion set.

We further assume that information set differs only by the number of most recent observations when

they construct a predictive distribution. For example, forecasteri estimatesμi,t andΣi,t using

Ωi,t−1 = {Ys : s = t − Ri, t − Ri + 1, ..., t − 1}

whereΩi,t is the information set of forecasteri at time t to produce a joint predictive density ofYt+1.

Ri is thenumber of most recent observations in the information set, and we consider 21 different choices

Ri = {50, 55, ..., 150} (hence, 21 different forecasters). Differential choice ofRi can beexplained by either

the theory of rational inattention or differential beliefs about the stability of the system.

Data and model We consider the variables: the GDP growth rate, inflation rate, and the federal funds rate.

They are all annualized (in %). Our dataset begins in 1959Q1 and ends in 2019Q3. Forecasters generate

predictions from 1998Q2 until 2019Q3. All forecasters use the same empirical model, a VAR with four lags.

Y ′
t = Φ0 +

4∑

p=1

Y ′
t−pΦp + u′

t
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Figure 3: Evolution of dispersion in joint predictive distributions over time

and theirpredictive distribution isYt+1|t ∼ N (μi,t, Σi,t) where

μi,t = Φ̂i,t,0 +
4∑

p=1

Y ′
t−p+1Φ̂i,t,p, and Σi,t = Σ̂i,t,

and(Φ̂i,t,0, Φ̂i,t,1, Φ̂i,t,2, Φ̂i,t,3, Φ̂i,t,4, Σ̂i,t) is theposterior mean ofp(Φ0, Φ1, Φ2, Φ3, Φ4, Σ|Yt−Ri:t−1) with

a flatprior.

Results We generated individual predictive distributions for output growth rate and inflation rate and com-

pute our disagreement measures starting from 1998Q2 through 2019Q3 (81 observations). We measured

disagreement of these 21 forecasters using three measuresD2, S2, andQ2.

Figure3 showsevolution of disagreement in joint predictive distributions over time. All three measures

move quite closely to one another. Pairwise correlations of(V2, Q2), (V2, S2), and(Q2, S2) are 0.99,0.86,

and 0.80, respectively. Figure4 presents decomposition ofV2. Specifically, since all predictive distributions

are Gaussian, we decomposeV2 into amean component and a variance component, as described in Section

2 in the case of the univariate Gaussian distribution. The upper figure presents the evolution of the mean

component. The lower panel shows the evolution of the variance component.

Mean component can be viewed as a dispersion of mean of forecasters predictive distributions (i.e., point

forecasts). It is serially correlated over time with the first autocorrelation value of approximately 0.5. There

are three distinct peaks around 2004, 2009, and 2015. The observed time-variation in mean-disagreement

can be explained by the fact that there is a difference in how the new information (shock) is weighted across

different models with heterogenous memory capacity.

Interestingly, the mean component of our disagreement measure for GDP growth and inflation rate is

positively correlated with Philadelphia Fed’s forecast dispersion index (interquartile range of individual

point forecasts) of GDP growth rate and inflation rate. Their correlation is about 0.45 and 0.49, respectively.
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Figure 4: Decomposition ofV2: Mean(upper panel) and Variance (lower panel) component

This impliesthat the dispersion of professional forecasters can be partly explained by their memory capacity

or concern about the structural break.

The variance component of our disagreement measure is downward trending over our sample. This

is because of the Great Moderation effect. At the beginning of our estimation sample (1998Q2), there

are forecasters using data observations from a time period with high volatility (i.e., pre-1985). However, the

proportion of forecasters doing so decreases over time. In turn, the variance covariance matrix of forecasters’

predictive distribution becomes similar to each other.
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